Department of Physics
Umea University June 28, 2021

PREDICTING PARTICLE DYNAMICS USING COARSE
GRAINED FIELDS

Klaas von der Brelje

Advisor: Erik Wallin Examiner: Martin Servin

Contents

1 Introduction

2 Theory
2.1 Notation Convention
2.2 Coarse Graining e e
2.2.1 The Coarse Graining Function
2.2.2 Implicitly Identical Particles oL
2.2.3 Coarse Graining in a Regular Grid
2.3 Mean Value Discretization L
2.3.1 Computing the Mean
2.4 Discrete Element Method
2.4.1 Relevant Fundamental Properties
2.4.2 Derived Quantities
2.5 The Fields o
2.5.1 Coarse Grained Fields
2.5.2 Fields with Mean Value Discretization
2.6 Machine Learning L
2.6.1 Artifical Neuron
2.6.2 Activation Function
2.6.3 Neural Networks
2.6.4 Training a Network o
2.6.5 Gradient Descent
3 Implementation
3.1 Platform Choices
3.1.1 Physics Engine
3.1.2 Programming Languages L oo
3.1.3 Machine Learning Library oL
3.2 Algorithms
3.2.1 Coarse Graining Lo
3.2.2 Coarse Graining Derivatives 0oL
3.2.3 Mean Value Discretization of Particles as Cubes
4 Simulation of a Rotating Drum
4.1 The Scene
4.2 The Fields e
4.3 Non-Conservation of Total Quantities.
5 Data Driven Model
5.1 Imput and Output Data
0.2 Training e
5.2.1 The Loss Function
5.2.2 The Validation Metric
5.2.3 Judging the Performance
5.2.4 The Optimizer e
5.3 The Model e
5.4 Relevance of The Input Fields

5.5 Source of Errors

6 Conclusion

19
19
19
19
19
19
19
20
21

22
22
24
25

26
26
27
27
27
28
28
28
29
30

32

1 Introduction

Coarse graining is a method to compute fields from a set of particles. In this thesis we will explore
this process in both a theoretical setting and a numerical simulation. We will start by providing
a theoretical description and investigating some problems that arise when transitioning from an
continuous to discretized fields. In particular, we will show that the total properties of the particles,
such as their mass, are not conserved in the coarse graining process in a finite grid. An alternative
approach is put forth, that adresses these issues.

We will then develop optimized numerical algorithms to efficiently compute the coarse grained
fields in practice. Their computational complexity is analyzed and briefly compared to a naive
implementation.

The algorithms are applied to a simulation of a rotating drum, filled with particles, to compute fields
of various quantities. The issue of non-conservation and its resolution in the alternative approach
are adressed again and demonstrated in practice.

A machine learning model, based on a neural network, is then introduced to try and predict the
particle motion. The key element here is that the model works purely with data local to a given
particle. Its ultimate goal is to predict the particle dynamics while avoiding the expensive compu-
tation of explicitly solving the equations of motion. The accuracy of the model is determined and
possible error sources are investigated.

2 Theory

2.1 Notation Convention

Throughout this report equations will involve quantities that depend on a multitude of different val-
ues, that might lead to confusion. This section aims to establish clarity and a natural understanding
of all the indices and arguments used from here on.

Particle properties will always have at least a single index that identifies the particle. This is always
written as a subscript and, for variable indices, is a letter of the roman alphabet. For example the
position of particle ¢ will be written as r;.

The same holds true for contacts, with the addition that a contact’s index ¢ can be resolved into
a pair of indices that refer to the particles involved in the contact. An example is the normal of a
contact 7 between particle a and particle b, which would be written as n; = ng,.

While tensors are denoted with bold symbols, single components and scalars use regular letters.
Any tensor, including vectors but not scalars, can appear with greek superscripts, which specify a
single component of such a tensor. An example is the component p of the position of particle 1,

which would be written as rf)

Fields will share some of the same symbols as the particle and contact properties but will never occur

with the roman subscripts that identify a particle. Instead, the fields may include the additional
spatial dependence as a parameter. For example the momentum (density) field may be written as

p(r).
Some quantities may have an additional superscript to denote entirely seperate particle properties
or fields. An example are the kinetic and contact stress (a’k)i # (0°);. To differentiate these super-

scripts from tensor components they are enclosed in parentheses with the symbol of the quantity
itself.

Lastly, because particle indices often occur more than once in a single term, the Einstein summation
convention is not used. Summation over indices will always be explicit to avoid confusion by
unintended summation.

2.2 Coarse Graining

The fundamental idea of coarse graining is to replace a set of discrete particles by continuous fields.
These fields inherit the properties of the real particles, but are defined as functions of coordinates.
The notion of discrete elements gets replaced by a continuum description in which the particles are
no longer treated as fundamental.

While there are other methods to transition from particles to fields, coarse graining is defined
as follows: To calculate the value of an arbitrary field A at position r, we sum the weighted
contributions of the corresponding particle property A;.

A(Y)ZZMU—F)Ai (1)

The weights are calculated as the scalar function ¢ acting on the difference between a given particle’s
position r; and the position r at which the field is calculated. This function ¢ is called the coarse
graining function.

Using this definition for the basic fields, the coarse graining process has been studied in great
detail[3, 4, 5, 6], including the more complex derived fields, discussed in this thesis.

We can expand this definition by treating each particle individually as a field with a delta distribu-
tion, which is integrated over.

A(r) = Z(ﬁ(ri—r) A; = Z/RS dr'e (r' —) Aid (r' — ;) (2)

The integral and sum commute to give a single integral over the sum of individual particle fields.

A(r) = /R3 dr’ ¢ (r’ - r) Z A (r’ — ri) (3)

This sum can be considered a single field A’ (r') = >, A;0 (r' — r;) in which all particles are treated
as point-like.

A(r) = /R3 dr'g (r' —r) A" (r') (4)

With this field of point-like particles in place, it now becomes obvious that the coarse grained field
is simply a convolution of A" with the coarse graining function.

A(r) = (¢+A') (x) ()

The coarse graining process can thus be generalized by allowing any distribution A’. Because the
convolution (with the coarse graining functions we will look at) is akin to smoothing, we call the
density A’ the microscopic density or true density. The coarse graining function ¢ can also be called
the smoothing kernel in this context.

Using a normalized function as the smoothing kernel, the integral of the coarse grained field equals
the integral of the true field. This ensures that the overall properties of the system, e.g the total
mass and momentum, are conserved during the coarse graining process.

dr A (r) :/R?)dr (6% A') (r) = (R3dr¢(r)> (/RgdrA’(r)> = [aAEx (6

R3 R3

2.2.1 The Coarse Graining Function

The definition of the coarse graining process in equation 1 allows for any scalar function to be
used as the coarse graining function ¢. However, some additional properties are desirable. First
and foremost, it should be positive semi-definite ¢ (r) > 0 and normalized [dr¢ (r) = 1. If we
impose smoothness as an additional requirement, that allows us to use the derivative 0¥ ¢ to define
additional fields. Also, for isotropic systems the coarse graining function should be spherically
symmetric and thus only depend on the distance ¢ (|r|).

There are plenty of functions that fullfill all these requirements, but we will look at only two of
them. In both cases there will be a characteristic width w, which is called the coarse graining
scale. This coarse graining scale can have a massive effect on the results of the entire process, as is
demonstrated in figure 1.

Perhaps the simplest choice for ¢ is a radial Heaviside distribution.
—s H(w—|r|) (7)

H is the Heaviside step function and the characteristic width w is the radius of the boundary. This
distribution is not smooth and does thus not allow for the use of the derivative 9*¢.

