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Abstract

A computer model for simulating experiments done on surface or-
ganelles (so called pili) on the Escherichia Coli bacteria have been de-
veloped and implemented. The objective of the computer simulation was
to mimic the results of experiments done with optical tweezers and to dis-
play a graphical, three dimensional, representation of these experiments.

The experiments measured the force response to elongation of pili.
This force response can be divided into three regions of elongation, region
I, II and III, each with different properties. Region I is characterized by a
constant increase in force, in region II the Pilus is unfolded under constant
force, and in region III the force versus elongation curve assumes a non-
trivial shape with increasing force. The pili are also able to retract to its
original length giving a similar force response curve. The computer model
should be able to handle all these properties. The developed model could
handle elongation in region I and II. In region III, the force response given
by the simulation differed from the one given by the experiments.
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Sammanfattning

En datormodell för att simulera experiment gjorda p̊a ytorganeller (s̊a
kallade pili) p̊a Escherichia Coli bakterien har utvecklats och implemente-
rats. Syftet med arbetet var att återskapa resultat fr̊an experiment utförda
med optisk pincett samt ge en grafisk, tre-dimensionell, representation av
dessa experiment.

I experimenten mättes kraftresponsen vid utdragning av pili. Denna
kraftrespons kan delas in i tre regioner, region I, II och III, där varje re-
gion har olika egenskaper. Region I karaktäriseras av en konstant ökning
av kraften, i region II vecklas pilin ut under konstant kraft och i region
III antar kraftresponsen en icketrivial form men med ökande kraft. Pili
kan ocks̊a återg̊a till sin ursprungliga längd vilket ger en liknande kraftre-
sponskurva. Datormodellen skall vara kapabel att hantera dessa egenska-
per. Den utvecklade modellen kunde hantera region I och II. I region III
gav simuleringen andra resultat än experimentet.
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1 Introduction

The Escherichia Coli bacteria is the cause of a majority of all uncomplicated
urinary tract infections. The bacterial membrane is equipped with surface or-
ganelles, called pili, which is responsible for the adhesive properties of the bac-
teria. These properties have been studied and measured in [1] and [2].

The pili must withstand the hosts mechanical defenses, mainly urine flows,
that exposes it to forces. The pili has evolved into a three-dimensional helix-like
structure, able to unfold when subjected to external forces. It is this property of
the structure that enables the bacteria to maintain contact with its host. The
adhesion must be mediated by several parallel attachments, if the pili where
stiff the bonds would break under any significant external force.

1.1 The Structure of the Pilus

The pili of Escherichia Coli bacteria have, in its equilibrium state, the structure
of a rod with diameter ∼ 6.8nm and a length of ∼ 1µm, and an about 15nm

long fibrillum tip with diameter 2−3nm. The pili are mainly composed of PapA
subunits arranged in a helical shape with 3.28 units per turn and about 1000
units in total. The helical rod is fastened to the bacterial membrane by PapH
and connected to the fibrillum by PapK. The fibrillum tip is in turn made of
the PapE, PapF and PapG minor subunits, this is illustrated in figure 1.

Figure 1: Schematic illustration of a Pilus, taken from [1].

1.2 Optical tweezers

Optical tweezers can be used to measure forces in the pN range. A small object
(µm sized) is trapped by a highly focused laser beam. If an external force is
acting on the particle it will be displaced a distance, x, from the laser focus, this
will in turn result in a restoring force, shown in figure 2. For small displacements
the restoring force depends linearly on the displacement distance

Fr = kx, (1)

for some force constant k. In equilibrium the restoring force will be equal to the
displacing external force. Optical tweezers are described in more detail in [4].
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Figure 2: Particle trapped in an optical tweezers.

1.3 Measurements

By use of optical tweezers it is possible to measure the force response to elon-
gation of individual pili on the E. Coli bacteria. This has been done in [1] by
capturing a bacterium with an optical tweezers and letting it attach to a large
bead. Then, when it is strongly linked, a smaller bead (captured by the optical
tweezers) is placed into contact with the bacterium, shown schematically in fig-
ure 3. Now the force response of the Pilus upon unfolding can be assessed by

Figure 3: Bacterium attached to a small and a large bead.

measuring the position of the small bead while moving the large bead.
The response can be divided into the three regions shown in figure 4. See also

figure 5 for force response of an experiment with several pili. As can be seen,
there is a small jump in the response during refolding between regions II and III.
In region I there is a linear relation between the external force and elongation

that is assumed to be caused by stretching of the layer-to-layer bonds. When
the layer-to-layer bonds start to break the curve enters region II, given that the
Pilus doesn’t detach from the bead. Here the force will remain constant until
all bonds are broken and the Pilus has unfolded. When the Pilus has lost its
helical structure it enters the third state of elongation which is characterized
by an increase in the head-to-tail angle between PapA units or an elongation of
the actual PapA units themselves. The three elongation states are illustrated
in figures 6 to 8.
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Figure 4: Force versus bead-to-bead distance of a single pili caught in optical
tweezers. The figure is taken from [5].
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Figure 5: Force versus bead-to-bead distance of two consecutive elongation and
contraction cycles displayed by red and green curves respectively. The numbers
in the graphs indicate important bacterium-to-bead distances. The experiment
was done on several pili and the drop in force response during unfolding is due
to pili detaching. The figure was taken from [6].

Figure 6: Elongation in region I projected into two dimensions.

Figure 7: Elongation in region II projected into two dimensions.
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Figure 8: Elongation in region III projected into two dimension.

1.4 Numerical simulation of macro molecules

The objective of this thesis is to construct a multi body system dynamic model
of the helix like structure of a pili. It should be possible to perform experiments
on the model, e.g. measure force response to elongation. It should be possible
to adjust some of the properties of the Pilus. The model should be implemented
and giving a graphical representation of the experiments on a µm scale.

There are a number of forces that have to be taken into account in the
simulation:

1. A layer-to-layer force between each layer in the helix.

2. A force between each PapA block in the Pilus.

3. An external force acting to keep the Pilus attached to the bacteria.

4. An external force between the Pilus and the small bead, acting as a trap
unfolding the Pilus.

It should be possible to easily adjust properties of all these forces, e.g. strength
and range.

There are two main ways to perform molecular computer simulations, those
are molecular dynamics and Monte Carlo simulation. The Monte Carlo method
relies on repeated samplings using a random number distribution. The model
developed in this thesis uses molecular dynamics which is further described in
[8].

