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Rigid Body Cable for Virtual Environments

Martin Servin, and Claude Lacouese,

Abstract— The present paper addresses real-time simulation of Realism in VEs depends more strongly on tiebal preservation
cables for virtual environments. A faithful physical model based of invariants such as energy and momentum, for instance, than on
on constrained rigid bodies is introduced and discretized. The |gcg) accuracy of trajectories. This contrasts with theocacal
performance and stability of the numerical method are analyzed wisdom of numerical analysis where higher order methods are

in detail and found to meet the requirements of interactive f d. Indeed. hiah d hod I d b
heavy hoisting simulations. The physical model is well behaved avored. Indeed, higher order methods are usually moreesta

in the limit of infinite stiffness as well as in the elastic regime, and allow larger integration step, still providing very golocal

and the tuning parameters correspond directly to conventional accuracy. They usually do less work for given accuracy and
material constants. The integration scheme mixes the well known stability requirements. However, this is not necessarilg ff the
Stormer-Verlet method for the dynamics equations with the yser inputs are unpredictable or non-smooth, since higrdsro
linearly implicit Euler method for the constraint equations and  athods have to be restarted at each discontinuity. If anest

enables physical constraint relaxation and stabilization terms. . . .
The technique is shown to have superior numerical stability for maximum stability for the minimum work per step, as well

properties in comparison with either chain link systems, or spring @S @ predictable work load, a stable one-step, one-staga fix
and damper models. Experimental results are presented to show time-step method [14] is the best choice. In addition, higieo
that the method results in stable, real-time simulations. Stability integration methods do not necessarily guarantee globahds
persists for moderately large fixed integration step ofdt =1/60s, on the fluctuation of physical invariants. Unless one uses an
with hoisting loads of up to 10° times heavier than the elements of energy preserving or a symplectic method, the value of gnerg
the cable. Further numerical experiments validating the physical could increase or decrease monotonically over time. Howeve
model are also presented. L . .

variational integration methods, even the merely consistees

Index Terms— hoisting cable, interactive simulation, virtual en- such as the symplectic Euler scheme, do provide global bound

vironment, multibody system dynamics, elasticity, numerical ©On energy fluctuation and exactly preserve a discrete momen-
stability, numerical integration. tum [18]. For a mechanical system, a global bound on energy

fluctuations corresponds to a stability guarantee as well.

The focus of the present paper is the simulation of cabled imse
hoisting devices for VEs. These are used in simulator apijins
involving cranes of different types. Hoisting cables arewninade
of steel wires though chains are also used.

I. INTRODUCTION

Virtual environments (VE) are interactive visual simuteis en-
abling experiences that may be difficult, costly, dangerars
just impossible to realize in practice. VE-based systerasuged = Simulation of hoisting cables in VEs is subject to a number
extensively in commercial applications such as heavy nm&chiof slightly conflicting requirements, as listed i I-A. There
operator or surgeons training systems, for instance. VE®80 is no previously existing combination of physical model and
used in applications ranging from robotics, early-stageual numerical method fulfilling all these requirements, mdiivg
prototyping, and interactive entertainment, to name jusévd the new physical model and computational techniques pregen
Fast physics integrators are also useful in molecular dyce@mhnerein.

and other areas of basic scientific research.

Robust visual simulations of real-world phenomena at ader
tive rates requires both efficient numerical methods as a=ll

expressive physical modelsompatiblewith each other. There g requirements for simulation of hoisting cables in a VEBlap

is increasing demand both for increased speed, stabilitdh &ation are now listed. (iReal-time:the simulation should run in
efficiency, and for increased modeling expressiveness. real-time at a fixed rate of 60 Hz to integrate with standard VE
Rigid multibody systems dynamics [35] is a fundamental compapplications; (ii)Stability: variations of energy should be globally
nent of physics-based VEs. Both the literature and the soéw bounded, and the bound should be moderately small, of ther ord
offering for rigid multibody system has reached some levéf @ few percent; (iijHigh mass ratios:real hoisting cables
of maturity. There are many software packages available fé&n hold up loads more than 10,000 times their own weight;
simulating these systems. Techniques for more complexigadys (V) Physical elasticity:parametrization of elasticity parameters
systems, such as deformable solids, fluids, and granulariaist for stretching, bending and torsion should correspondctliréo
among many others, are actively developed. There are $evéwn physical data; (vVHigh stiffness:heavy hoisting cables
introductory textbooks [11] as well as monographs, researd’e extremely stiff with respect to stretching, bendingl asion;