Another distribution, that is often more useful because of its smoothness, is the Gaussian distribu-

o o(r) = ﬁw(—%) (®)

The characteristic width w is similar to the standard deviation. However, it is not precisely the
same because this Gaussian is normalized in 3 dimensions.

The derivative of the Gaussian coarse graining function is:

rh

"¢ (r) = 2 ¢ (r) (9)
(a) Three particles contribute to the field at r if a (b) A large particle almost completely covers the
Heaviside function is used for ¢. coarse graining region, yet it does not contribute to

the the field at r at all.

Figure 1 — The coarse graining scale plays an important part in deciding whether coarse graining is
a suitable technique for a given scenario.

2.2.2 Implicitly Identical Particles

The characteristic coarse graining width w is a finite value, while the radii of the particles are
completely ignored. However, the coarse graining functions used in this thesis are symmetric in the
position of a given particle r; and the position r, at which the field is computed.

A(r):ZAz‘¢(|ri—r|):ZAi¢(\P—ri!) (10)

This means we can reinterpret the coarse graining function ¢ as the shape of the particles and in
turn interpret the position r as a sampling point in the field that is the sum of all the individual
particle fields. And, since the coarse graining function ¢ is fixed over the summation of the particles,
this means that all particles are treated as having the exact same shape. Any information about
particle size is discarded. This is illustrated in figure 2.

This might not be a problem if the range of particle sizes is small and the coarse graining scale w
is chosen to appropriately represent the particle size. For systems with large variations in particle
size however, this may well lead to undesirable features in the computed fields.

g
vy

(a) Coarse graining only takes the particles center (b) The particle will contribute its properties to the
into account. It lies within the coarse graining region same 4 points. The size of the particle is misrepre-
of 4 selected points. sented.

Figure 2 — A visual representation of the symmetry of ¢ in r and r;. The coarse graining process is
equivalent to giving each particle the same shape and size. The circles may, for example, represent
the boundary of a Heaviside function or the width of Gaussian.

2.2.3 Coarse Graining in a Regular Grid

Any continuous field contains an infinite number of points. For simulations it is thus imperative to
reduce this number and use a description that requires only a finite number of data points. The
process of converting the set of infinite data points in the continuum into a finite number of discrete
values is commonly known as discretization.

The simplest method for doing this consists of definining a regular grid of points within a finite
volume. Each point T; can then be uniquely identified by a set of integers A\, representing its
position along each axis. Given the grid spacings g#, the components of the point are then simply
the product of the identifying integer and the spacing.

= g (1)

The field at this point ﬁj is then computed by simply sampling the coarse grained field.

Aj = A(F) (12)

The set of samples is now finite and suitable for numerical experiments, but it is only defined in
select points and is thus not a continuous field. To acquire a value at any other point and truly
turn it into a field again, one has to make use of interpolation. This can provide a continuous field
while only saving a finite amount of data. However, it is only an approximation of the underlying
coarse grained field A.

The simplest interpolation scheme is called nearest neighbour interpolation. In it, the interpolated
field A (r) simply takes the value at the nearest grid point r;. This creates identical cuboid regions
C; around each grid point, throughout which the value of the interpolated field is constant. These
regions are called cells and their dimensions are precisely the same as the spacings g" between
sampling points.

The volume V of such a cell is the product of its dimensions.
v=]]s¢ (13)
o

And because the interpolated field is constant throughout the cell, the integral of the field within
the cell transforms into a simple product.

/ dr A(r) = ng (14)
C

J

If we compute the integral of the interpolated field over the entire space we get the field total. In
this interpolation scheme it is simply the sum of the individual field values A; times the cell volume,

which is a constant.
/ drA(r) =V A (15)
R3 »
J

Here we make use of the assumption that the grid is infinite, so that the union of all cells equals
the entire space.

Jc;=R? (16)
J

In practice the grid is finite, but it is a good approximation if the underlying field A is neglegible
outside of the region enclosed by the grid.

Unfortunately, a problem arises, even in the case of an infinite grid. In equation 6 we demonstrated
that the field total of the continuous coarse grained field A (r) matches the total value of the particles
prior to coarse graining. This is, however, not generally the case for the approximation A (r). That
is, because the value of a cell A; is treated as if it represented the mean of the underlying field
A (r) throughout the cell, even though it does not. An example of how this can lead to practical
problems is illustrated in figure 3.

If a greater degree of smoothness in the interpolated field is desired, other methods, e.g. trilinear
or tricubic interpolation, may be used|7]. However, these might not guarantee conservation of the
field totals either.

° ° ° °

) ° ° °
(a) The particle is sampled twice and thus con- (b) The particle is sampled 4 times and thus con-
tributes to the density of 2 cells. tributes to the density of 4 cells.

Figure 3 — A problem arises when a coarse graining function is calculated on the grid cells and the
particles are approximated as point-like. Depending on a particle’s position, its properties can be
wrongly represented. If a Heaviside coarse graining function is used, moving the particle by just the
distance of half a cell is enough to double the value it contributes to the field total. Note that we
chose a typical size for the coarse graining function, but the effect persists for other sizes, as no space
can be uniformly covered by spherically symmetric functions, with the exception of the sphere itself.
A more homogeneous solution than the standard grid would be close packing of spheres.

2.3 Mean Value Discretization

Due to the problems with coarse graining mentioned in the previous sections, we propose an alter-
native method to calculate the fields. Instead of treating the particles as discrete elements we treat
them as fields directly and omit the convolution with the coarse graining function.

A single particle can have any normalized distribution of its properties p; (r), much like ¢ (r), but
defined per particle. This fixes the issue in section 2.2.2 of particles implicitly having the same
shape in coarse graining. We limit ourselves to a particle having the same distribution p; for all of
its properties, though. While this is not a strict requirement for the theory, it does allow for more
optimization of the algorithms later on. The continuous field A (r) is then just the sum of all the
particles’ individual fields.

A(r) = ZAipi (r —r;) (17)

If all distributions p; are identical, this is equivalent to the continous coarse grained field. The nor-
malization of the distributions p; guarantees that the total properties of the particles are conserved
when transitioning to the continuous field.

AgdrA(r):;AiLgdrpi(r):;Ai (18)

We could now proceed to compute the values in a fixed grid, but the problem discussed in section
2.2.3 would still persist.

We propose the following to solve this issue. The value Ej in the grid point r; shall be defined as

the mean value of the continuous field A (r) throughout the cell Cj.

~ 1
A - V/cj dr A (r) (19)

We again use nearest neighbour interpolation to obtain a proper field A (r). Like before, we can
now integrate over all of space by summing the contributions of the individual cells.

/Rgdrg(r)zzjj/cjdrﬁ(r):V;gj (20)

The definition of the values gj in equation 19 can now be plugged into this equation to relate the
interpolated field total to the true field total.

/derﬁ(r)zvzjj <‘1//derA(r)> :/derA(r) (21)

The field total is hence conserved when transitioning from the true field A (r) to the interpolated
field A (r). Together with equation 18 this guarantees that the interpolated field total equals the

total of the particles.
/RB g (r) P ()

This fixes the issue with non-conservation of quantities in coarse graining, described in section 2.2.3,
as intended.

2.3.1 Computing the Mean

The integral in equation 19 is impossible to compute in general, but becomes managable if we impose
certain conditions on the true field A (r). Specifically, we require the particles to be homogeneous,
so that p; (r) can only take on a fixed value or 0. To maintain the normalization the fixed value
is required to be 1/U;, where U; is the particle’s volume. This permits us to describe the particle
shape as a region P; instead.

When we now compute the value Zj in cell C; using equations 17 and 19, the integral simplifies to
the volume of intersection betweed the particle and the cell.