The developed model uses rigid bodies to simulate individual PapA subunits
in the Pilus, this makes it easy to give a graphical and meaningful representation
of the experiments. It was implemented using a method called constraints reg-
ularization, explained in sections 2.3 and 2.4. The method has previously been
used in simulation and visualization of a rigid body cable, see [7]. Constraints
regularization are also explained in more detail in [9].

2 Theory

In the following section, concepts necessary to understand the chosen approach
for simulating macro molecules will be presented. These include rigid body
dynamics and constraint regularization.
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2.1 Definitions

The following entities need to be defined to describe a system of rigid bod-
ies. Capital letters will be used to represent matrices and generalized vectors1.
Lower case letters will be used to denote object specific (non generalized) vec-
tors. It is assumed to be N bodies in the system.

I further let subscripts represent the component and superscripts denotes
which object the vector or matrix belongs to. If nothing else is mentioned, all
vectors are column vectors. The unit matrix with dimensions a, b will be written
1a,b, and the zero matrix with the same dimensions will be written 0a,b. If no
subscript is given for the zero matrix (0), then it is assumed to be large enough
to fill the elements that are not specified. This is used in diagonal and block
diagonal matrices:





x1 0

x2

0 x3



 ≡





x1 0 0
0 x2 0
0 0 x3



 . (2)

Let X be a generalized position vector defined as

X = [(x1)T (q1)T (x2)T (q2)T . . . (xN )T (qN )T ]T , (3)

where xi is the position of object i relative some coordinate system, it has three
components. The vector qi is the quaternion (see [3]) representing the orien-
tation of object i, it has four components. This gives the generalized position
vector the dimension

X ∈ R
7N . (4)

The entity X is, at each point in time, enough to describe the state of a system
of rigid bodies completely.

Further, let V be the generalized velocity vector,

V = [(v1)T (ω1)T (v2)T (ω2)T . . . (vN )T (ωN )T ]T , (5)

where vi is the linear velocity vector and ωi is the angular velocity of object i.
As both vi and ωi are three dimensional vectors; V ∈ R

6N .
In line with the previous definition, the generalized force is defined as

F = [(f1)T (τ1)T (f2)T (τ2)T . . . (fN )T (τN )T ]T , (6)

where f i ∈ R
3 is the linear force and τ i ∈ R

3 is the torque of object i. The
generalized force vector do have the same dimension as the generalized velocity:

F ∈ R
6N . (7)

1Vectors describing a property of more than one object. Often comprised of several object

specific vectors.
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Now, define a general mass matrix to contain both the mass and the inertia
tensor of all objects in the following block diagonal form

M =











M1 0

M2

. . .

0 MN











, (8)

where Mi contains the mass (mi) and inertia tensor (Ii) of object i in the form

Mi =

(

mi13,3 03,3

03,3 Ii

)

. (9)

This gives the generalized mass matrix the following dimension

M ∈ R
6N×6N . (10)

A way to describe the relation between the time derivative of the position,
Ẋ, and the velocity V is also needed. For this I define

Ẋ = TV, (11)

where T is the block diagonal matrix

T =















13,3 0

Q1

. . .

13,3

0 QN















. (12)

This is a logical assumption: because ẋi = vi, while q̇i does not even have the
same dimension as ωi. There is a need for a transformation matrix, Qi ∈ R

4×3,
to transform the former entity to the latter. In [3] it has been shown that this
is the required matrix:

Qi =
1

2









−qi
2 −qi

3 −qi
4

qi
1 qi

4 −qi
3

−qi
4 qi

1 qi
2

qi
3 −qi

2 qi
1









. (13)

2.1.1 Coordinate Transformations

All vectors and matrices are assumed to be given relative a global coordinate
system that is independent of the objects. It may be necessary or convenient to
define several coordinate systems local to objects in space. Vectors and matrices
that is expressed relative the local coordinate system of object i will be given
the subscript l(i), e.g. vl(i) represents the velocity vector relative the local
coordinate system of object i.
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The inertia tensor relative a local coordinate system, Ii
l(i), will generally be

constant because the coordinate system rotates with its object. The same in-
ertia tensor given relative the global coordinate system, Ii, could on the other
hand vary if the object changes orientation in time. It is possible to transform
an inertia tensor from the local to the global coordinate system by a coordi-
nate transformation, given that the local inertia tensor is symmetric, with the
following transformation:

Ii = RiIi
l(i)(R

i)T . (14)

Here, Ri is the transformation matrix from l(i) to the global coordinate system.
Ri can, according to [3], be written with the help of the object quaternion in
the following way:

Ri =





1 − 2((qi
3)

2 + (qi
4)

2) 2qi
2q

i
3 − 2qi

1q
i
4 2qi

1q
i
3 + 2qi

2q
i
4

2qi
2q

i
3 + 2qi

1q
i
4 1 − 2((qi

2)
2 + (qi

4)
2) −2qi

1q
i
2 + 2qi

3q
i
4

−2qi
1q

i
3 + 2qi

2q
i
3 2qi

1q
i
2 + 2qi

3q
i
4 1 − 2((qi

2)
2 + (qi

3)
2)



 .

(15)

2.2 Rigid body dynamics

A system of N rigid bodies is governed by Newton-Euler’s equations of motion

V̇ = (M)−1F, (16)

where the force may be separated in three parts

F = Fconstraint + Fexternal + Fgyroscopic. (17)

The constraint force is the force originating in the constraints placed on the
system. They can be seen as internal forces limiting the movement of the ob-
jects. The gyroscopic forces comes from rotation of asymmetric bodies and is
calculated as

Fgyroscopic = −ṀV, (18)

where the time derivative of the individual mass matrices can be shown to be

Ṁi =

(

03,3 03,3

03,3 (ωi)xIi + Ii(ωi)x

)

. (19)

The cross product matrix2, (ωi)x, is defined to be

(ωi)x =





0 −ωi
3 ωi

2

ωi
3 0 −ωi

1

−ωi
2 ωi

1 0



 . (20)

All other forces are called external. Equation (11) and (16) together de-
scribes the dynamics of a system if the forces are known.

2The cross product matrix is actually given by the relation a × b = a
x
b.
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2.3 Constrained dynamics

There is a need to handle internal forces in the system, e.g. connection between
rigid bodies and connections between external objects and the bodies of the
simulation. In other words, all things that restricts, or constrains, the movement
of the simulated objects. If it is possible to determine a potential, U , for these
constraints, then it is theoretically possible to determine all resulting forces
directly by using

F = ∇U. (21)

This easily leads to numerical instabilities, as the internal forces can become
very large even for small changes in position from equilibrium. It would gener-
ally require small time-steps and expensive integration methods to get a stable
simulation. And even then, it is not certain that it is possible to formulate a
potential function that gives the wanted effect.

