
Reinforcement Learning for Grinding
Circuit Control in Mineral Processing

Mattias Hallén∗, Max Åstrand∗†, Johannes Sikström‡, and Martin Servin§
∗ABB Corporate Research, Västerås, Sweden

Email: mattias.hallen@se.abb.com, max.astrand@se.abb.com
†Department of Automatic Control, School of Electrical Engineering and Computer Science,

KTH Royal Institute of Technology, Stockholm, Sweden
‡Boliden Mines, Boliden, Sweden

Email: johannes.sikstrom@boliden.com
§Department of Physics, UMIT Research Lab, Umeå University, Umeå, Sweden

Email: martin.servin@umu.se

Abstract—Grinding, i.e. reducing the particle size of mined ore,
is often the bottleneck of the mining concentrating process. Thus,
even small improvements may lead to large increases in profit.
The goal of the grinding circuit is two-sided; to maximize the
throughput of ore, and minimize the resulting particle size of the
ground ore within some acceptable range. In this work we study
the control of a two-stage grinding circuit using reinforcement
learning. To this end, we present a solution for integrating
industrial simulation models into the reinforcement learning
framework OpenAI Gym. We compare an existing PID controller,
based on vast domain knowledge and years of hand-tuning, with
a black-box algorithm called Proximal Policy Optimization on a
calibrated grinding circuit simulation model. The comparison
show that it is possible to control the grinding circuit using
reinforcement learning. In addition, contrasting reinforcement
learning from the existing PID control, the algorithm is able to
maximize an abstract control goal: maximizing profit as defined
by a profit function given by our industrial collaborator. In some
operating cases the algorithm is able to control the plant more
efficiently compared to existing control.

I. INTRODUCTION

A. Problem Description and Motivation

A large part of the costs of running a mineral processing
plant can be attributed to the grinding mills. As an example,
a breakdown of the costs in a copper concentrator show
that 47% of the cost per concentrated copper ton can be
accredited to grinding [1]. This cost is mostly due to the
energy required to operate the mills. The resulting ground
particle size effectively determines the maximum performance
of the concentrating process. The particles must be ground to
an appropriate size. Too large or too small particles become
problematic for the subsequent downstream process. Due to
these facts, the grinding process is an interesting process to
optimize where small improvements leads to sizeable increases
in profitability

This paper focuses on controlling a grinding circuit using
Reinforcement Learning (RL), which is a field within artifi-
cial intelligence, and in particular within machine learning.
Reinforcement learning has received a lot of attention lately
by beating the strongest human players in various games.

RL is designed to control a system by reinforcing histor-
ically beneficial behavior. By designing a suitable reward,
the implementer may define what the end goal is without
having the need to specify how to reach that goal. In contrast,
in classic control based on PID controllers [2], pursuing
a high-level goal requires extensive domain knowledge to
characterize the overall behavior of several interconnected PID
loops controlling low-level set-points.

The literature on RL is largely focused on applications
to various games and toy problems. Early pioneers in this
field demonstrated its promise by playing Checkers [3] and
Backgammon [4]. More recently, Deep Reinforcement Learn-
ing (RL combined with Deep Neural Networks), has rapidly
expanded the field to new frontiers. In 2013 an algorithm
was capable of reaching human level performance in Atari
games by only observing game pixel images [5]. Three years
later, in 2016, an algorithm was capable of solving more
than 20 simulated physical tasks including cartpole swing-up
and legged locomotion [6]. The same year, an algorithm also
managed the impressive feat of winning against professional
players in the computationally challenging game of Go [7].

Unfortunately, there are only a few published works on
industrial process control using RL. Process control brings
a different set of challenges compared to studying games;
the task is often continuous with no clear definition of a win
or a loss, sensors commonly provide continuous signals with
noise and uncertainty, and the equipment may have dynamic
constraints on the range of allowed actions. The use of RL
on industrial process control was however studied by S.P.K.
Spielberg et al [8] which demonstrated an RL algorithm
capable of controlling simulated linear systems. In contrast,
there are more works on RL for robotics. One such notable
example is the work by OpenAI [9] in 2018 where a robotic
hand was trained in simulation without human demonstrations
to manipulate a cube. This simulated experience was then
transferred to a physical robot that managed to solve the real-
world equivalent task with significant reliability.