~ 1 A
A= — d Al i —Tr;) = ! d 2
] erE pix— 1)) ;mw@mr (23)

Typically, we would like to model the particles as spheres. However, that would make the intersection
between the cell and the particle that of a cuboid and a sphere. There is no analytical solution
to this problem|8|, so some approximations have to be made. Fortunately, the intersection of two
arbitrary (but axis aligned) cuboids is easy to compute. We thus choose to approximate the particle
as a set of (non-intersecting) cuboids Q.

P (24)
k

We impose the additional condition that the volume of the approximation is equal to the volume of

the original particle shape.
Ui:/ dr:/ dr = / dr (25)
P k Qk Zk: Qk

8

Since the particles are originally treated as spheres and their radius R; is known, we can also make

the volume explicit.
4

Ui
3

TR} (26)

With the cuboids approximating the particle, the intersection of cell and particle transforms into
the following.

Cjﬁpi — Cjﬁ <UQk) :U(CjﬂQk) (27>
k

k

This now allows us to write equation 23 as a sum of integrals which are easy to evaluate.

L= (g v
A= dr | = dr 28
’ Z<UZV U (€5nQ0)) Z(”'Vg €N Qu) 2

%

The integrals are the volume of intersection between two cuboids. We introduce the vectors C_
and C,, as well as Q_ and Q4 as the minimum and maximum bounds of the cuboids C' and @
along the grid axes. Given that the cuboids intersect, the integral of intersection can be written as:

/OﬂQ dr = H (min (C%, Q) — max (C*, Q")) (29)

0

An intersection occurs if and only if each of the factors in this product is positive. We can conve-
niently modify the equation by adding a Heaviside function to take this into account and evaluate
to 0 if there is no intersection.

/C = T i (O, Q) — s (0%,Q1)) W i (CF, Q1) —max (C,Q%)) (30)

I

While lengthy to write, it is very easy to actually evaluate. For the sake of readability we will
continue to write the integral, though.

With an arbitrary number of cubes, any particle shape P; can be approximated arbitrarily closely.
However, we limit ourselves to using only a single cube for every particle, as the speed of the com-
putation is more relevant for our purposes than the accuracy. With this single cube approximation
P; = Q;, the final expression is rather compact.

~ 1 A,
A= — z/ dr (31)
J 174 zZ: Ui CiNQ;

2.4 Discrete Element Method

In this thesis we will apply principles of the discrete element method to granular media. More
specifically, the subject of study are media of perfectly spherically symmetric particles. Contacts
between particles are not pointlike, but particles are permitted a finite overlap. This overlap, how-
ever, will play into the dynamics of the system. The following subsections will provide information
on the particle and contact properties of interest. It should be noted that, within the context of this
report, everything that is calculated by the external physics engine, is considered as fundamental.
This does not reflect what is considered fundamental in the wider physics community.

2.4.1 Relevant Fundamental Properties

The number of fundamental particle properties required to calculate a vast number of physical fields
is very small. Since there is usually multiple particles we use an index to identify the particle. For
this thesis the fundamental particle properties of interest are:

Particle Position r;
Particle Velocity v;
Particle Radius R;
Particle Mass m;

Additionally, the contacts between particles are also treated as fundamental. The fundamental
contact properties of interest are:

Contact Position r;
Contact Normal N
Contact Tangent U U;
Contact Tangent V.. 'V
Contact Local Force fj

.

~

~

The quantities for which there is an intuitive spatial understanding are shown in figure 4. Other
quantities will be defined in the following sections. Also, note that that for each contact ¢, the
involved particle indices are also accessible, such that we can resolve r; = ry to clarify that the
contact ¢ is between particles a and b.

(a) The fundamental properties of a particle. The (b) The fundamental properties of a contact. The
mass m; 1s an intrinsic scalar value that can not be tangent V; is perpendicular to both the normal N;
drawn. and tangent U; and points out of the plane.

Figure 4 — The particles and contacts have several properties that correspond to spatial dimensions
and can thus be visualized.

10

2.4.2 Derived Quantities

In addition to the fundamental particle and contact properties, there are several derived quantities
that are of interest[1, 2].

The particle displacement is the difference between a particle’s current position and its position at
some reference time 7.

u; (t) =r; (t) —r; (1) (32)
The particle momentum is the product of the particle’s velocity and its mass.

Pi = m;Vv; (33)

A particle’s kinetic stress is a helpful property to calculate the kinetic stress field later on. It is
defined as the negative of the outer product of a particle’s momentum and velocity.

%

(ak) = —pi'vy = —mt'vy (34)
7

Instead of writing this definition in terms of components, it can be expressed idiomatically. This

helps with readability as the number of indices is reduced.

(%) = =i vi) = —mi (viwvi) (35)

(2

A particles’s mass discplacement is defined as the product of the particle’s displacement and its
mass. Like the particle’s kinetic stress this is only used as a helpful intermediate quantity.

(u™); = mu; (36)

A contact’s branch vector is the difference of the positions of the involved particles. Resolving the
contact index ¢ to the pair of indices of involved particles (a,b), as described in section 2.4.1, this
can be written as:

B, =B, =r,—r, (37)

A contact’s local force is the contact force’s components in a reference frame consisting of the contact
normal N; and tangents U; and V;. To calculate the contact force in the global frame of reference
we multiply each component by the corresponding vector and add the results.

F; = f/N; + f1U; + f2V; (38)

The contact stress, like a particle’s kinetic stress and mass displacement, is a helpful intermediate
quantity. It is used in the calculation of the contact stress field later on. It is defined as the negative
of the outer product of the contact force and the branch vector.

(0°);" = —F{'Bf (39)

And just like the kinetic stress, this contact stress can also be written idiomatically to reduce the
number of indices.

(09); = —(F;®By) (40)

11

2.5 The Fields
2.5.1 Coarse Grained Fields

The particle properties in the previous section were defined deliberately such that the expressions
for the following fields all take the form of equation 1. This has the practical consequence that it
keeps the number of necessary algorithms, which we have to develop later on, to a minimum.

m(r) =Y ¢(ri—r)m, (41)
p(r)=) ¢(ri—r)p; (42)

() @) =Y o wi—x) (o), (43)
(™) (1) = Y2 6 (i =) (u™), (44)

These are the mass, momentum, kinetic stress and mass displacement fields. Because they are
continuous, they correspond to densities, which is henceforth implied when fields are mentioned.
This is done to avoid confusion, as density in physics often refers to the mass density alone.

Apart from the fields that can be written in this simple form, there are some more complicated
fields. They either depend on some of these simple fields, or they require the gradient of the coarse
graining function ¢.

Even though the particles have a velocity v;, the velocity field is not defined by putting these
velocities into equation 1. Instead, it is defined as the quotient of the momentum and mass fields.

v(r) = P) (45)

This velocity field can now be used in combination with the particle velocities to define the granular
temperature.

T(r)= Z ¢ (v —x) (vi — v (1)) (46)

Similarly to the velocity field, the displacement field is defined as the quotient of the mass displace-
ment field and the mass field.

u(r)=-—"—- (47)

The gradient of the displacement field and the gradient of the velocity field can be written in terms
of the coarse graining function as well. We call these the deformation tensor and the deformation
rate tensor.

w ymamy (=) (076 (r — 1)) 6 () — 1)

D (r) = gr” (r) = al]m oL ’ (48)
oH > mimg (v —vf) (8¥¢ (ri — 1)) ¢ (rj — 1)

DM (I‘) _ ZTV (I‘) _ J (Jm(r)2 J (49)

In the approximation of small variations in the mass field Vm = 0 these expressions simplify. The
numerators of these expressions can be calculated without needing any other fields, but they depend

12

on the derivative of the coarse graining function 9% ¢.