An alternative way is by constrained dynamics. First, define a constraint
function

Φ(X) ∈ R
Nc ,

X ∈ R
7N ,

where X is the generalized state vector,3 and Nc is the number of constraints
placed on the system. This function determines a geometric relation between
bodies and can be constructed to represent physical properties of the system.
In this project, there is a need for constraints locking objects in place, and
effectively reducing the total degrees of freedom. These are called holonomic
constraints and are of the form

Φ(X) = 0. (22)

This equation specifies a surface in generalized position space on which the
system is restricted to and reduces the degrees of freedom of the system by Nc.

What is now needed is a way to calculate the constraint force, Fconstraint,
that enforces the constraints. First take the time derivative of Φ(X):

Φ̇(X) =
∂Φ

∂X
Ẋ =

∂Φ

∂X
TV = 0, (23)

which is true because the constraint function is defined as constant zero. The
Jacobian is defined as

G ≡
∂Φ

∂X
T,

which gives
Φ̇(X) = GV = 0. (24)

3The state vector consist of a position vector and a 4 dimensional quaternion. Therefore,

X must be 7N dimensional.
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The constraints keeps the objects on a specified surface keeping Φ = 0,
adding the requirement that the restoring constraint force do no work

Fconstraint · V = 0. (25)

According to [3], this together with equation (23) leads to

Fconstraint = GT λ, (26)

for some
λ ∈ R

Nc .

One way to determine λ is to take the second time derivative of Φ(X)

Φ̈(X) = ĠV + GV̇ = 0. (27)

Replacing V̇ by M−1F gives

ĠV + GM−1(Fexternal + Fgyroscopic + Fconstraint) = 0, (28)

so finally

GM−1GT λ = −ĠV − GM−1(Fexternal + Fgyroscopic). (29)

To summarize, the governing equation of a constrained rigid body system
can be expressed

Ẋ = TV, (30)

V̇ = M−1(F + GT λ), (31)

GM−1GT λ = −ĠV − GM−1(Fexternal + Fgyroscopic). (32)

Using equations (30) to (32) enforces Φ = 0 strictly. Unfortunately, this could
cause numerical drift in a simulation. There are several ways of correcting and
stabilizing the method, one is to add correction terms to λ,

λ → λ + κsΦ + κaΦ̇,

where κa and κs are parameters that has to be guessed or determined in some
way. The method which I have used is constraint regularization, described in
section 2.4.

2.4 Constraint regularization

If the potential energy of a closed system can be written as

U(X) =
1

2
ΦT (X)ǫ−1Φ(X), (33)

for some arbitrary function Φ(X) and diagonal matrix ǫ. Then the internal
forces in the system can be calculated

Fconstraint = −TT dU

dX
= −TT dΦ

dX

T

ǫ−1Φ = −GT ǫ−1Φ, (34)
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where

G =
dΦ

dX
T. (35)

By defining
λ ≡ −ǫ−1Φ, (36)

the force becomes
Fconstraint = GT λ. (37)

The final equations for regularized constraints will look similar to the con-
straint equations shown in section 2.3:

Ẋ = TV, (38)

V̇ = M−1(Fexternal + Fgyroscopic + GT λ), (39)

λ = −ǫ−1Φ. (40)

This is no longer a system of differential equations but a differential algebraic
equation. Equations (38) to (40) can be solved numerically using a semi im-
plicit Euler algorithm. This is shown in section 7.1. The advantage of using
this method is the stability; the parameter ǫ can be adjusted to avoid instabil-
ities and numerical drift as it controls the strength of the potential. Also, the
resulting forces will correspond to physical forces originating in the potential U

in equation (33). It is possible to first define a potential, then find the required
constraint function giving that potential.

3 Numerical Simulation

The objective of this thesis is to simulate experiments done on a E. Coli bac-
terial pili. These experiments are described in more detail in section 1, as well
as details about the Pilus structure. The Pilus should be fastened to a cell
membrane in one side and to a trap in the other side. Then the trap should be
able to move with a constant velocity, while recording the force response of the
unfolding Pilus.

The Pilus is modeled as several interconnected rigid bodies representing the
PapA units constructing the real-world Pilus. These rigid bodies, or blocks, are
geometrically cuboids with side lengths a, b and c. Each block is assigned a
local coordinate system with unit perpendicular axes. These axes are, for block
i, given relative a chosen global coordinate system, ai, bi and ci, see figure 9.
Positions and tensors will from here be denoted by an l(i) subscript if it is given
relative to the local coordinate system of block i.

As each block has a uniform density the inertia tensors in the local frames
are given by

Ii
l(i) =





a2 + b2 0 0
0 b2 + c2 0
0 0 a2 + c2



 . (41)
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a
i

b
i

c
i

Figure 9: The local coordinate system of block i.

These matrices are symmetric so it is possible to transform them to the global
frame using the transformation in (14). This is useful because the local inertia
tensor is, as can be seen, constant in time. So, it is only necessary to calculate
it once, then use a coordinate transformation to transform it into the global
frame at each time step.

Each block is connected to the next in connection points placed at the center
of two of its sides, see figure 10. In the equilibrium state, these blocks are
oriented in a helical shaped chain with 3.28 units per turn. The orientation is
set using the following algorithm:

1. Give block 1 some random orientation.

2. Let i → 2.

3. Give block i the same orientation as block i − 1.

4. Rotate block i 2π
3.28 around axis ci.

5. Rotate block i r around axis bi, where r is an angle that determines the
layer to layer distance. It should be set so that it brings the structure to
initial equilibrium.4

6. Increment i by one.

7. Repeat steps 3 to 6 until i = N .

8. Rearrange block 1 so that axis a1 is perpendicular to a2.

9. Rearrange block N so that axis aN is perpendicular to aN−1.

This orientation is partly maintained by a potential depending on the relative
angles between adjacent blocks, and partly by a potential depending on the
distance between adjacent layers in the helical structure. These two potentials
are defined in sections 3.1 and 3.2.

4The angle, r, can be found by trial and error, either manually or with the help of a

computer program.
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Connection points

Figure 10: The connection points of a block.