In this work, we add to the scarce literature on reinforcement
learning for industrial process control. Specifically, we study

SERVIN
Typewriter
preprint



an ore grinding process within a mineral processing plant. To
do this, we use a simulation model of the grinding process
that has been calibrated on real operational data. The model
is implemented in the popular industrial simulation software
Dymola [10] which is based on the Modelica [11] language.

Our first contribution is a solution for integrating Dymola
simulation models into OpenAI Gym [12]; a popular frame-
work for RL research. The solution is based on exporting
the simulation model as a Functional Mock-up Unit (FMU)
adhering to the Functional Mock-up Interface (FMI) standard
[13]. Consequently, this makes it possible to apply state-of-
the-art RL algorithms found in OpenAI Baselines [14] to
any industrial simulation model developed in a software that
support the FMI standard.

Our second contribution is a comparison of control strate-
gies for the grinding mills in Aitik, Sweden; a mineral
processing plant owned and operated by Boliden. Proximal
Policy Optimization, a modern RL method, is compared with
a typical PID control strategy. The PID strategy is identical to
the strategy used in a real operating plant. It is based on years
of experience, vast domain knowledge, and have been hand-
tuned for several years. The goal is to investigate if the RL
controller can be used to control the grinding circuit in a more
effective way compared to the traditional control strategy.
Results in this paper confirm that i) it is possible to control
the grinding circuit using PPO, ii) the algorithm is capable
to maximize an abstract control goal such as maximizing the
profitability, and iii) for some operating cases it is able to
control the process more efficiently than the PID strategy.

The introduction in Section I covered the main background
of this paper, and the following Section II will cover the
basic theory underlying the process using grinding mills. An
introduction to Reinforcement Learning is presented in Sec-
tion III, which will cover the general concepts and introduce
Proximal Policy Optimization. Then in Section IV the method
of adapting a continuous simulation model to a reinforcement
learning problem will be described. Results are presented in
Section V and finally concluding remarks are discussed in
Section VI.

II. COMMINUTION BY GRINDING

In the mineral processing chain, the first step is to separate
ore from an ore-body either in an open pit or an underground
mine. This ore is crushed to reduce the size of the rock
and then transported to a concentrator plant where the ore
is ground down to a suitable particle size for the subsequent
concentrating steps. After it has been ground, it is treated
by various chemical or mechanical operations to separate the
valuable minerals from the commercially worthless waste rock.
When the ore has been concentrated, it is typically shipped to
a smelter for further processing.

Reducing the particle size of rock through grinding is
called comminution. The main objective for a comminution
process is to liberate valuable minerals from the waste rock.
Specifically, the goal is to maximize the exposed mineral
surface as to efficiently separate the ore from the waste

Compression

Chipping

Abrasion

Fig. 1: Overview of the operating principle of a grinding mill
in a cross section.

rock in the subsequent process stages focusing on enrichment
[1]. When using flotation as a subsequent enrichment stage
(i.e. separating mineral from waste rock by using tiny air-
bubbles exploiting the hydrophobic and hydrophilic properties
of different materials), there is a natural lower limit when it
is inefficient to grind further. Grinding the material too fine
leads to the small particles sticking to the air bubbles due to
their lightness and thus mixing waste rock with the desired
minerals which may ruin the grade of the recovered product.
In addition, the increase of surface area from splitting the
particles decreases as the particle gets smaller, thus it costs
more energy to grind the particles finer.

Large grinding mills are used to reduce the size of the
ore particles. An autogeneous mill reduces the particle size
by using the ore itself as grinding media; crushing smaller
particles by larger particles. This type of mill is basically
a large rotating drum that grinds the ore in a combination
of three effects: compression, chipping, and abrasion (see
Figure 1). The angular velocity of the grinding mill is a
determinant factor in achieving efficient grinding. If the mill is
rotating too fast, then the centrifugal force will make the ore
particles stick to the inside, resulting in very little grinding.
If the speed is too low, the grinding is only due to abrasion,
which is not as energy efficient as compression and chipping.
A balance in speed is thus sought after, where the particles
being heaved hits the particles at the bottom of the drum,
maximizing the compression and chipping effects.