A. Requirements for hoisting cable

papers, and review articles available. (vi) Scene interactionthe virtual cable should interact with other
objects usually found in VE scenes via non-penetrationtcaimss
Manuscript submitted June 13, 2007. generating dry frictional contacts, or explicit attachnseto rigid
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Requirement (i) can be met using a fixed integration step of
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At =1/60 s~ 16.67 ms, provided the computational time requiregirovided with an emphasis on models and methods which have
to perform a single step is considerably smaller thiatVariable been applied to interactive simulation.

time step or multiple smaller steps are possible but onhjhé t . . . .

total wall clockcomputational time is still withidt for all steps. A simulation modgl using finite el_ements .[10] based on the
Also, a higher order method might not be compatible with thgosserat model, - including stretc_hl_ng, torsional, and b@d.
discontinuities due to impacts or dry friction, and this iother energy [26], was found 1o be Eﬁ,",:'ent as long as cqqnectlon
reason to prefer one-step, single-stage, fixed-step mtiegr points are restricted at the extremities of the cable, thmiihg

strategies. Requirement (ii) can be met by using a variatior"teractivity.

integrator [18] and in view of requirement (i), a first ordeetimod | ymped element models couple simple physical bodies such as
should be chosen. When constraints are used, either a miygfht particles or rigid bodies with penalty forces or coastts.
strategy [20] or a purely variational strategy [21] can bedysas A rigid body model was used for the simulation of antenna b®om
long as it includes physical constraint relaxation andiBzaltion.  carried by space shuttles [7]. Systems of point masses ctethe
These integration methods of Lacoérs make it possible to with spring-damper forces have been reported, modelirteeit
meet requirement (iv) as well. In this paper we use a somewRgfetching [16], or both stretching and bending [23]. Natevever
simplified integration method which is not fully symplecfier  that particle models do not allow torsion which is needechia t
non-zero relaxation. For zero relaxation, our method reduo simulation of hoisting. Lumped point mass element models of
the SHAKE [14] integrator, which is symplectic. For non-aer Cosserat rods including stretching, bending and torsielaaticity
relaxation however, the proposed integrator is slightsiiative has been presented in Refs. [13], [31]. The bending ancbtoisi
and the additional terms provide constraint stabilizatiwith jncluded by augmenting the point mass system by assigniag th
strong linear stability. In effect the integrator givestgadly bound jntermediate segments a rotational state. This extendsyttem
energy, as required. Using a lumped element model basedidn rigegrees of freedom to that of a cable modeled by lumped rigid
bodies ensures compliance with requirement (vi). bodies and the equations to be integrated in time are phgcise
the Newton-Euler equations of motion. These papers prasent
validation of the models or present performance of high mass

equations of motion become particularly stiff and many of gpratios. There are also other strategies based on pointclgarti

methods widely used in computer graphics—spring-and-dmmr?nd _penal_ty fo“’?s proportior_la_l to displagements from eresice
models in particular—are ruled out because of stabilityidss configuration, either by defining restoring forces for voRjm

or for lack of a direct correspondence between simulation p%‘urface, or linear dis_tortion 28], [32], or using a globab-
rameters and physical properties. Since available VE fweories rotated shapg ma‘Fh'“g §trategy [24]. quels based on tgenal
largely build on efficient techniques for rigid body simidet, forces have'l|m|tat|ons with regards to §t|ﬁnes§, hp\{ve\Téns .
the requirements (i) and (vi) suggests that also cablesicHm can be alleviated to some degree by using an implicit nurakeric

modeled as lumped elements, using rigid body components. integrator [25], though the computational cost for thisimikr
to that of solving for a constrained system.

The large mass ratio requirement (iii) is specific to hostiable.
In combination with the requirement (v) of stiff elastigitthe