 Symad (976 (r; — 1))

D" (r) m (®)

m;vt (0¥ (r; — r
D/MV (I‘) ~ Zz 7 (8 ¢())

m (r)

We again provide idiomatic expressions for the tensors to simplify calculations later on.

m (r)

m (r) (53)

The strain and strain rate tensors are defined by the symmetrization of the deformation and defor-
mation rate respectively. In practice we will use the approximations for a small mass gradient.
1
e (r) = - (D" (r) + D" (r)) (54)

™ (r) == (D™ (r) + D" (r)) (55)

N | — DN

Additionally to all these fields based purely on single particle properties, we define the contact stress
tensor. Using the previously defined stress of a contact (), and given a straight line I'; between
the centers of the particles involved in the contact i, it is defined as follows.

@) =3 (@9 [o) is) (56)

This expression can be simplified if the contacts, just like the particles, are approximated as point-
like. We can do this under the assumption that the length of the branch vector is much smaller
than the characteristic coarse graining width |B;| < w.

(6) (r) = Z ¢ (ri —r) (6°); (57)

This gives the expression for the contact stress field the same form as any of the simple particle
fields, but it uses the contact position r; and contact stress (o°),.

With the help of the kinetic stress and the contact stress we can finally define the total stress, which
is simply the sum of both.

o () = (0%) (1) + (%) (x) (58)

Using this stress tensor, we can define some more properties which can be helpful in the physical

analysis of systems. They are the pressure P, the stress deviator & and the von Mises stress (o¥™).
1
P(r)=—=Tr(o(r)) (59)
g(r)=0o(r)+P(r)I (60)
vimn 3 2 v
(@) ()=, /5 > ot (r) o+ (x) (61)
nv

I denotes the identity matrix.

13

2.5.2 Fields with Mean Value Discretization

To define the simple fields with the alternative approach, we simply use equation 31, instead of
equation 1.

Z T (62)

CiNQ;

sz /O . (63)

(ak> (rj) = ‘1/2 (o;;)z /C-mQ dr (64)
W @) = 5 3

dr
Ui Cj NQ:

In equation 57 of the coarse graining process, the contact stress is treated as point-like and thus
obeys the same form of an equation as the particle properties. Using this concept as a guideline,
we also treat the contact similarly to a particle, in that we define the contact stress with the same
equation as the fields derived from the particle properties.

@I E =y G (66

The cuboid @; and volume U; are however not defined for contacts. A possible choice is to treat
the contact as a cube with the contact depth as its side length. Alternatively, one can simply use
a small constant side length, compared to the grid spacings g, to treat the contacts as point like.

The definition of the velocity, displacement and the fields derived from the stresses remain un-
changed.

v (F) = p () (67)
m I‘j)

L W) ()

o (1)) = (o) () + (o) (7)) (69)

P(E) =~ Tr(o F) (70)

o (rj)=o(rj)+P(r;)I (71)

(™)) = \/ 23 o () o () @
uv

The definition of the deformation tensor and the deformation rate tensor change slightly. In the
coarse graining process they rely on the gradient V¢ of a Gaussian coarse graining function ¢. That
is not an option in this alternative approach, so the symmetric finite difference gradient is used
instead.

D (i) = 20 5y) (73)
D () = 0 () (74)

14

Using these new definitions, the strain tensor and strain rate tensor remain otherwise unchanged.

S (55) = 5 (D (5) + D (55) (75)
et (?]) = (D/,uu (Fj) + D' (FJ)) (76)

DN | =

2.6 Machine Learning

Machine learning is an extensive field of active research. Especially artificial neural networks, which
originally aimed to mimic the biological processes of the brain[9], are a fairly recent development.
Even though some aspects of these neural networks still lack mathematical rigour[10], in practice
they are already widely used for many purposes.

In the following sections we will focus purely on the mathematical model, ignoring the biologic
aspect altogether.
2.6.1 Artifical Neuron

An artifical neuron is the smallest component of artifical neural networks. It is a function that maps
a number of input values to a single output value[l11]. A graphical representation of an artificial
neuron is shown in figure 5. It is calculated in two steps:

First, the weighted sum ¥ of the input variables is computed. The weights w; are what changes
during the training process, which is explained in later sections.

In the second step, this sum is used as the input to some activation function ®. The complete
expression for the output of the neuron is then:

N
Yy = P (Z wixi> (77)
1=0

The 0th input is usually fixed to be g = 1. The weight of this input wy is then also called the bias
of the neuron. It is independent of the variable inputs.

Zo
I wo
w

° 1

° o (%) Y

[J

WN -1
TN-1
N
TN

Figure 5 — An artifical neuron that takes IV + 1 input variables x; and produces a single output value
y. The weights w; are intrinsic properties of the neuron and subject to change during the training
process.

15

2.6.2 Activation Function

The activation function ® can, in theory, be any function. However, certain functions have proven
more useful than others in the context of machine learning.

(a) Heaviside Function (b) Hyperbolic Tangent (¢) Rectified Linear Unit (ReLU)

Figure 6 — Some of the most popular activation functions. They need not necessarily be continuous
or bounded, although these properties can simplify training.

The simplest choice, aside from a constant, is the identity ® (X) = 3. A neuron with such an
activation function is then simply a linear combination of inputs.

N
y = Z W;x; (78)
=0

While not entirely without use, its practicality is fairly limited. Even in networks with many layers,
this activation function will, at best, be able to perform linear regression. That is, because a linear
combination of linear combinations leads to a simple linear combination overall.

y = wo (upxo + uirz1) + w1 (voxo + v171) (79)
= (woup + wivp) zo + (wour + wivy) x1

For this reason, the identity is rarely used on its own as an activation function in neural networks.

However, with just a small tweak we can generate the most widely used[12] activation function of
today. If the input is positive ¥ > 0 it simply returns the identity. However, if that is not the case
it returns 0.

d(¥) = (80)

0 otherwise

{z ity >0

This activation function is called the rectified linear unit(ReLU). It is plotted alongside some other
popular activation functions in figure 6.

Artifical neurons with this ReL U activation function are the basis for the data driven model in the
final section of this thesis.

2.6.3 Neural Networks

Networks of multiple artificial neurons are called artificial neural networks, or simply neural net-
works. They are of particular interest because they have the capacity to learn relations between
input and output data without requiring an explicit definition of a regression function[13|. However,
in many cases they are still closely related to statistical models|[14].

16

In this thesis we will deal exclusively with fully connected feed forward networks, such as the one
shown in figure 7. This type of network is also called multilayer perceptron. (Although this term is
sometimes reserved for models with a Heaviside activation function.)

Fully connected means that each node in a given layer serves as an input to every node in the next
layer; There is a connection between each pair of nodes in two adjacent layers.

Feed forward means that there is a distinct order to the layers; No nodes in a given layer contribute
as input to any node in any previous layer.

Figure 7 — A simple feed forward network that propagates the input values x from the left to the
output values y on the right. A bias is not drawn explicitly, but is usually implied to exist.

In such a neural network the nodes are organized into distinct layers. Each layer has a width,
which is the number of neurons in that layer. The weights in a network are also collectively called
the parameters, as they change during the training process. The number of those parameters is
commonly used as a simple metric for the complexity of a given network and can range in the
hundreds of billions for complex tasks[15]. However, in cases of large networks like these, it often
becomes difficult to explain how the network makes a decision|[16]. Fortunately, a much smaller
network will suffice for the data driven model in section 5.

2.6.4 Training a Network

To train a given network, a loss function L is required. This loss depends on the networks parameters
and training is a process that adjusts these parameters to minimize the loss function.

The loss function can sometimes be formulated solely in terms on the network’s prediction y*. In
that case the training paradigm is called unsupervised training. The loss function in unsupervised
learning strongly depends on the exact problem that the network is applied to.