A common design of a grinding circuit is a two-staged
wet grinding process, in which mixture of ore and water is
ground in sequence by two grinding mills. This design consists
of a primary autogeneous mill (PM) and secondary pebble
mill (SM). The pebble mills grinds by adding coarse material
(pebbles) from the primary mill selectively. The reasoning is
that grinding finer materials with coarser material is more
efficient than grinding comparably sized materials. Water is
added at the intake of each mill, and the end product is a
mixture of water and ground ore that can be pumped to the
subsequent concentration steps. However, the ore mixture is
not always traversing sequentially through the grinding circuit.
Recirculation ensures that only small enough ore particles are



passed out of the circuit, while the larger ore particles are sent
back to the grinding mills.

III. PROXIMAL POLICY OPTIMIZATION

Reinforcement learning is a subfield of machine learning,
focused on learning by interaction. This process is similar to
how humans and animals learn. An example of learning by
interaction is a child that touches a hot stove. By reaching
the hot stove a negative feeling occurs and the child is less
inclined to touch the stove again. In other words, the agent
(child) is in a state close to the stove. It takes an action in
an environment by moving its hand, touches the stove, and
by touching it the agent transitions into a new state in the
environment, and a negative reward is perceived by touching
the hot surface.

Reinforcement learning problems are typically modelled as
Markov Decision Processes (MDPs). MPD is a mathematical
model for decision making. Given a state, a limited amount of
actions can be taken. With each action follows a probability
that the agent ends up in a certain new state, and each
transition from one state to another yields the agent a reward.
More formally, we have a finite set of states S and a finite
set of actions A available to be taken in these states. Each
state-action pair transition has an associated immediate reward
function R(st, at, st +1) that follows the transition dynamics
T(st+1|st, at) describing what state you end up in after taking
an action. A policy π(s) determines what action to take given
a certain state

π(s) : s −→ A. (1)

A discount factor γ is introduced to represent the importance
of future rewards compared to instantaneous rewards. The
value of a state is thus defined as the discounted sum of the
expected future reward following the current policy

V π(s) = E[
∞∑
k=0

γkRt+k+1 | St = s]. (2)

Alternatively, value can be defined in terms of state-action
pairs

Qπ(s, a) = E[
∞∑
k=0

γkRt+k+1 | St = s,At = a]. (3)

For process control, the signals encountered are often contin-
uous. One way of representing a continuous control policy is
to construct a Gaussian distribution of actions using a neural
network. The input of the network is the state. The output of
the network is which action to take, represented by a mean
and a standard deviation for each possible control action.
Here, exploration is done by sampling from a distribution in
contrast to only using point estimates. This policy network
can be written πθ(a|s) where θ are the weights and biases of
the neural network. As a conceptual illustration, a multilayer
perceptron Gaussian probability distribution policy is shown
in Figure 2.

Proximal Policy Optimization (PPO) was proposed by John
Schulman et al. [15]. The general idea is to do multiple

Input layer
Hidden layer

Mean values

Standard deviations

Actions

O
bs

er
va

tio
ns

Gaussian
distribution

Fig. 2: A multilayer perceptron Gaussian policy. It consists
of an input layer for the state observations, one hidden
computation layer, and an output layer representing control
actions in terms of mean values with corresponding standard
deviations.

optimization steps over the same trajectory, without destruc-
tively large policy updates. Compared to similiar approaches,
it strikes a favorable balance between sample complexity,
simplicity, and wall-time [15]. We use a clipped surrogate loss
function

L(θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (4)

where the ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

(5)

is the importance sampling between the policy used for
gathering experience and the new updated policy. The function
clip is defined as clip(x, α, β) = max(min(x, β), α). The
rationale is that by clipping the ratio rt(θ) to be in the interval
[1 − ε, 1 + ε] one stays within the proximity of the previous
policy.

The advantage function A = Q(s, a)−V (s) estimates how
much better/worse (advantageous) taking a certain action is
compared to the estimated value of the current state. As [15],
we use the alternative formulation of Generalized Advantage
Estimation (GAE) to estimate the advantage in Equation (4)
by

Ât = δ + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1, (6)
where δ = rt + γV (st+1)− V (st) (7)

and the parameters λ, γ are used to tune the bias/variance
trade-off. The state value V (st) in (7) is estimated by another
neural network V̂w(st) parametrized by w and it is trained
from the observed rewards.