Lumped elements can be coupled using kinematic constraints
B. Previous work also. It is possible to simulate a perfectly rigid chain byn-co

necting rigid bodies with hinges of alternating rotatiorisafor
An overview of the dynamics and control of cranes is nahstance. Using standard methods of robotics [35], suchainch
presented here but is found in the literature [1]. When it esmcan be made perfectly rigid, and can be a good starting point
to simulation, most common crane models do not include afyr cable models of cranes [17]. The resulting cable is then
dynamics for the cable. In some applications the cable isidedl perfectly inelastic however, and cannot account for stiatg
as a single stiff spring of variable length or modeled by alein dynamics at all. If one uses a descriptor form of the consdai
kinematic constraint between the load and the hoistingcttra. equations of motion (also referred to as the Lagrange nfigitip
In more elaborate models [15], [19] the hoisting dynamics imethod), solving explicitly for the constraint forces, ekaon-
derived from a kinematic constraint acting simultaneowsiythe straint satisfaction can be relaxed. The descriptor foatrh is
crane construction, trolleys, and loads, maintaining &mitotal advantageous because of the unified treatment of nonholonom
length of the cable. We also extended such models in a previaonstraints and loop closure constraints. It has the sanearli
paper [29] to include resistance to cable twisting motionl arcomplexity as the recursive formulation of robotics forelam
cable elasticity. In none of the strategies cited aboveesctible chains provided sparsity is exploited in the linear systeshs
represented by a physical body and thus, these do not allbw fequations. In addition, the descriptor formulation allofes
scale interaction between the cable and other objects in &i&E constraint relaxation, which is not possible with recugsior
contacts, for instance. reduced coordinate methods of robotics. However, usintista
constraint stabilization techniques [3]-[5], [9], it is thpossible

There are few examples of real-time simulations for VEs lwwo to map the relaxation parameters to the physical paramdteis
ing dynamicscable models—presumably due to the difficult){S remedied with the technique f

in producing fast and stable simulations for these for large

stiffness—and no examples of hoistinghaeavyloads. Cables are Multibody systems subject to constraints are more expensiv
examples of deformable physical bodies. These can be digdulato simulate than those involving only explicit forces. Retce
using eitherfinite elementslumped elementor modal models. papers suggest that it is possible to achieve linear or even
Both lumped and finite element models have been used ltgarithmic complexity with enough parallelism [12], [27y
simulate cables. A short review of these applications is nogxploiting a level-of-detail strategy. A related methodwsing
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linear complexity in both number of elements and number &finding an optimal strategy for closed loops is ongoing aese
contacts is presented in Ref. [34]. and will be published elsewhere.

The difficulty in achieving stable real-time simulation limding a The rest of the paper is organized as follows. Essentiabnsti
dynamical cable model for hoisting of heavy weights (momnth of multibody dynamics in descriptor form are presented; i,
10-100 times the cable mass) is not covered in any of the citedhich contains the integration method §nll-B. Several alter-
work above, because of limitations on stiffness or mas®sati native models to simulate cables with relaxed constraimgs a
To our knowledge, there is no existing method that meets tpeesented ing Ill and experiments are performed on these to
requirements for hoisting cable in VEs listed§r-A. determine the most stable ones. Elements of elasticityryhfeo
cables are then presentedgihV. A preconditioned Gauss-Seidel
solver which uses grouping and splitting, is then preseimtéd/I.
Results of model validation and numerical stability expents
are presented i§ VII. Example applications are discussed in
3VIII, followed by a summary and conclusions §niX.

C. Our contributions

The contributions of this paper to the modeling and comparat
of cable dynamics for VEs are the following. We formulate
cable model as a chain of rigid bodies connected with a new typ
of angular constraint This constraint is formulated in terms of Il. MULTIBODY DYNAMICS
the joint center, as well as the bend and twist angles abo#t it
regularization technique is used to allow constraint rafiax and
to associate energy with constraint violation. In the ditiffit, the
new constraint is just one form afgid locking. However, the
configuration is designed to parametrize the degrees ofidrae . ) ; 7
as they appear in elasticity theory when the constraintléxeel. CONtains the generalized coordinate vectafs = (X, €;
This provides a direct connection to elasticity theory. Wihe WNerex; is the center of mass position vector of body and
chosen integration method, describedsinl-B, the relaxation i) 1S @ unit quaternion defining the orientation of the body.
parameters can be safely set to zero, corresponding to rigige velocities are represented by- (V(Tl)aV(Tz)v-wV(TN))Tv where
constraints. For nonzero relaxation, our experimentsiagdi the V(i) = (X[, @f;)" for body (i) and with the angular velocity vector
model, as the force-displacement relations match thosdigeel denoteé bW(i)- With these representation§ we have the relation
by the theory. Q(i) = T(Q(i))V(i), WhereT(q(i)) = diag(lgxg,T(em)), 13,3 is the