In other cases the training dataset might consist of pairs of input features x and the true output
labels y*. This then allows for the definition of a loss function in terms of both the network’s
prediction y* and the true labels yT. This training paradigm is then called supervised training. In
supervised learning there is a small number of loss functions that can be applied to solve a wide
variety of problems. A typical example for such a loss function is the mean square error between

17

the network’s prediction y' and the true labels y 7.

N
1
Li= N E (y]P - y;F)Q (81)
J=1

This mean square error is useful for most regression problems and will be used in our model later
on. It is defined per sample, i.e. per pair of input and output data.

During the training process, the only variables are the network parameters w. They occur in the
loss function as part of y¥, as it is simply the propagation of the inputs x through the network with
weights w (see equation 77). The weights are changed such as to minimize the average loss over
the dataset.

Lw) =3 Y Liw) (s2)

2.6.5 Gradient Descent

There exists several methods to change the weights of a network to achieve minimum loss. A very
effective method is to compute the gradient of the loss with respect to the network parameters and
change them accordingly. Such methods are collectively referred to as gradient descent, but there
are many variants of it.

Batch gradient descent is an iterative algorithm, that uses the entire dataset in each iteration. A
single iteration of it is defined as[17]:

W/ZW—OéV,C(W):W—gZV,Ci(W) (83)

w are the current model parameters, whereas w’ are the parameters after the iteration. V£ is the
gradient of loss with respect to the model parameters w. « is simply a positive number, often called
the learning rate. If this learning rate is chosen appropriately, convergence of the method to a local
minimum is guaranteed|18|.

Because it can be expensive for large datasets to compute the gradient of every £; individually, a
stochastic counterpart has been developed. Stochastic gradient descent makes an iteration for each
sample as opposed to an iteration for the entire dataset.

w =w-aVs; (84)

Once the entire dataset has been exhausted, it can be shuffled and the next iteration can begin.
Such a pass over the entire training dataset is called an epoch. It can be shown with few extra
assumptions, that this method also converges (almost surely) to a local minimum|[19].

In practice one can often find a hybrid approach that creates minibatches, consisting of a small
number of samples, compared to the size of the entire dataset. This results in fast computation
times, because it can utilize modern computer hardware more effectively.

These basic gradient descent methods have since been superseded by more advanced variants that of-
ten converge faster or require less manual tweaking. One such advanced optimizer, called Adam|20],
is used in the data driven model in section 5. The details of how exactly it works go beyond the
scope of this thesis.

18

3 Implementation

The first goal of this thesis was to implement coarse graining in a more efficient way than the previos
implementations of the work group. To accomplish this, a combination of changes in platform and
algorithm was devised.

The code is open source and available at [https://gitlab.com/agentklaas/agxfern.git| and its
dependencies.

3.1 Platform Choices
3.1.1 Physics Engine

AGX Dynamics was chosen as the physics engine. This was a choice made for convenience as the
work group is familiar with this engine and applications of the previous coarse graining implemen-
tation made use of this engine as well. However, all low level functions (i.e. the previously discussed
algorithms) operate on raw data arrays. These can easily be created for any other physics engine
as well.

It is only some convenience functions, like automatically importing and formatting the particle data,
that are exclusively available for AGX Dynamics.

3.1.2 Programming Languages

The final implementation was mainly going to be used in Python, but to achieve the best possible
performance, the low level routines had to be written in a compiled language. C++ was chosen for
that role as it is widely supported and offers great performance.

Python bindings were then created on top of this implementation, using the pybind11 library. It
was chosen because it is a lightweight, header-only, and easy to use binding library. The resulting
package is a single file, which also helps with portability.

Lastly, while development was done on Linuz, both C++ and Python are supported by all major
operating systems and no dependencies specific to a single operating system were used.

3.1.3 Machine Learning Library

TensorFlow is used as the platform for machine learning in the last parts of this thesis. It is
responsible for the model, the training and validation process, as well as the live displacement
prediction using the trained model. Built on top of TensorFlow, the Keras API provides an easy to
use interface.

3.2 Algorithms

Some intermediate quantities in section 2 may have appeared overly convoluted. However, in actu-
ally computing the results we can now reap the benefits of defining them in the precise way that
we did. Specifically, we reduce the number of necessary algorithms to just a handful.

In the following sections we will to present the algorithms in a clear and readable format and analyze
their computational complexity. In practice, additional algebraic and programmatic optimizations
are made. These do not affect the computational complexity.

3.2.1 Coarse Graining

Let’s recall the fundamental coarse graining equation.
A(r) = ZAi¢ (r; — 1) (85)
i

The first algorithm will handle the calculation of this equation for all the points in a given grid with
spacings g. This algorithm is then used to calculate many of the fields defined in section 2.5.1.

19

https://gitlab.com/agentklaas/agxfern.git

In a naive implementation, one would have to loop through all pairs of particles and cells. This is
slow if both the number of particles and the number of cells are large. Knowing that the coarse
graining function ¢ falls off at a distance, we can introduce a cutoff region, beyond which the
values are neglegibly small. We then only need to compute the value of ¢ at the cells within the
cutoff region. For a Heaviside distribution the cutoff is simply the radius ¢ = w. For a Gaussian
distribution the cutoff was chosen as ¢ = 3w. To make the notation of the algorithms simpler we
also introduce the vectorized cutoff ¢ = (¢, ¢, ¢).

The loops in the algorithm can theoretically be put into any order, but choosing (particle — cell — property)
from outermost to innermost loop permits the most reusing of temporary quantities. Especially ¢
needs to be computed only once per particle-cell pair, and can then be used for all the properties.

1 for(i=0 to i=N—1)

2 A

3 A= int((r;—c)/g)

1 A= int(n+o)/g)

5 for(A=A_ to A=A)
6 {

7 ®=¢(rx—r)

8 for(k=0 to k=M—-1)
9 {

10 A§ 4= AFo

11 }

12 }

13 3}

Algorithm 1 — The coarse graining algorithm. N is the number of particles. c is the vectorized cutoff.
g is the grid spacing vector. The int keyword represents rounding down to the nearest integer. A_
and A4 denote the minimum and maximum cell within the cutoff region. The index k is used to

denote any of the properties A¥ of particle i and the corresponding field g’j\ at the grid point A. M
is the number of such properties. r; is the particle’s position and Ty is the grid position.

By checking the bounds of the loops, the computational complexity is easily found. Let N be the
number of discrete elements (either particles or contacts) and M be the number of properties. The
complexity is then:

O(NM) (86)

The underlying concept of coarse graining only makes sense, when the coarse graining width is of
a similar size as the grid spacings. If it is too large, the fields are unnecessarily smoothed and
information is lost. If it is too small, then the true field is sampled too inhomogeneously and
deviations of the field totals become large. Thus, the coarse graining width w should always be
chosen to be of a similar size as the cell size. So if the resolution of the grid increases and the cell
size decreases, then so does the coarse graining width and correspondingly the cutoff region. Hence,
the number of cells within the cutoff region is approximatly constant and the total number of cells
does not appear in the computational complexity.

3.2.2 Coarse Graining Derivatives

The next algorithm calculates the fields that are based on the gradient of the coarse graining
function.

A(r) = Z Ai®@Ve¢(r; —r) (87)

It will be used as a step in calculating the deformation and deformation rate, defined in equations
52 and H3.

20

The structure of the algorithm is very similar to the normal coarse graining algorithm, with only
minor changes to the the weight ®. As the gradient of ¢, it now becomes a vectorial quantity ®
and thus the fields will acquire an additional dimension over their corresponding particle properties.
The multiplication of the weight and property is replaced by the outer product of tensors. The
gradient V¢ depends on the choice of the coarse graining function ¢.