IV. SIMULATION

In this work, we study a grinding circuit in a mineral
processing plant. This study is based on a simulation model
that has been calibrated and verified against the real plant.
In Figure 3 a schematic drawing of the simulated grinding
circuit can be seen. Having access to the existing control
loops based on PID, this makes it possible to replacing control



PM

SM

Trommel Flap gate

Classifier

Mill pump

x1, x2, x3

x4, x5, x6

x7

x8

x9, x10

u1

u3

u2

u4

Fig. 3: The simulated grinding circuit with highlighted observations and actions corresponding to Table I.

TABLE I: Implemented observations and actions.

Observations Unit Accepted range

x1 Primary mill mass ton High & Low limit
x2 Primary mill torque % High limit
x3 Primary mill power MW High limit
x4 Secondary mill mass ton High limit
x5 Secondary mill torque % High limit
x6 Secondary mill power MW No constraint
x7 Mass flow return ton/h No constraint
x8 Mass flow return classifier ton/h No constraint
x9 Mass flow out ton/h No constraint
x10 Particle size K801 µm No constraint

Actions

u1 Primary mill speed RPM Continuous
u2 Secondary mill speed RPM Continuous
u3 Flap gate - Discrete
u4 Feed flow ton/h Continuous

loops with RL controllers while keeping the original control
for benchmarking. Table I shows all the possible observations
and actions for the RL controller that are varied throughout
the later introduced experiments.

The motivation for these observations is three-fold. First,
these observations make the performance of the process ob-
servable (performance being a function of the mass flow out
and the particle size distribution K80 of this mass flow).
Second, the main constraining properties of the process are
observed to ensure that operation in reality does not damage
the equipment. Third, the two return flows are measured to

make sure that the state of the back-fed material flow in
the circuit is visible to the RL algorithm. The actions in
Table I include all major controllable elements in the grinding
circuit. The controller can set the speed of the primary and
secondary mill, the input feed of ore from the ore storage
to the primary mill, and the flap gate that controls when to
selectively add pebbles (coarse material) to the secondary mill.
The simulation model also includes the possibility of varying
the characteristics of the ore being fed into the grinding circuit
by varying the hardness and the size distribution of the ore
feed.

It may be noted that water is added at the inflow to both
mills. This water additive control is kept according to existing
PID control as a simplification. In addition, the mill pump
after the secondary mill has been removed. This reduces
computational expense, and is a fair approximation since at
a steady state the flow from the secondary mill is equal to the
flow of the mill pump.

A. Integrating OpenAI with FMU simulation

To leverage state-of-the-art RL algorithms, the OpenAI Gym
[12] is used as a framework. OpenAI Gym is a popular open
source framework that has many implemented algorithms for
solving Gym environments. An environment is the process that
the agent interacts with, which it is supposed to learn how
to control through its actions. OpenAI Gym thus provides a
suitable layer of abstraction, providing a standardized interface

1K80 is a particle size distribution measurement indicating that 80% of the
particles are smaller than the K80 value.



between the actions/observations (that the RL algorithm need)
and how these affect the underlying environment.

In this work, the environment that we want to control is
the calibrated simulation model implemented in the simulation
software Dymola. To be able to integrate the industrial process
model from Dymola into OpenAI Gym, we modified the
standard OpenAI framework. Our proposed approach is based
on compiling the simulation model into a Functional Mock-
up Unit (FMU) communicating by a standard communication
protocol. The FMU is thus a standalone executable file that
can be integrated into the OpenAI framework to act as the
underlying environment. The FMU communicates with the
surrounding Python-based framework using the Functional
Mock-up Interface provided by the pyFMI library [16]. A
schematic view of how these different components interact
can be seen in Figure 4. This architecture provides a suitable
abstraction layer for RL problems, in which the algorithm
is completely separated from the specific process model and
the communication via FMI. From the perspective of an RL
task, the important part is the ability to take an action and
receive a reward coupled with a new observation, the rest
of the architecture is dedicated to managing the environment
and FMI communication. It is worth to openote that in this
work the industrial simulation model was implemented in
Dymola. However, the proposed OpenAI integration supports
any process model that can be compiled into an FMU adhering
to the FMI standard. Another benefit of this integration is
that by leveraging internal methods in the pyFMI library,
the computational expense is decreased compared to previous
approaches to integrating OpenAI and FMU. 2

In this work, the model’s FMU was compiled as a co-
simulation model bundled with the Dymola solver Cerk23
(a third order single-step Runge-Kutta integrator). The time
discretization, as seen from the RL agent, is 60 seconds
meaning that after each action the process is simulated 60
seconds into the future before a reward is calculated. This
roughly corresponds to how quickly the simulated grinding
circuit model reacts. The binary action corresponding to the
flap gate is in the network treated like a continuous signal
which at the time of action is compared to a threshold
determining whether the flap gate should the activated or
not. Lastly, to improve training performance, observations and
actions are normalized before being fed to the RL agent.