3 x 3 identity matrix and

The following notations are used in what follows. Unless ex-

plicitly stated all quantities are expressed in a globalrtiak

frame. The state vector of the multibody systeniNafigid bodies

is (q",v")T. The partitioned vectorg = (q(Tl>’q(T2>""'$(Tr\)1)r)T
(OX

We demonstrate the stability of the time stepping schentelbf

B at step sizeAt = 1/60 s and for mass ratios up to 1Cor & & -8
rigid body examples. Using a particle model that includesdirg Te) = 1 € € —& 1)
energies, the mass ratio can be arbitrarily high providesl th 2 & & &
bending energy is scaled adequately to suppress trankégha € & &

frequency oscillations. We argue that the bending anddoasi The body massm;y and inertia tensoi;), expressed in the
forces have a stabilizing effect on the system, and we ptesen inertial frame, are collected into the mass matid;, =
analysis of the mechanism at work here. diag(my) 13«3, 1(;)). The mass matrix of the entire system is then

It should be emphasized that the elastic forces describmbthe '\g = diagM),Mz),-.,M(y)). The body frame inertia téansTor is
) so the inertia tensor in the inertial framel@ = R<i>l(i)R(i),

included as explicit forces, but must be computed as regeldr I(n) - : ) )
constraints in order to achieve stability for the range opeeters WhereR ) =R (€) is the rotation matrix of bodyi).

covered. Integration can be made efficient by recognizirg tfrhe multibody system then satisfies the Newton-Euler equsti
strongly banded structure of the Schur complement—theixnatpf motion

involved in the linear equation to be solved at each time. stbp MV = fy + f, 2
remaining loop-closing constraints result in a few offgtaal ) .
blocks. The system is solved using a block preconditionegs&a Where f represents internal and external forces dpd= —Mv
Seidel solver, where the cable block is solved using a dirdétthe gyroscopic force. For each rigid body we can read off
fixed bandwidth solver, and the couplings between the caide #4"€ €quationM) Vi) = fw, + fi), where fu, = —Mgv(;). The
other objects are computed using Gauss-Seidel iteratihs. Newton-Euler equations are discretized and integratedddyze
computational performance of the simulation depends fiyem the dlscret.e trajectories at .f|xed. time interdal¥hese are then
the number of cable elements. These operations are corestru¢/Sed to drive the 3D graphics display.

to preserve the total linear and angular momentum and tha loc

deformation energy. A. Potentials and constraints

Although we focus on hoisting cable, the method we preseott iSThe jnternal interactions are modeled with potential feread

general use for the graphics community. Constraint regaon  inematic constraints. The potential energy of the system
can improve the numerical stability of any simulation ofteyss U(q.t) and the corresponding force fs= —TTdU /aq.

with stiff interactions, and the angular constraint in fatar

can be applied to any (Cartesian-coordinate) constraiséth 1An alternative approach is to make a time discretization olLthgrangian

articulated body solver. The constraint method itself candbe for the system and impose a discretized least action pricigumerical
integrators derived this way are referred to as variatiamtabrators and these

bra”_Ching and closed loops effic_iently and with linear C@RIY  can be constructed to preserve invariants of the system. 8ee[F8] for
provided a good sparse solver is used such as UMFPACK [38]ither details.
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For stiff systems, subject to strong elastic and dissipaftirces For finite regularizations > 0, the constraint forces are linear
varying significantly on comparatively short time scalgsjsi restorations of stiffness/k, directly proportional to the constraint
particularly difficult to find numerical integrators thateafast, violation. Strong damping can also be added by substitufing
stable, and faithful to the physics. As an alternative apphoto @+ B¢ in the right hand side of (7), with a damping coefficient
standard implicit integration, strong forces are here mred as f > 0. The effective damping coefficient for constraint ostitias
weakly relaxed kinematic constraints—a form of reguldiara is thenf3 /¢, and this damping also behaves nicelyeas 0 when
Mathematically, a constraint restricts the coordinatedigoon the discretization o§ll-B is used.

a surface@(g,t) = 0 in configuration space. That surface can

be time dependent. The corresponding constraint force hwhic

acts to keep the coordinategt) on the surfacep(q,t) =0, is B. Numerical integration

fo=JTA, whered = (d¢/dq)T(q) is the constraint Jacobian and , ) , .
A, the Lagrange multiplier. The constraint force acts in action We use a mix of the;ymplectlcand linearly implicit Euler
normal to the constraint surface. The constraint force auots methods for the numerical integration of the SY,Stem of B)—~(
A is here seen as dynamical variable and the equations oflmot}lt-f'e symplectic Euler method, also known adrSter-Verlet,

are no longer a set of ordinary differential equations (C),DEF"’J‘S good proper_ties with respect to_global pr_eservation_hef t
but instead, they form a set of differential algebraic et nvariants of physical systems [14]. This makes it a natchalice