1 for(i=0 to i=N-1)

2 A

3 A_= int((r; —c)/g)

1 Xy = ims((ni+c)/g)

5 for(A=A_ to A=Ay)
6 {

7 & = Vo (ir—r.)

8 for(k=0 to k=M—-1)
9 {

10 A y=At0 @
11 }

12 }

13 3

Algorithm 2 — The modified coarse graining algorithm for the fields that depend on the gradient
V¢. The algorithms are identitcal except for lines 7 and 10.

Being almost identical to the normal coarse graining algorithm of the previous section, the compu-
tational complexity is also the same.
O(NM) (88)

Although it should be noted, that if the number of spatial dimensions d was a variable, it would
also appear as a linear factor. The gradient adds a dimension with the size of d to the resulting
output fields. This is irrelevant in granular media, but coarse graining has applications beyond this
topic.

3.2.3 Mean Value Discretization of Particles as Cubes

The final algorithm will implement the mean value discretization, specifically equation 31.
~ 1 A
A= — g = / dr 89
! V i UZ ijQz‘ ()

The components of ¢ are now the dimensions of the approximation cuboid Q);.

1 for(i=0 to 1=N—-1)

2 A

3 A_ = int((r;—c)/g)

4 Ay = int((r;+c¢)/g)

5 for(A=A_ to A=XAy)
6 {

7 o= (Jesne, dr) /(VUy)
8 for(k=0 to k=M —-1)
9 {

10 Ak = Ak

11 }

12 }

13 }

21

Algorithm 3 — The algorithm for mean value discretization. The second loop ensures that A\ only
iterates over cells that are known to be intersected by the cuboid @);. The integral is then easily
evaluated with equation 29. Apart from the calculation of the weight ®, this algorithm is identical to
the standard coarse graining algorithm.

Here, as opposed to the other coarse graining algorithms, the cutoff ¢ is not linked to the cell size.
In other words: The size of the particle and the cell are independent of each other. This causes the
computational complexity of this algorithm to scale with the total number of cells G, if the grid
spacing is smaller than the particles.

O(NMG) (90)

While this might seem like a disadvantage at first, it is not. The other coarse graining algorithms can
only meaningfully be used with a grid spacing similar to the size of the particles, so G is not a free
variable. However, with this mean value discretization the resolution can be increased arbitrarily
to more closely approximate the true underlying field.

4 Simulation of a Rotating Drum

A rotating drum, containing a number of particles, is used as a test case on which we verify the
algorithms. Some of the coarse grained fields, defined in section 2.5.1, will be plotted to validate
their qualitative correctness. Additionally, the problem of non-conservation of the total quantities
in the coarse graining process, as described in section 2.2.3, will be demonstrated. We will also show
that mean value discretization, as defined in section 2.3, fixes this issue. Furthermore, we will use
this simulation while developing a data driven model to predict particle motion in the last parts of
this thesis.

4.1 The Scene

The drum itself is not perfectly circular but consists of 32 panels that approximate a circle with
an inner radius of Im. The front and back wall consist of the same material and rotate along with
it, but are not rendered in the figures. Particles of identical size are spawned within the drum in a
regular lattice (with a small random jitter), consisting of 10 = 1000 particles. The particles have
a radius of approximately 0.06m. The entire scene is shown in figure 8.

The drum is rotating at a constant speed with no regard to any interaction with the particles. The
time step is At = (1/60)s.

Algoryx

(a) Frontal view. (b) View into the drum.

Figure 8 — The scene, consisting of a rotating drum that contains particles, shown from two perspec-
tives.

The coarse graining region extents slightly beyond the drum in every direction. It is divided into
303 = 27000 identical cubic cells. The coarse graining width w is chosen to equal the size of one
such cell at about 0.08m.

22

The coordinate system is oriented such that, in figure 8a, the z-axis points to the right, the y-axis
points into the plane, and the z-axis points up.

23

4.2 The Fields

Slices of select coarse grained fields are shown in figures 9 to 12. The slices are taken from the
center of the drum. The images all show the same point in time, at which some components seem to
disappear. Blue colors represent positive values, while red colors represent negative values. However,
colorscales are omitted because we are only interested in the relative distribution throughout the
drum.

(a) Mass (b) Pressure (c) Stress von Mises

Figure 9 — The scalar fields.

Figure 10 — The three components of the momentum field.

L
= |

Figure 11 — The three components of the velocity field.

24

Figure 12 — The nine components of the strain rate field.

4.3 Non-Conservation of Total Quantities

As described in section 2.2.3, the total quantites of the particles are, in theory, not conserved in the
coarse graining process. To investigate this in practice, the total value of the coarse grained mass
field in this simulation is plotted over time and compared to the total mass of the particles, which
is a constant. The same is done for the mean value discretization alternative, as defined in section
2.3, which we claim fixes the issue. This is shown in figure 13.

As expected, the mass of the coarse grained field fluctuates, although the magnitude of the fluc-
tuations is fairly small. More significant is the consistently lower total mass. This can likely be
attributed to the finite cutoff, as defined in section 3.2.1. The fluctuation in total mass is represen-
tative of all particle properties.

The total mass of the direct discretization approach is almost identical to the total mass of the
particles. The minute differences here can be attributed to finite machine precision.

25

1895.5
1895.0+
1894.5-
o —— Particles
Vs 4
”um‘i 1894.0 —— Coarse Graining
E —— Mean Value Discretization
1893.51
1893.0
1892.51
1892.01 . i . i . . .
0 2 4 6 8 10 12 14

time/s

Figure 13 — The total mass of the particles and the fields in the rotating drum. The red line is hardly
visible as it is almost completely covered by the blue line.

5 Data Driven Model

The position of any given particle r (t + At) after a time step At can always be written as its current
position r (t) plus a displacement Ar.

r(t+ At) =r(t) + Ar (¢, At) (91)

This can be approximated to first order, using the velocity v at time ¢ [21].

r(t+At) =r(t)+v(t) At + O (AF) (92)

For uniform motion, i.e. when there is no acceleration, the nonlinear term vanishes and the new
position of the particle can be calculated entirely from its current position and velocity. These
quantities are known at every time step in the simulation, using the AGX physics engine.

Because the physics engine works with discrete time steps of a fixed duration, we will modify the
notation slightly. The plain symbols r and v will denote the current position and velocity, while the
primed r’ will denote the position after a single time step. Additionally we introduce the symbol K
to represent the nonlinear term.

r=r+vAt+K (93)

We call this term K the displacement deviator, as it is the deviation of the displacement r’ —r from
that of uniform motion v At. The goal for the data driven model is to predict K without actually
solving the physics of the system.

5.1 Input and Output Data

The idea is to use a particle’s intrinsic properties and the coarse grained field data in the particle’s
surroundings to predict the nonlinear term. For this purpose the field data of the cell containing
the particle as well as the 26 adjacent cells (a 3x3x3 block) is assembled into a feature vector, which
serves as the input to a neural network.

Because the goal of the model is to learn a generic behaviour, we can not include a particle’s position
as input to the model. In that case the model could make simple inferences of how a particle tends

26

to move in a certain location and would consequentially be tied to a specific simulation. Thus, we
instead use the offset s of the particle from the nearest point of the grid. This restricts the feature
vector to have only local information. Additionally we include the particle’s velocity.

The coarse grained field are also included in the feature vector. Again, we only want to use local
information, so only the values of the cell within which the particle is located, as well as the 26
surrounding cells are included. In total that gives a feature vector consisting of the following data:

» Particle Offset sP
» Particle Velocity
» Mass

» Pressure

» Stress Von Mises
» Momentum

» Velocity

» Local Force

» Force

» Stress

» Strain Rate

<
o

B

m Q<D QS

To ensure stable training, each particle property and field is shifted by the corresponding mean
value in the dataset and divided by its standard deviation|22]. This results in a distribution with
a mean of 0 and a standard deviation of 1. These mean values and standard deviations are saved
alongside the model, to ensure that the same procedure can be applied to future data that is not
part of the training dataset. The normalized collection of all the inputs is called the feature vector
X. At this point it feeds directly into the neural network.