3.1 Pairwise interaction

The pili are divided into blocks of rigid bodies, each with length a, width b

and height c. The blocks are connected pairwise by a strong potential, U0,
dependent on the distance between pairs of blocks. There is also a potential,
U1 to U3, acting to keep the equilibrium angle between blocks. The potentials
are defined like this

U0 =
2

ǫ0

∑

i

(xi
+ − xi+1

−
)2, (42)

U1 =
2

ǫ1

∑

i

(θi,i+1
a − Θi,i+1

a )2, (43)

U2 =
2

ǫ2

∑

i

(θi,i+1
b − Θi,i+1

b )2, (44)

U3 =
2

ǫ3

∑

i

(θi,i+1
c − Θi,i+1

c )2, (45)

where

xi
+ = xi +

1

2
aai, (46)

and

xi
−

= xi −
1

2
aai, (47)

are vectors pointing to the edges of the blocks, as shown in figure 11. The entity
θ

i,i+1
k is the angle between the coordinate axes k of body i and i + 1. Θi,i+1

k is

the equilibrium state of θ
i,i+1
k . The ǫk is a constant determining the strength of

the potential.
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x
i

−

x
i

+

Figure 11: Edge vectors xi
+ and xi

−
.

Each of these potentials can be written in the form of constraints, using
equation (33):

Φ4(i−1)+1 = xi
+ − xi+1

−
, (48)

Φ4(i−1)+2 = θi,i+1
a − Θi,i+1

a , (49)

Φ4(i−1)+3 = θ
i,i+1
b − Θi,i+1

b , (50)

Φ4(i−1)+4 = θi,i+1
c − Θi,i+1

c , (51)

with the total constraint vector

Φ = [ΦT
1 Φ2 Φ3 Φ4 . . .ΦT

4(N−1)+1 Φ4(N−1)+2 Φ4(N−1)+3 Φ4(N−1)+4]
T .

(52)
The Jacobian can be calculated from these constraints using the relation

GV = Φ̇, (53)

which gives the block diagonal Jacobian

G =











G1,1 G1,2 0
G2,2 G2,3

. . .
. . .

0 GNc,N−1 GNc,N











, (54)

where

Gi,i =









13,3 −(aai)×

01,3 AT

01,3 BT

01,3 CT









, (55)
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and

Gi,i+1 = −









13,3 −(−aai+1)×

01,3 AT

01,3 BT

01,3 CT









. (56)

The vector aai is pointing to the forward edge of block i and −aai is pointing
to in the opposite direction, this is shown in figure 12. The vectors A, B and

aa
i

−aa
i+1

Figure 12: Vectors aai and −aai+1.

C can be calculated

A = −
1

(a×)2 + (a·)2

[

a× +
(a·)

2

a×

]

a×, (57)

B = −
1

(b×)2 + (b·)2

[

b× +
(b·)

2

b×

]

b×, (58)

C = −
1

(c×)2 + (c·)2

[

c× +
(c·)

2

c×

]

c×, (59)

where a· = ai · ai+1, a× = ai × ai+1 and a× = |ai × ai+1|. The rest follows
similarly5.

3.2 Layer-to-layer interaction

There is also an interaction between each layer of the Pilus. This interaction
should be strong for small distances but quickly decrease once the distance gets
larger. This is done by assigning each block two points with different ‘colors’
(red and blue), see figure 13. For performance reasons, only the points on every

Figure 13: Three PapA units with corresponding layer-to-layer potential points.

third block effect each other6, which is possible because of the fact that the

5There is a numerical singularity when a× equals zero. This can be avoided by adding a

small number to the a× term.
6This means every block will interact with a block one turn forward and one turn backward

in the helical structure, as there are 3.28 blocks per turn.
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interaction should be short range. The red points are placed in the center of
one of the large sides of each block. Then the blue points are placed on the
opposite side so that the distance in the beginning state between red point on
block i − 3 and blue point on block i is minimized (see figure 14).

red blue

ii − 3

Figure 14: The placement of red and blue points.

The layer-to-layer interaction is modeled by an exponential potential

ULL = −U0e
−

r
2

L2

LL , (60)

where r is the distance between a red and a blue point, U0 is the potential depth
and LLL is a characteristic length of the potential. An example of this potential
with U0 and LLL set to one is shown in figure 15. It should be noted that this
potential is not implemented using constraints. The resulting forces are instead
found using

FLL = −∇ULL, (61)

directly.

3.3 Other forces

The Pilus is exposed to three different external forces in the simulation. The
first block in the structure is fastened in a cell membrane, this is modeled by
locking it in the starting position.

The last block is effected by a trap potential representing the optical tweez-
ers. This trap force is modeled by a spring potential

UTrap =
2

ǫT

(xTrap − xN )2, (62)

where xTrap is the trap position and ǫT is the inverse potential strength. This
gives the following constraint function:

ΦT = xTrap − xN . (63)

The trap is, at the beginning of the simulation, placed at the center of the last
block. Then it is moved with a constant velocity away from the Pilus until it
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Figure 15: Layer-to-layer potential as a function of point-to-point distance with
unit parameters.

reaches a predetermined distance at which the velocity is reversed. The trap
then moves back until the Pilus is in its original position.

All blocks are subject to a friction force, causing energy dissipation. This
force is defined as an external force

Fi
v = −kvv

i, (64)

Fi
ω = −kωωi, (65)

where kv and kω are coefficients determining the strength of the dampening
force. This gives the following total dampening force

Ff = −[kv(v1)T kω(ω1)T . . . kv(vN )T kω(ωN )T ]T . (66)

3.4 Unit normalization

While running the simulation, all units used are simulation units. It has to be
possible to transform between these simulation units and real world units, such
a transformation will be given in this section. The simulation units for length
and force are named in the following way

SL = [length],

SF = [force].
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These units can be determined to fit with the experimental results.
The pili length should be ∼ 1µm and it consist of about 1000 PapA subunits.

Assuming that the rest length scales linearly with the number of blocks, it can
be determined from measured values in the simulation that a Pilus with 1000
blocks should have the length 320SL. This gives

1SL =
1

320
µm. (67)

The force response in region II is increasing with the number of blocks. If
this increase is assumed to be linear the height using 1000 blocks would be
1.13 · 10−2SF . The force of a single pili in elongation region II should be 27pN

according to experiments ([5]), this gives

1SF =
27

1.13 · 10−2
pN. (68)

3.5 Parameters

The following parameters, shown in table 1, where chosen to be used in the
main simulation. All values are given in simulation units.
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Table 1: Parameter values mostly used in the simulation, given in simulation
units.