(DAEs) with the inclusion of the algebraic equatigig,t) = 0. when symplecticity and preservation of global invariants af

Differentiating the constraintp(q,t) = 0 with respect to time higher importance than high local accuracy. SymplecticeEid

yields 0= ¢ — Jv-+ d,¢. Therefore, time-dependent constraintsused for the dynamics variable on the first line of the equatif

assuming thajv= 0, exert the instantaneous rate of wdkv = moltio? ). IThef fs_,econg ”nt? is the dkiscretize(_j us_ing the ih;“dpl
ATIv=—AT(d¢/dt) on the system. Euler formula of first order because that equation is assum

stiff. The same combination was used in the context of riead-t
For a system withN; constraints, we use the representatiogimulation of deformable bodies previously [30].

o= (0}, 0%, LC )T, where @ is the ith constraint with _ . o
dimenﬁi(])rfﬂ[i]], and(ﬁln\]/olves any number of bodies. The dimensioﬁymplecnc Euler discretization of the system (5)~(7) aaglar

of @ is thus din{g) = ¥;d; = dc. The dimension of the system eXpansionp(xy1) = ¢h+Atdnva:1 + O(At?) gives the following
ian i ; 'J] < : ; first order time stepping algorithm
Jacobian is then difd) = d; x 6N and the dimension of the

Lagrange multiplier is difd) = de. On+1 =0n + AT (On)Vnr1 (8)
Unless a coordinate reduction strategy is used, consiraire AnUn1 =bn, 9)
never exactly satisfied during numerical integration arelcitn- here

straint violation—the Euclidean nornig|—has a finite value and Mn =37

dynamics of its own. There are various well-known technigee An= Jy At 2 )7 (10)

stabilize constraint violation [3]-[5], [9]. Our choice @sphysical T AT . T T
constraint regularization and stabilization scheme [20jwhich @NdUni1 = (V,1,MtAq )", b= (Mvy + Aty —At™¢5y )" and
constraints are made explicitly compliant and thus alloteeds- the gyroscopic forcéy is included inf from here on. The matrix
cillate, and then strongly damped, using only physical teacided #n iS typically block sparse. The linear system of equationy ma
to the Lagrangian formulation. In this framework, consttaiare Pe€ Solved by first building the Schur complemeit: IMIT+

> -
replaced by stiff potentials but the DAE form of the system {8t €, solve for the Lagrange multiplier from

retained so the variables are splved for directly and discretized S\ — —AtLyv— IMLf —At‘zq) (11)

independently of the other variables. We may representysiers

potential as and then compute the velocity, 1 by direct substitution and
u(g) = %q,T(q)g—l(p(q) 3) finally update the positions. Observe that there is no sargul

for € =0, which can be made arbitrarily small, as long as the
for some real, non-negative, diagonal magjxof dimensiond. x  Jacobian matrix has full row rank. In addition, for finite > 0,
de, that has the role of inverse stiffness of the potential. ThAe linear system is well posed, and it is well conditionedbag
contribution to the generalized force of this potentialemkhe as the rows ofl andM are not badly scaled.
form

fo=—3Te 1o 4)
[1l. NUMERICAL STABILITY EXPERIMENTS OF
Note that if the artificial variablé is introduced as\ = —e1¢ PARTICLE-BASED CABLES
the generalized force can be writtdp = JTA and the equations
of motion are modified to the following DAE system The double pendulum is well-known to become numerically ill
conditioned for large mass ratios. We thus investigate husv t
q=T(q)Vv (5) N-link pendulum may be stabilized by adding supplementary
MV—JTA = fy + f (6) constraints between heavy or static components and lighter
eA(g,t) = —@(q,t). @ ements. An illustration of the configurations consideredhia

following numerical experiments is found in Fig. 1. Of cosirs
In this formulation, we may choose between making the caimdtr regularization can be applied to any of the different madehe
entirely stiff by settinge = 0 without any singularities in (5) main question we strive to answer here is whether stabily c
and (7) or working with finite stiffness. A stiff force repeggtation be increased by simultaneously relaxing constraints dcogighe
without the A would not have a well behaved limit &s— 0. lighter elements, and strengthening the constraints letwbe
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heavier ones, usually found at each end of a cable. The @tysic

idea behind this is to let constraints between elementsnofasi
mass take most of the heavy load. Numerically, this cornedpo
to equilibrating the scaling of the rows of the Schur commein
matrix, S.