B. Proximal Policy Optimization

Using OpenAI as a framework makes numerous RL algo-
rithms available. In this work, we focus on Proximal Policy
Optimization. The implementation of this algorithm is based
on the algorithm PPO2 contained in OpenAI Baselines [14].
It is built around the machine learning framework Tensorflow
[17] and has support for parallelization by running parallel
environments using Message Passing Interface. All runs are
done on a Windows-computer with two Xeon X5650 proces-
sors using 23 virtual cores resulting in training and simulation

2The modified framework, and an example using a reversed pendulum, can
be found at www.github.com/semahal/FMU-Env

Functional Mock-up Unit (FMU)

Reset
Step forward

Custom environment

Reset
Action

Reinforcement learning agent

OpenAI
Gym

Functional Mock-
up Interface (FMI)

Create

Initialize

Reward
Observation

Fig. 4: Schematic view of the implemented architecture used
for adapting a simulation model (in FMU format) to a rein-
forcement learning setting.

of 23 parallel environments. The loss function Equation (4)
is minimized using the Adam implementation in Tensorflow.
Lastly, both the value and the policy network are implemented
as an MLP Gaussian policy distributions.

V. RESULT

In this section we present numerical results of using Prox-
imal Policy Optimization to control a simulation model of
the Boliden Aitik grinding circuit. This is done using the
theory and architecture presented earlier. We will study two
cases and compare the performance with the existing PID
control strategy. The two cases are inspired by different control
philosophies. In the first case, we assume that the overall
impact of the particle size is negligible as long as the particle
size is under a certain threshold. Thus, we aim to maximize
ore throughput under a maximum particle size constraint.

The first case represents how the studied grinding circuit and
existing control currently operate: the most profitable strategy
is almost always to prioritize throughput over particle size.
However, in similar grinding circuits exhibiting minor up- or
downstream process differences compared to Aitik, the trade-
off is not as trivial. Therefore, in the second case, we assume
that the performance of the grinding circuit is dependent on
both throughput and particle size to an extent where it is non-
trivial to trade-off these quantities.

Note that in both cases we assume that there are no upstream
or downstream ore flow limitations. The process is thus only
limited by the capacity of the grinding circuit itself.

A. Maximizing throughput

This experiment is aimed at trying to maximize the through-
put of the grinding circuit not explicitly considering the
resulting particle size. To accomplish this, the reward function
is designed to give +1 for each time step that mass flow out



TABLE II: Hyper parameters for PPO used in the experiments.

Parameter Value

Number of steps per update 115
Minibatches per update 5
Policy entropy coefficient 0
Learning rate LinearDecay[1e−3, 3e−4]
Value function loss coefficient 0.5
Gradient norm clipping coefficient 0.5
Discounting factor γ 0.8
Advantage estimation λ 0.95
n of training epochs per update 4
Clip range ε 0.3
Policy number of hidden layers 2
Policy hidden layer size 32
Value network copy policy network
Penalty factor 0.2

of the circuit is at its theoretical max. To guide the optimizer,
the reward decreases linearly if the mass flow is less than
the theoretical max. Lastly, the reward is penalized if actions
are selected outside of their bounds due to the unbounded
Gaussian policy. This penalty encourages the policy to stay
within action bounds and is implemented as a linear function
corresponding to how much larger the selected action is
compared to its bounds. The impact of this penalization is
controlled by a parameter called Penalty factor. The algorithm
hyperparameters were tuned over several experiments, and
Table II depicts the final parameter set.

In Figure 5 the training progress can be seen. The episode
reward and thus the throughput for the algorithm continuously
climbs as the policy improves. After 7 hours of training
it settles. It is interesting to note that even though these
algorithms are purely “black-box” (i.e. no domain knowledge
is explicitly incorporated in the control strategy), it manages
to reach approximately 92 % of the throughput achieved by
the PID control which is based on years of tuning and domain-
specific reasoning.