Parameter Description Value

U0 Layer-to-layer potential depth 0.005
LLL Layer-to-layer potential characteristic length 0.75
m Mass of PapA blocks 0.0004
kv Linear friction force coefficient 5 · 10−5

kω Angular friction coefficient 10−5

ǫ0 Pairwise linear inverse potential strength 0
ǫ1 Pairwise angular inverse potential strength 125
ǫ2 Pairwise angular inverse potential strength 260
ǫ3 Pairwise angular inverse potential strength 260
ǫT Trap inverse potential strength 100
Vt Speed of trap 0.1
a Base length of PapA blocks 2
b Width of PapA blocks 1
c Height of PapA blocks 1
N The number of blocks 100
∆t The size of the time step 0.01

3.6 Implementation

The following software and hardware was used to implement the model and run
simulations on it.

• Hardware

– CPU - AMD Athlon XP 1800 @ 1.5GHz

– Internal memory - 256 MB

• Software

– MATLAB 6.5

– Programming language - C

The rest of this section describes the details of the implementation as well as
the algorithms used.

3.6.1 Algorithms

The following general algorithm was used to implement the model. The details
of the more complex steps will be explained later in this section.

1. Set all constant parameters, e.g., mass of blocks and their dimensions,
potential strengths, length of time step. Also place the blocks in a starting
configuration and set all derived parameters like generalized mass matrix.
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2. Start the time stepping.

3. Calculate Φ, G, GT and Fexternal.

4. Solve the equation of motion, this will give updated generalized position
and velocity vectors.

5. Update the derived object parameters according to the new velocity and
position vectors.

6. Move trap forward/backward depending on if the Pilus has reached its
maximal elongation or not.

7. Save the force on the Pilus by the trap during this time step together with
the length of the Pilus.

8. Repeat step 2 to 8 until a stop condition is reached. This stop condition
is given by the user.

9. Save all variables to a file.

In point 1 the constant parameters include all parameters mentioned in table
1, they are set to the values given in the table. The PapA blocks are placed
in their equilibrium positions using the algorithm given in the beginning of this
section, when that have been done the derived parameters could be determined
and stored. These include:

• The body centered inertia tensors and their inverses.

• The generalized mass matrix and its inverse.

• The transformation matrix given in equation (12).

• The equilibrium angles between each pair of blocks, these are the same as
the initial angles.

• The position of the two connection points on each block.

• The diagonal matrix ǫ. The components of this matrix are ǫ0, ǫ1, ǫ2, ǫ3
and ǫT given in table 1. These are actually duplicated for each block as
there need to be one component for each constraint7.

In point 3 the vectors and matrices Φ, G and Fexternal are calculated. Φ is
a vector determining the constraints8. It is mainly defined in section 3.1, with
one addition given by equation (63). The Jacobian, G, is also given in section

7Remember that the components in the diagonal of the ǫ matrix determines how stiff the

corresponding constraint is.
8Which means that the forces derived from the constraints will try to keep Φ = 0.
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3. Using that GV = Φ̇ and ΦT = xN −xTrap the trap component of G is given
by





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





















vN
1

vN
2

vN
3

ωN
1

ωN
2

ωN
3

















=
d

dt
(xN − xTrap). (69)

The trap position can be considered to be a constant, as the trap itself is not
effected by any constraints and is in a way external to the whole physical model.
The external forces include the friction forces which are for block i

−kvv
i,

and
−kωωi,

respectively. The layer to layer forces are also considered external in this simu-
lation, these are defined in section 3.2. Finally the gyroscopic force is added to
Fexternal:

Fgyroscopic = −ṀV. (70)

The equations of motion solved in point 4 are the ones given in equations
(38) to (40). These are solved by first defining

S = GM−1GT + ∆t−2ǫ, (71)

called the Schur complement. Then, one can get λ(t + ∆t) using

λ(t + ∆t) = S−1

(

−GT V − ∆tGM−1Fexternal − ∆t−1Φ

∆t

)

. (72)

V(t + ∆t) and X(t + ∆t) can then be solved for by using

V(t + ∆t) = M−1(GT λ(t + ∆t)∆t + MV(t) + ∆tFexternal), (73)

and
X(t + ∆t) = X(t) + ∆tTV(t + ∆t). (74)

The updated parameters in point 5 are the same as the ones in point 1. They
are now updated using the new generalized velocity and position, X(t+∆t) and
V(t + ∆t). The movement of the trap in point 6 is straightforward, just check
if the Pilus is in its unfolding or retraction phase, and then change the position
accordingly.

When the time step is completed the force between the trap and the Pilus
needs to be saved together with the length of the Pilus. This force can be
extracted from the following

Fconstraint = GT λ, (75)
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which is equation (37). The length of the Pilus is simply calculated by taking
the difference between the last and the first block in the chain.

The stop condition is of the form

• IF Lp ≥ N · Lt: reverse trap velocity,

• IF trap velocity is reversed AND trap is at original position: stop simula-
tion,

where Lp is the length of the Pilus, Lt is a parameter given by the user and N

is the number of blocks. There is also an option not to reverse the simulation
but to end it if the first condition is true.

3.6.2 Special solutions

Many of the matrices used in the simulation are huge and has a large number
of elements set to zero. These where implemented as sparse matrices. These
matrices are shown in table 2. This has the benefit of only needing to allo-
cate storage space for the elements which are actually non zero and also gives
MATLAB a hint to which the non zero elements are when solving the linear
equation systems.

Table 2: The matrices implemented as sparse matrices.

M M−1 Ṁ

Il I−1
l T

G GT ǫ

It was also found to be rather innefficient implementing certain calculations
using the scripted language of MATLAB. Instead, some parts implementation
where written in C and compiled. Both step 3 and 5 in the main algorithm
(section 3.6.1) where implemented in this way.

3.6.3 Computational complexity

The time complexity of the simulation can generally be written

F (N) = f1(N) + Nt · f2(N), (76)

where N is the number of blocks, Nt is the number of time steps the simulation
runs and f1(N), f2(N) are some functions.

The function f1 corresponds to the initialization of the constant and derived
parameters. The time complexity of setting the constants are independent on
N , the derived parameters on the other hand need to be initialized for each
block. This gives

f1(N) = C1 + C2 · N, (77)

where C1 is the time taken to initialize the constants and C2 is the time taken
to initialize the derived parameters for each block.
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The function f2(N) includes the time consumed by all computations done
in the loop. The constraints calculation include some constant complexity ini-
tializations and some calculations done for each block. These calculations are
however independent on the number of blocks so the total time complexity is
linear. f2(N) also includes solving the equations of motion, the solution to those
are shown in section 3.6.1. Following are the dimensions of the matrices and
vectors used in the calculations:

S ∈ R
NC×NC ,

G ∈ R
NC×6N ,

M ∈ R
6N×6N ,

ǫ ∈ R
NC×NC ,

λ ∈ R
NC ,

V ∈ R
6N ,

Fexternal ∈ R
6N ,

Φ ∈ R
NC ,

X ∈ R
7N ,

T ∈ R
7N×6N .