The output data consists of only the three components of the displacement deviator K. These
components are normalized in the same manner as the input data. The normalized output is called
the label vector y. It is precisely this, that the model learns to predict. This is then converted to the
value of K by multiplying with the previously saved standard deviation and adding the previously
saved mean.

5.2 Training

The model makes use of supervised training; It uses a precomputed dataset that provides samples
in the form of pairs of the feature vector and the label vector. This dataset is split into two parts:
One for training the model and one for validating its performance. Roughly 80% of samples are
used for training and 20% for validation.

5.2.1 The Loss Function

The loss function £ is used to train the model. It is formulated as the mean square error of the
predicted labels from the true labels. The label vector will be denoted as yT for the true labels in
the dataset and as y* for the prediction of the model. The loss function is then:

=33 (67" -) (94

5.2.2 The Validation Metric

The loss function makes use of the normalized data instead of the plain displacement deviator for
greater numerical stability during training. The real quantity of interest, however, is the error of
the plain displacement deviator K. Hence, the mean square error E; of the displacement deviator
is the quantity by which we actually judge the performance of the model for a given sample i in the

27

validation dataset.

5, = ;; ((&Py = ()’ (95)

This quantity is defined per particle. To calculate a single number for the whole validation dataset
we simply compute the mean E over all samples within it.

1
E= NZE (96)

5.2.3 Judging the Performance

To judge the performance of the model, one needs to compare it to something. The obvious choice for
a comparison baseline is the prediction that uniform motion would make. By virtue of construction
(see equation 93), this prediction is precisely KU = 0.

Using this, a quantity per particle can be defined analogously to the validation metric in equation

95.
By = ;; (V) (k7)) = ;; (™)) (o7)

Like before, this gives an overall error for the entire validation dataset.

1
EY = ~ > B (98)
%

The quotient of the validation metric E and this baseline value EY can now be calculated to give
a single number 7 to judge the performance of the model.

E

= 50 (99)

n
The smaller this number, the better the prediction; A number 1 < 1 directly corresponds to the
prediction of the model being better than the prediction of uniform motion.

5.2.4 The Optimizer

The Adam|20| optimizer was used for training the network. In initial test cases to decide on an
optimizer it resulted in faster training, compared to stochastical gradient descent. It achieved this
without compromising quality of the fully trained model. Also, it required less manual tweaking of
training parameters, such as the learning rate and batch size.

5.3 The Model

Predicting the labels from the features is a typical regression problem. We employ a multilayer
perceptron|23] to perform this regression.

The final model is shown in figure 14. It is the result of manual tweaking of the number of hidden
layers and the number of nodes in each layer to balance training performance and resulting validation
loss. More layers tended to result in longer training times with diminishing improvements, while
less layers simply had worse validation losses. While it performs satisfactory, no claims are made
that this model is optimal. Hyperparameter optimization|24| could likely be employed to improve
it further.

28

Input Hidden Hidden Hidden Hidden Output
Layer (N=128) (N=64) (N=32) (N=16) Layer

A WA

MR

| L WK |
N NN TR
SN >N

Figure 14 — The model to predict the displacement deviator. All of its layers are densely connected,
with four of it being hidden layers of decreasing size.

In the following section, the number of fields included in the feature vector varies. The input layer
always takes the size of the feature vector, so the number of nodes in this layer varies along with
the included fields.

The output layer corresponds to the displacement deviator, so it has a fixed size of 3 nodes.
5.4 Relevance of The Input Fields

Several models were trained, that vary only in the fields included in the feature vector. For each of
these cases the number 7, defined in equation 99, was calculated. To mitigate fluctuations caused
by the statistical nature of the training, the entire process was repeated 10 times and the mean of
the n values was calculated.

Fields || None | All | m P o™ | p v f F o e
n 0.86 | 0.65 | 0.66 | 0.84 | 0.84 | 0.69 | 0.64 | 0.84 | 0.85 | 0.85 | 0.66

Table 1 — The means of the 7 values over 10 runs, when including different fields in the feature vector.
The standard deviation of each of these values is 0.01.

These results clearly show two distinct levels for 1. One is around 1 = 0.85 and one is around
n = 0.65.

When including no fields at all in the feature vector, the performance number is around this first
level of n = 0.85. (Note that the feature vector still contains the particle’s offset and velocity.)
This value being smaller than 1 means that using only a particle’s intrinsic properties allows for a
better prediction of the displacement deviator than simply assuming uniform motion. This is not
surprising, because in this specific simulation certain inferences can be made with the particle’s
intrinsic data. For example, particles with velocity beyond a certain threshold will tend to slow
down. The only way to accquire high velocities is when they are rolling/falling down the pile and
they will inevitably be stopped by the drum.

29

The second level at around 7 = 0.65 is more interesting, because this gives a tangible improvement
that stems from the additional information that the fields provide. The fields that produce these
improvements are the mass m, pressure P, momentum p, velocity v and strain rate €. However,
when including all the fields simultaneously there is no further improvement. This is likely due to
a lot of the information used to calculate these fields being redundant.

5.5 Source of Errors

While the previous section shows a successful application of the model, the obvious question is now:
Where does the remaining error come from?

To possibly find an answer to this question, we render the scene with the colors of the particles
mapped to the corresponding prediction errors (as defined in equation 95). This is shown in figure
15 and should give us an idea of which particles the largest errors originate from.

AGX DYNAMICS

Figure 15 — This figure shows the error as defined in equation 95. It is calculated from the results of
a pretrained model that is applied to a similar scene.

It is difficult to make any precise statements about the particles in this figure. The errors seem
to be most prevalent among the particles that are part of the surface flow. Large errors seem to
occur especially where the particles hit the drum and are abruptly stopped. This demonstrates a
key limitation of the model. The drum itself is completely inexistant in the particle and field data.
It is thus not surprising that we find some of the largest errors here.

The true displacement deviator is directly related to a particle’s average acceleration a over the
time step|21].
1
KT = §5At2 (100)
This average acceleration is, of course, as unknown as the displacement deviator itself, but it can
give a more intuitive understanding of the error. When the particles hit the drum, they experience
a large acceleration by colliding with an object that is invisible to the model.

30

(a) x component (b) y component (¢) z component

Figure 16 — A heatmap of the predicted displacement deviator KF on the y-axis vs. the true
displacement deviator KT on the z-axis. The units are arbitrary, but the scalings of the plots are
identitcal. The diagonal line shows the identity, which represents the ideal situation in which the
predictions are perfect.

Plotting the predicted displacement deviator K¥ against the true displacement deviator KT in
figure 16 allows us to gain at least a bit of insight into where the error originates. First of all, there
is a statistical spread to the data that contributes to the error. The prediction of uniform motion,
for comparison, would simply project every datapoint onto the x-axes of the plots. Consequently,
a distribution closer to the diagonal than the x-axis corresponds directly to the model prediction
being better than the uniform motion prediction and vice versa.

However, of more interest are the more distinct features, such as the vertical line of datapoints in the
z component. The data along this line likely represents free-falling particles, as their displacement
deviator is expected to be 0 in the z and y direction but a negative constant in the z direction.
This constant is, of course, related the the gravitational acceleration by equation 100. While the
distribution for these predictions is skewed towards the diagonal, there is still a relatively large
spread to them.