PPO manages to reach 92% of the PID performance, but
not more. A possible reason for this is that when maximizing
throughput, it is vital that some control signals (e.g. the feed
signal) is kept close to its maximum bound. Remember that we
penalized the PPO reward if it selected actions outside of its
bounds, thus the Gaussian exploration will make the developed
policy cautious on applying actions near its bounds. Lastly, in
this experiment the ore characteristics was static, i.e. the same
hardness and size distribution was used throughout all training
episodes resulting in no variation between training episodes.
The developed policy is thus independent of the specific ore
characteristics, yielding constant action values that suitable as
a kind of average policy of good actions.

B. Maximizing profit

A grinding circuit has a multifaceted goal boiling down to
being as profitable as possible while caring for e.g. wear, tear,
and safety. The profitability of a grinding circuit depends on
several factors. A simplified profit function was supplied by
Boliden that involved the predicted recovery rate from particle

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training time [Wall-time hours]

500

550

600

650

R
ew

ar
d

PPO
PID
PPO Min/Max

Fig. 5: Training progress for PPO with reward for maximizing
throughput. Also shown is the reward achieved for the existing
PID control strategy. Note the colored area for PPO which cor-
responds to the maximum/minimum episode rewards obtained
during training.

Throughput

Predicted recovery rate (K80)

Pr
ofi

t

Fig. 6: The profit function implemented as a reward function.
Not depicted in this figure is the constraint on achievable
predicted recovery rates for a given throughput level, which is
determined by the system dynamics.

size of the ground minerals and throughput. For a visual
illustration see Figure 6. In this experiment, this function is
used as the reward function together with the same action
penalty as in the previous experiment. In this experiment, the
ore properties are randomized for each episode in order to
evaluate the performance of this algorithm when operating
conditions change. The parameters of the algorithm are kept
the same as for the previous experiment.

In Figure 7 the training progress can be seen. Note that



0 20 40 60 80 100 120
Training time [Wall-time hours]

100

200

300

400

500

600

700

800
R

ew
ar

d

PPO
PPO Min/Max
PID Min/Max

Fig. 7: Training progress for PPO when maximizing profit. The orange interval corresponds to the reward achieved by the
existing PID control strategy.

since we are training using varying ore characteristic the PID
baseline now corresponds to an interval (in orange) instead
of a line as in Figure 5. The lower bound of the interval
corresponds to hard ore characteristics while the upper bound
corresponds to soft ore. The most interesting thing to note
is that around the 80-hour training mark PPO manages to
consistently beat the existing control strategy with respect
to the given profit function. The training progress to that
point is however not strictly increasing. First, we note that
the initial values of the policy (which was set at 50% of
maximum for all actions) were quite good, however the policy
quickly improves even further. After 6h of training, the reward
suddenly drops. This is due to one observable being pushed
outside its associated operating bounds, and policy is updated
to avoid that. In Figure 7, the algorithm slowly gets better until
consistently becoming better than the PID control strategy.

The flap gate control signal (u3) never converged to a stable
control strategy. In these experiments we also note that the
flap gate was never properly utilized by the emerging policy,
while it is crucial for the PID control. This is an interesting
observation since the profitability of the two control strategies
are comparable. What happens is that the PPO (being very
data-intense) is able to find a control strategy that exploits a
potential model mismatch between the calibrated model and
the reality. On the other hand, the PID control is implemented
to mimic reality and thus misses this opportunity. This fact
highlights the importance of a (very) accurate simulation
model.

In order to assess the difference in the operation of the
trained policy and the PID baseline we perform a minor
sensitivity analysis of the control strategies, see Figure 8. In
this run, the properties of the ore feed is abruptly changed
from nominal ore properties to an increased hardness. We can

note that overall, PPO consistently sets a lower feed signal and
lower mill speeds compared to the PID control. This results
in lower throughput, but finer ground material, which in the
end returns a higher profit. Another difference is evident when
studying the mass of the material in the primary mill. The PID
control tries to keep the mass within a given set point, however
the PPO algorithm does not try to hold any particular set point
w.r.t. mass. It only tries to maximize the reward signal, and
hence when the ore properties change the amount of mass of
the material in the mill changes as well. The trained policy
thus exploits its larger number of degrees of freedom, and
is able to more elaborately control the grinding circuit with
regard to these varying ore properties.