There are two especially importing things to say about these dimensions. First,
the number of constraints, NC , depends on the number of blocks, N , linearly.
Secondly, all matrices are band diagonal. These two facts together with the
dimensions and equations (71) to (74) gives a time complexity depending linearly
on the number of blocks. The derived parameters are also updated in each time
step, these are the same calculations as those done outside of the loop and does
therefore have a linear time complexity. Putting this together gives

F (N) = C1 + C2 · N + Nt · [(C3 + C4 + C5 + C6) N + C7] , (78)

where C1 is the time it takes to initialize constants, C2 to initialize all derived
parameters for each block, C3 to calculate constraints for each block, C4 to solve
equations of motion for each block, C5 to update derived parameters for each
block, C6 to draw each block and C7 to save forces, check stop condition and
update trap position. The total number of time steps, Nt will also be dependent
on N , which can be seen from the stop conditions in section 3.6.1. This gives
the whole simulation a time complexity dependent on the square of its size

F (N) = O(N2). (79)

The resulting time complexity is also confirmed in section 4.3.

4 Results

The simulation should correspond to the physical experiments where the force
on the trap was compared to the elongation distance, see section 1. There should
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be three distinct regions called region I, II and III, all due to the change of state
of the Pilus. Figure 16 shows the result of a simulation with 320 units of PapA.
The force is larger when the Pilus is unfolded than when it is retracted. As can
be seen, there is a jump in the response force at about 1µm during retraction.
This is a somewhat expected behavior, see section 5. A sequence of images from
the three different regions in the simulation are shown in figure 17, 18 and 19
respectively.
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Figure 16: Force on trap as a function of the length of the Pilus.

The remaining of this section is devoted to, region by region, examine how
the force/elongation curve depends on simulation parameters and thus how the
model compares to the real system under these experiments.
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Figure 17: A sequence of images from region I in the simulation. The distance
between different layers are small and the dominant force is derived from the
layer to layer potential.

Figure 18: A sequence of images from region II in the simulation. Some of the
layer to layer bonds have broken and the Pilus is unfolding. This occurs as a
chain reaction from the right to the left.

Figure 19: A sequence of images from region III in the simulation. All the layer
to layer bonds have broken. Further elongation now comes from the stretching
of the pairwise bindings.
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4.1 Model validation - Region I

In region I the dominant interaction is the layer to layer interaction explained
in section 3.2. The potential from equation (60) can, for small deformations, be
approximated as a spring potential (U = 0.5k(∆L)2) using

ULL ≈ −
U0

L2
LL

r2. (80)

Each layer has three bindings and there is a total of N
3.28 layers so the effective

spring constant for the entire Pilus9 should be

ke =
3.282 · 2U0

NL2
LL

, (81)

as can be seen from the calculations in section 7.2. This relation can be tested
by plotting the force applied by the Pilus on the trap as a function of the
displacement. These results are shown in table 3. The data is also presented
in figure 20 with experimental and theoretical spring coefficient as a function of
the number of blocks.

The effective spring coefficient should also depend on the potential depth
and characteristic length. Measurements have been done to determine if this
relation is correct. The result given while varying the potential depth is shown
in figure 21. Here the strength is normalized against the mainly used value for
U0 given in section 3.5. The values given in the simulations are compared to
theoretical values given by equation (81). As can be seen, there seem to be some
constant factor that isn’t in equation (81).

In a similar way, results of measurements while varying the characteristic
potential length are shown in figure 22. Again, an unknown constant factor
appears.

The length of region I should be dependent on the number of blocks in the
pili in the following way

RI = fINLLL, (82)

where RI is the region length and fI is an unknown factor. The region I length
is shown as a function of N in table 4 and figure 23. This length should also

9If the whole Pilus is considered to be a spring, this would be the spring constant.

Table 3: Effective spring constant in region I shown in simulation units.
N U0 LLL ke (simulation) ke (theoretical)
50 0.005 0.75 2.388 · 10−3 ± 3 · 10−6 3.825 · 10−3

75 0.005 0.75 1.782 · 10−3 ± 2 · 10−6 2.550 · 10−3

100 0.005 0.75 1.4196 · 10−3 ± 9 · 10−7 1.9126 · 10−3

150 0.005 0.75 9.987 · 10−4 ± 5 · 10−7 1.275 · 10−3

200 0.005 0.75 7.17 · 10−4 ± 1 · 10−6 9.56 · 10−4

320 0.005 0.75 4.699 · 10−4 ± 4 · 10−7 5.467 · 10−4
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Figure 20: Spring coefficient as a function of number of blocks in region I.
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Figure 21: Slope of region I as a function of the normalized characteristic layer
to layer potential depth for 100 blocks.

30



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

Normalized potential lenght

S
pr

in
g 

co
ef

fic
ie

nt

 

 
Simulation values
Theoretical values

Figure 22: Slope of region I as a function of the normalized characteristic layer
to layer potential length.

depend on the layer to layer potential depth and characteristic length, as those
parameters determine when the layer to layer bonds begin to break. There is also
a dependence on the pairwise angular potentials. If these where made stronger
they would effect the simulation even in region I. From these measurements it
can be seen that the value of the unknown parameter is

fI = 0.080 ± 0.007. (83)

Table 4: Length of region I as a function of the number of blocks.
N U0 LLL RI (simulation)
50 0.005 0.75 3 ± 2
75 0.005 0.75 4 ± 2
100 0.005 0.75 7 ± 2
150 0.005 0.75 7 ± 2
200 0.005 0.75 13 ± 2
320 0.005 0.75 19 ± 2
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Figure 23: Length of region I as a function of the number of blocks.

4.2 Model validation - Region II

When the Pilus has reached a certain length, which is determined in section
4.1, the layer to layer bonds will begin to break. At this point the force needed
to extend the Pilus further should remain constant until region III is reached
where all bonds are broken. There is however a small slope even in region II.
I have examined its dependence on the number of PapA blocks in the pili and
the resulting slope versus number of blocks is shown in table 5 and figure 24.

The end of region II will occur after all layer to layer bonds are broken, that

Table 5: Slope of region II as a function of the number of blocks shown in
simulation units.