Also of note is that the spread of the distribution in the z component is much larger than the
other components. The spread in the y component in particular almost vanishes in comparison,
whereas the z component forms a thin horizontal band. This corresponds to a small variation in
the predictions compared to the variation of the true displacement deviators. The same is found,
to a lesser extent, in the z component. This means, that the model makes rather conservative
predictions and thus tends to underestimate the magnitude of the true displacement deviator.

Lastly, we will take a look at the overall error distribution. For that, we bin the relative frequency
P (E;) of the prediction errors F; and plot them in a histogram in figure 17.

The histogram roughly follows a line on the log-log scale, suggesting that the errors occur with a
frequency of P (E;) ~ a(E;)?, with a and b being some parameters. A rough estimate puts the
value for b, which corresponds to the slope in the histogram, at a value of around —4/3.

31

1077 10°6 1073 104
Eifm

Figure 17 — The relative frequency of the mean square errors E; in a histogram on a log-log scale.
The values are normalized, such that the sum of all bins equals 1.

6 Conclusion

Coarse graining provides a method for transitioning from a discrete element description of a system
to a continuum description. It has previously been shown analytically that the coarse graining
process gives rise to the expected equations of motion of the continuum|3]. However, we show that
in numerical simulations the total contribution of particles to the field becomes position dependent.
Additionally, it was shown that coarse graining discards any information about particle size.

An alternative to coarse graining was proposed in section 2.3. It was shown that the information
of the particle size is not lost. This allows for the discretization of particles with widely varying
sizes in a grid of an arbitrary resolution. This alternative approach also conserves the total particle
properties (e.g. mass) and removes any position dependence for them. However, a disadvantage is
that the fields obtained in this manner were not yet shown to strictly obey other equations of motion.
The definitions for these fields were merely chosen to mimic those of standard coarse graining.

This might pose an opportunity for future theoretical work to develop a coarse graining procedure
that adresses these issues. Ideally it would combine the advantages of both methods, allowing for
coarse graining of arbitrarily sized particles in a grid of an arbitrary resolution while obeying the
continuum equations of motion.

Both procedures were developed and implemented as algorithms, which were then tested on a
simulation of a rotating drum, containing a large number of particles. This scene, along with the
coarse grained fields, was then used as the basis for a machine learning model. It was possible to
demonstrate a tangible improvement in the prediction of particle movement when the local fields
were used in the model as opposed to when they were not. While the predictions are still of rather
poor quality, the true benefit of this model is, in theory, the potential for generalization. Previous
works have made more successful predictions using other methods|25], but these models are only
trained for a predetermined scene. The model in this thesis, however, uses only local data to predict
a particle’s movement, so it might be possible to train the model in a training scene and then apply
it to very different scenes.

32

However, a problem that arises with neural networks in general is that they are usually treated
as black boxes. Among other issues, this makes it inherently difficult to interpret the errors|26.
The model developed in this thesis is no exception; while the error was quantified, it is difficult to
explain.

A possible subject for the future would be to take a step back and try to replicate the results of
the neural network with a statistical model[14], while still using only local field data. If a similar
result could be produced with the statistical model, it would provide more insight into the source
of errors. This knowledge might then be helpful to improve the accuracy of the entire model.

Another prospect for possible future work is the investigation of the effects other fields might have
on the predictions. The granular temperature was omitted in the data driven model because it can
not be calculated with the algorithms developed in this thesis. It is, however, a good candidate for
improving the predictions, as it provides information on how much the particle velocities deviate
from the mean within a given cell. A possible alternative, that can be calculated with the developed
algorithms while providing similar information, is the standard deviation of velocities. Also, the
kinetic and contact stress might be seperated, because, depending on the situation, one of them
may overshadow the other. In fact, the kinetic stress might be removed altogether, because the
information present in this field is very similar to the momentum and velocity fields. Lastly, one
might come up with synthetic fields, derived from arbitrary combinations of particle properties,
to try and improve predictions further. These synthetic fields need not have an intuitive physical
interpretation.

33

References

1]

2]

3]

4]

5]

(6]

7]

8]

9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Bruno Andreotti, Yoél Forterre, and Olivier Pouliquen. Granular Media: Between Fluid and
Solid. Cambridge University Press, 2013.

Stefan Luding. Introduction to discrete element methods. Furopean Journal of Environmental
and Civil Engineering, 12(7-8):785-826, 2008.

Isaac Goldhirsch. Stress, stress asymmetry and couple stress: from discrete particles to con-
tinuous fields. Granular Matter, 12:239-252, 5 2010.

Jie Zhang, Robert P. Behringer, and Isaac Goldhirsch. Coarse-graining of a physical granular
system. Progress of Theoretical Physics Supplement, 184:16-30, 03 2010.

Juan Petit P.; Juan Marin, and Leonardo Trujillo. On the construction of a continuous theory
for granular flows. pages 463-471, 01 2014.

Martin Miiser, Godehard Sutmann, and R. Winkler. Hybrid Particle-Continuum Methods in
Computational Material Physics. 01 2013.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, USA, 1988.

B.D. Jones and J.R. Williams. Fast computation of accurate sphere-cube intersection volume.
Engineering Computations, pages 1204-1216, 01 2017.

J.J. Hopfield. Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5):3-10, 1988.
Kenji Kawaguchi. Deep learning without poor local minima. 05 2016.

Martin Anthony. Discrete Mathematics of Neural Networks. Society for Industrial and Applied
Mathematics, 2001.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017.

J. Hertz, John, Krough, Anders Flisberg, Palmer, and Richard G. Introduction To The Theory
Of Neural Computation. 12 1991.

W. Sarle. Neural networks and statistical models. 1994.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, and Dario Amodei. Language models are few-shot learners. 05
2020.

Cameron Buckner and James Garson. Connectionism. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2018 edition,
2018.

Shun ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing,
5(4):185-196, 1993.

Oleg Burdakov, Yuhong Dai, and Na Huang. Stabilized barzilai-borwein method. Journal of
Computational Mathematics, 37(6):916-936, 2019.

David Saad. On-Line Learning in Neural Networks. Publications of the Newton Institute.
Cambridge University Press, 1999.

34

[20] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

[21] R. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics. Basic Books,
new millenium edition, 2011.

[22] Yann Lecun, Leon Bottou, Genevieve Orr, and Klaus-Robert Miiller. Efficient backprop. 08
2000.

[23] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing,
2(5):183-197, 1991.

[24] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. 02 2015.

[25] Erik Wallin and Martin Servin. Data-driven model order reduction for granular media. Com-
putational Particle Mechanics, 02 2021.

[26] Vanessa Buhrmester, David Miinch, and Michael Arens. Analysis of explainers of black box
deep neural networks for computer vision: A survey, 2019.

35

	Introduction
	Theory
	Notation Convention
	Coarse Graining
	The Coarse Graining Function
	Implicitly Identical Particles
	Coarse Graining in a Regular Grid

	Mean Value Discretization
	Computing the Mean

	Discrete Element Method
	Relevant Fundamental Properties
	Derived Quantities

	The Fields
	Coarse Grained Fields
	Fields with Mean Value Discretization

	Machine Learning
	Artifical Neuron
	Activation Function
	Neural Networks
	Training a Network
	Gradient Descent

	Implementation
	Platform Choices
	Physics Engine
	Programming Languages
	Machine Learning Library

	Algorithms
	Coarse Graining
	Coarse Graining Derivatives
	Mean Value Discretization of Particles as Cubes

	Simulation of a Rotating Drum
	The Scene
	The Fields
	Non-Conservation of Total Quantities

	Data Driven Model
	Input and Output Data
	Training
	The Loss Function
	The Validation Metric
	Judging the Performance
	The Optimizer

	The Model
	Relevance of The Input Fields
	Source of Errors

	Conclusion