VI. CONCLUSION

In this work, we have compared a reinforcement learning
controller with the existing PID controller for a grinding circuit
on a calibrated simulation model. To do this, we developed a
software architecture that integrates FMI compliant simulation
models into the reinforcement learning framework OpenAI
Gym. This makes industrial process simulations commonly
found in e.g. Dymola to be controlled by state-of-the-art RL
algorithms. This architecture is used to train a PPO agent
controlling a grinding circuit within a mineral processing
plant. By training the policy using a calibrated simulation
model, the policy is capable of controlling the grinding circuit
under the same process constraints as the existing control
strategy. In addition, given the profit function supplied to
us by our industrial collaborator, PPO is able to control the
grinding circuit according to this high-level abstract goal.
When comparing the profitability of PPO with the existing
PID control strategy, the RL agent is able to achieve a higher
profitability under certain operating conditions. This fact is



0.9

1.0
R

ew
ar

d

PPO
PID

0.5

0.6

0.7

0.8

Pr
im

.m
ill

m
as

s
x
1

PPO
PID

0.6

0.7

0.8

0.9

1.0

A
ct

io
ns

(P
PO

)

Prim. mill speed u1
Sec. mill speed u2
Feed flow u4

0 200 400 600 800
Timestep [1 = 60s]

0.7

0.8

0.9

1.0

A
ct

io
ns

(P
ID

)

Prim. mill speed u1
Sec. mill speed u2
Feed flow u4

Fig. 8: Sensitivity analysis for PID and PPO. At time step 0
the ore is of nominal properties; at time step 400 ore hardness
is abruptly increased.

especially interesting considering the vast amount of domain
knowledge and hand-tuning that has gone into developing the
PID controller compared to the black-box approach of the PPO
agent. The emergent control strategy of the policy is more
flexible compared to the PID baseline, and e.g. lowers the
feed of ore so that the mills grind more efficiently.

An advantage of using reinforcement learning compared to
conventional techniques is the separation of what the goal is
from how to reach it. This makes it possible to leverage these
black-box approaches to find non-intuitive control strategies,
which also opens up the possibility to gain insights from a
trained policy to further develop the on-site process control.
However, when it comes to implementation; even if it is
shown in simulation that the RL agent is more profitable,
these methods still struggles with acceptance when facing a
conservative industry. To alleviate this problem, future work
includes studying how to combine the PID and the RL agent
in an industrial control system to make the control strategy
robust and be able to ensure a lowest level of performance.

Conventionally, RL has received most attention from appli-
cations in various games and toy problems. However, this work
has shown promising results of applying state-of-the-art RL

methods for industrial processes as well. Today, the amount of
data and simulation models are increasing in many industries.
In the future, we believe that RL may be a suitable technology
for increased productivity in many industrial processes.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) as
funded by the Knut and Alice Wallenberg Fundation. BI
Nordic and Optimation has also supplied valuable information
in the work leading up to this paper.

REFERENCES

[1] B. Wills, “Wills’ Mineral Processing Technology: An Introduction to
the Practical Aspects of Ore Treatment and Mineral Recovery,” 2011.

[2] K. J. Åström and T. Hägglund, PID controllers: theory, design, and
tuning. Instrument society of America Research Triangle Park, NC,
1995, vol. 2.

[3] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959.
[Online]. Available: http://dx.doi.org/10.1147/rd.33.0210

[4] G. Tesauro, “Temporal difference learning and td-gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/203330.203343

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, jan 2016.

[8] P. L. S.P.K. Spielberg, R.B Gopaluni, “Deep Reinforcement Learning
Approaches for Process Control,” 2017.

[9] OpenAI, “Learning dexterous in-hand manipulation,”
CoRR, vol. abs/1808.00177, 2018. [Online]. Available:
http://arxiv.org/abs/1808.00177

[10] Dassault Systmes, “Dymola.” [Online]. Available:
https://www.Dymola.com

[11] Modelica Association, “Modelica.” [Online]. Available:
https://www.modelica.org/

[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[13] Modelica Association, “Functional Mock-up Interface (FMI).” [Online].
Available: https://fmi-standard.org/

[14] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “OpenAI Baselines,”
https://github.com/openai/baselines, 2017.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[16] C. Andersson, J. Akesson, and C. Fuhrer, “PyFMI: A Python
Package for Simulation of Coupled Dynamic Models with the
Functional Mock-up Interface,” p. 40, 2016. [Online]. Available:
https://pypi.org/project/PyFMI/

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/