N Slope
50 1.29 · 10−5 ± 3 · 10−7

75 7.61 · 10−6 ± 1 · 10−7

100 6.17 · 10−6 ± 7 · 10−8

150 5.46 · 10−6 ± 3 · 10−8

200 5.31 · 10−6 ± 2 · 10−8

320 4.593 · 10−6 ± 4 · 10−9
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Figure 24: Slope of region II as a function of the number of PapA blocks.

is at length
RII = fIINLLL, (84)

where RII is the length of region II, N is the number of blocks, LLL is the char-
acteristic length of the layer to layer potential and fII is a constant parameter.
The length RII is shown as a function of N in table 6. The measured values
gives

fII = 1.431 ± 0.008.

See also figure 25 for RII plotted against N .

Table 6: Length of region II as a function of number of blocks shown in simu-
lation units.

N RII

50 42 ± 5
75 70 ± 5
100 96 ± 5
150 150 ± 5
200 201 ± 5
320 333 ± 5
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Figure 25: Length of region II as a function of the number of PapA blocks.

4.3 Computational complexity

The time complexity was in section 3.6.3 found to depend on the square of the
number of blocks , it can be written

F (N) = C1N
2 + C2N + C3. (85)

To test this, a number of timed simulations have been done, the results are
shown in table 7. From these results the constants in equation (85) could be
assessed:

C1 = 0.40 ± 0.04s, (86)

C2 = −13 ± 9s, (87)

C3 = 400 ± 500s, (88)

(89)

As can be seen, only C1 could be determined with acceptable accuracy using
these limited measurements. The measured values are shown together with the
plotted function in figure 26.
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Table 7: Time to run a simulation as a function of the number of blocks.
N Time (s)
50 779.5
75 1708
100 3085
125 4838
150 7842
175 10430
200 13880
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Figure 26: Time to run a simulation as a function of the number of blocks.
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5 Discussion

As can be seen in figure 16, when entering region II during refolding of the
Pilus at about 1µm, there is a jump in the response force. There is a similar
phenomenon occurring in the experiments, but it is much more pronounced in
the simulation. In the simulation, the jump occurs at about 50% of the region II
length10, this is in contrast with the experimental values. A possible reason for
this anomaly is the absence of random thermal motion in the simulation. The
model used is purely mechanical, and because of this a major component of the
folding of the Pilus is missing. If a thermal factor was added, there would be
an added chance that two layers would get inside the layer-to-layer potential
range earlier during the retraction phase. This would start the chain reaction
that brings the force response curve into region II. Other than fundamentally
changing the computer model, the jump is effected by parameter values. For
example, increasing the angular pairwise potential strength will make the jump
occur earlier during the retraction. This is because, with a stronger angular
potential, the Pilus will not unfold to the same length while in region II. Other
parameters that might effect this is, of course, characteristic length and depth
of the layer-to-layer potential.

Another problem with the simulation is the disturbances in the force response
curve, especially in region II. Each time a layer in the Pilus breaks, there is a
sharp drop in the force. It may be possible to get a smoother force response
curve by taking the average of the force over time, or sampling the result at an
interval. There are also some parameters that effects this; mainly the pairwise
potential strengths and the friction coefficients, although adjusting these would
give other side effects discussed later in this section. It also seems to be the case
that an increased number of blocks decreases the amplitude of the disturbance.

The force response is clearly lower during retraction than during the unfold-
ing. This means that there must be some sort of energy dissipation during the
process. This is not very surprising as there is friction in the system, regulated
by two friction coefficients. However, it is not certain that the explicit fric-
tion forces can account for the whole dissipation. More simulations with varied
friction coefficients would be needed to determine how large the share of the
energy loss is caused by friction. To make the simulation more in line with the
experiments, reducing or removing these coefficients could be a way. But that
would also increase the amplitude of various disturbances, and may even cause
the simulation to fail because friction is used as a stabilizer. The velocity of
the trap could also have an effect on this dissipation, with higher speed giving
more energy loss. Further simulations with varied velocities should be done to
determine by how much this effects the energy dissipation.

If the Pilus is stretched beyond a certain length the simulation will fail. The
blocks will violently realign in a configuration different from the one originally
intended. The effects of this is that the Pilus will be unable to retract correctly,
which can be seen in figure 27. What is shown is that the force response never

10Note that the height of the jump is directly linked to its length. By reducing the length,

the height is also reduced.
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makes the jump back to region II during retraction. Also look at figure 28,
which shows the simulated Pilus after a failed simulation. The cause for this
failure is, probably, the way the angular constraints are implemented. At the
beginning of the simulation the angles are in their rest alignment, shown in
figure 29. It should be especially noted that the angles between axis c1 and
c2 are, approximately, zero. When the simulation has gotten a bit into region
III, one of the three axes will have drifted from the equilibrium angle. This is
shown in figure 30. From this figure it is clear that the axes c1 and c2 have
an angle far from zero between each other, and the restoring force should be
close to its maximum. What now happens is that one of the blocks makes a
turn around the a axis and causing a chain reaction in the structure. This
puts the Pilus in a local equilibrium state, unable to retract properly. To stop
this from happening, changes of the pairwise potentials in region III might be
needed. In a real experiment the Pilus would detach if a too large force is applied
but this might not be wanted in a simulation because that would, as with the
current model, stop it from completing. A better way would be to increase all
potentials at a certain elongation making it impossible to go any further, and
then reversing the trap. No further simulations have been done to achieve this,
but some change in the model is probably needed.
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Figure 27: The force response curve of a failed simulation.
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Figure 28: The Pilus refolding erroneous after a failed simulation.
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Figure 29: Two PapA blocks in equilibrium state. Seen from the trap looking
at the Pilus, the blocks have been separated to easier see the angles between
the local axes.
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Figure 30: Two PapA blocks in maximal unfolded state. Seen from the trap
looking at the Pilus, the blocks have been separated to easier see the angles
between the local axes.

5.1 The third region of elongation

Region III is the part of the simulation that corresponds the least with ex-
perimental results. The behavior of the force response in region III have not
been taken into account when the computer model was designed. This means
that any results achieved in this region is an extrapolation using models and
parameters designed for the two previous regions.

In the simulation, the force seems to increase exponentially with increasing
elongation in region III. This is in contrast to the experimental results, where
the force increases, then levels off and then increases again. This could be pos-
sible to simulate in a number of different ways. Possibly the best method would
be to reformulate the angular constraint functions, e.g., make them depend on
the square or cube of the angles in a way that does not modify regions I and
II but still gives the wanted result in region III. Another method might be to
make the angular potential strengths11 dependent on the corresponding angle.
In this way the simulation could be kept identical to the current behavior in
region I and II but reflect the experiments in region III. It should be noted
that none of these two methods have been tested so no conclusion can be made
regarding which method, if any, is the more appropriate. What can be said is
that the introduction of such a solution would require a great deal of tuning the
parameters to get acceptable result.

5.2 Computational complexity and simplifications

The computational complexity of the simulation have been shown in sections
3.6.3 and 4.3 to be dependent on the square of the number of blocks. Extrapo-
lating using the formula in 4.3, it can be seen that simulating a whole pili with
1000 PapA blocks would take 100±13 hours or four to five days. This would be

11That is ǫ1, ǫ2 and ǫ3.
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on a low end personal computer by today’s standard and can be cut by a large
constant factor using a more powerful computer. It would not be too far fetched
to assume the simulation would finish in less than a day if using a modern high
end computer.

There is an assumption made in this model to decrease the time complexity:
the layer to layer force is only calculated between adjacent layers. The potential
chosen looks like this

ULL = −U0e
−

r
2

L2

LL , (90)

and the absolute value of the force resulting from this potential becomes

FLL = | − ∇ULL| = 2
U0

L2
LL

re
−

r
2

L2

LL . (91)

A valid question is if there would be any differences in the final simulations if
the force wasn’t truncated. That is, if there could be interactions between non
adjacent layers if this potential was used. This force is shown in figure 31. As
can be seen, the force is at about half of its maximum strength at a distance
equal to the width of a PapA block12. If the truncation of the force where
to be fully removed, the helical structure of the Pilus would probably implode
at the beginning of a simulation with the current parameters. Of course, the
characteristic length of the layer to layer potential could be decreased to give
better initial stability. As an example, see figure 32 for the same force with
LLL set to 0.35 simulation units13. With this modified potential, the jump in
response force would however occur even later during retraction. Another thing
to consider is the efficiency if the range restriction where removed. The time
to calculate layer to layer forces between each block increases with the square
of the number of blocks, which means that the total time complexity of a full
simulation would increase to F (N) = O(N3) instead of F (N) = O(N2). This
could be managed by dividing space into a grid of cubes with a suitable side
length, and then calculate the force between each block inside the same and
every adjacent grid cubes. Using the current model with LLL = 0.35, a good
side length would be 0.65 at which distance the force is 0.01 times its maximal
strength.

In an experiment there are often several pili attached to the small bead
at once. If a simulation was done with 100 pili using the current model with
minimal modifications, it would take 100 times as long to finish, give or take
some overhead. This is assuming there would be no interaction between pili.
On a personal computer, this is about 40 to 45 days. If the layer to layer
potential was changed, as mentioned above, to allow for such an interaction,
the time could increase considerably. Assuming the layer to layer force has to
be calculated between each block, the simulation would take 1002 times as long,
or a bit over 100 years. This is not a practical time frame, a grid division as
described above would have to be done.

12Which is one simulation unit.
13Instead of the standard value 0.75 used in the simulation, see section 3.5.
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Figure 31: The absolute value of the layer to layer force as a function of the
distance between red and blue points.
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Figure 32: The absolute value of the layer to layer force as a function of the
distance between red and blue points. The potential characteristic length has
been set to 0.35.
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5.3 Parameters and further simulations

Many more simulations could be done while varying the parameters to give
results more in line with the experimental ones. There are twelve important
parameters given in section 3.5, ignoring the dimensions of the blocks and using
N = 1000. If ten different values where to be tested for each of these parameters,
1012 simulations would have be done. Using the generous estimate that each
simulation takes ten hours to complete, all tests would take a total of 1013 hours
or 1.2 billion years divided by each computer used. This is not realistic, but
perhaps not all combinations of parameters have to be tested. If the parameters
where tested one at a time, only 10 · 12 or 120 simulations would have to be
done. This would take approximately 50 days on a single computer.

6 Conclusion

The objective of the thesis was to develop a computer program suitable to
simulate experiments done on the pili of E. Coli bacteria. A model usable
for the two first regions of elongation where developed and tested. The model
parameters where adjusted to get results in line with those given by experiments.
The final results where in line with the objectives on the following points

1. The force response curve in the simulation during elongation follow that
of the experiment well in region I and region II.

2. The force response during retraction has a jump between region III and
II just as in the experiments.

3. It is easy to adjust parameter values.

4. The simulation is somewhat time efficient.

5. The simulation is presented graphically.

There are however some points at which the simulation is lacking, those are
given in the following table:

1. The jump in force response during retraction is to large and occurs to late.

2. There are disturbances in the force response in region II.

3. Region III is not modeled at all, only extrapolated using a model designed
for region I and region II.

4. If the Pilus is stretched too far, the simulation will fail in a way making
retraction impossible.

At least point 2 and possibly also point 1 are repairable without changing the
current model. The other points would probably require more fundamental
changes. It should also be noted that point 3 is connected with point 4, it
might be possible that the solution of the former would lead to the solution of
the latter.
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7 Appendix

7.1 Numerical method

Equations (38) to (40) is solved using a semi implicit Euler algorithm. In the
following derivation, subscript denotes time:

An+1 ≡ A(n∆t + ∆t),

where ∆t is the length of the time-step used.
First, the positions are expanded in time14

Xn+1 = Xn + ∆t
∂X

∂t
+ O(∆t2) ≈ Xn + ∆tTnVn+1. (92)

Then the same is done to the velocities

Vn+1 = Vn + ∆t
∂V

∂t
+ O(∆t2) ≈ Vn + ∆tM−1

n (GT
nλn+1 + Fn), (93)

where F is the force from equation (17). Finally, λ is also expanded in time

λn+1 = λn + ∆t
∂λ

∂t
+ O(∆t2) ≈ λn − ǫ−1(Φn + ∆tGnVn+1). (94)

7.2 Spring coefficient approximation

The layer to layer potential is given by

ULL = −U0e
−

r
2

L2

LL . (95)

By Taylor expansion one gets

ULL = C − U0
r2

L2
LL

+ O(r4) ≈ C − U0
r2

L2
LL

, (96)

where C is a constant. The constant can be ignored since it will not be used
when calculating the resulting force. What is left is a spring potential with
spring coefficient 2U0

L2

LL

, corresponding to a single binding. Each layer in the

Pilus has 3.28 bindings, so the spring coefficient for each layer should be 3.28
times as large. Then there are also N

3.28 layers in the Pilus, so if the whole
structure is elongated by R, each layer is separated by 3.28

N
R. This gives an

effective spring coefficient

ke =
3.282 · 2U0

NL2
LL

. (97)

14This expansion could be done in several ways.
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