The reason for performing numerical experiments to evaluat

stability is that we suspect that constraints nonlineaaity finite
precision arithmetic play determining roles, and neitlssués are
addressed satisfactorily with a linear stability analy$isr the
systems at hand, thé particles are indexed by The heavy load
has indexi = N and massMj = .# and the light elements have

indexi < N and massV; = m. The rest state separation length

between the particles are denoted dbyand the total length is

TABLE |
THE MAXIMUM MASS RATIO .# /M 1S DETERMINED FROM NUMERICAL
EXPERIMENTS OF THE DIFFERENT MODELS AND REGULARIZATION
PARAMETERS FOR STRETCHINGEg, AND SUPPLEMENTARY CONSTRAINT
& (BEING EITHER OF&n, £ AND &).

Model | & (M/N) | & (M/N) | (4 /M)max
a) 108 107
b) 108 10°° 107
c) 108 10°° 10°
c) 108 1012 107
c) 10718 1022 10%°
d) 1078 1079 107
e) 108 104 103
e) 1011 1079 107
e) 1018 1077 10%5

L = Nd. The models considered are illustrated in Fig. 1 and the

constraints for each case are as follows.
() Link chain (pair-wise distance constraints)

Q= (%O7"'a%N—1)T7
0=y =|di| —d;

(b) Link chain enforced by anassless cable constraif29] (a
total length preservation constraint)

Q= (%Oa“'v%N—la@'ﬂ)Ta
O:%i = |dl|_d7

N
O=@m=) [di| -L;
2

(c) Link chain withload enforcemen{an extra link for direct
support of the load)

?=(@os--» Pn_1,Pe)
0= q = |di| —d,
0=@e = [X(n)| = L;

where
o = || M x i1, ~d x [di +diya] de x ), (15)
% = (—dit1,dit1 —di,di), (16)

anddyx = dj x di;1 andd. = d;-dj;1. The dimension ofly; in
this case is x 9, i.e., it contains three & 3 block element
contributions to the full Jacobian.

We regularize the constraints, thus introducing elastiait the
system, and integrate the system using the integrator megben
Sec. II-B. A relaxation parameteg, &m, £e ande,, are introduced
for each constraint. A chain of 5 linkdN(= 5) is dropped from
rest in horizontal position with gravity set 8 = 10 m/s?>. The
light mass is set ton= 1 kg and the system is integrated with
time stepAt = 1/60 s. Instabilities are identified by large, or even
diverging, variations ing;. These variations are computed for
different mass ratios# /m. The results are displayed in Tab. I.
The dependence on the number of lifksn these experiments
is weak, and increasingly so with increasing mass ratio.

(d) Truncated link chain enforced bynaassless cable constraintas expected, the ordinary chain link model, model (a), bez®m

(the bottom most link being removed)

(P: (%Ov"'?th—Z(pm)Tv
Oz%i = |d||_d7

N
O=@gn=) |di| —L;
2

(e) Link chain withangular constraint(the chain link kept at
straight angles)

@ = (Quo, B> - Ain-2: Pa—2: Bin-1) 5
0=qy; =|di| —d,
0= @; = arctarf|di x diy1],di - diy1);
whered; = Xj;1) — X and X is the constant position of the

pendulum anchor point. We use the arctan2 function suchtieat
bend angleg;, ranges betweefr-, 11). The Jacobian blocks are

,d-
Jgii = —Jddji11= Idiill’ (12)
N d —d:
In = —'—') 13
n=3 (o T 3
T IR . dx|
‘]al = (Jau 7Jall+17‘]all+2) vgv (14)

T dZ4d2 d24d2

numerically unstable already for moderate mass ratigg,m =
100. This holds irrespective of whether the stretch stiftne;*,

is small or large. The same holds also for the chain link exfdr

by a massless cable (model (b)) and the same model with the bot
tom link truncated (model (d)). These extensialtsnotincrease
the numerical stability irrespectively of the stiffnesslues of
the massless cables. We conclude that replacing the dgranda
support of the load, from the stiff distance constraintghwai stiff
massless cable, simultaneously softening the distancsredants,

do not improve the numerical stability. On the other handliragl

a supplementary distance constraint between the heavyaodd
the supporting element directly, without coupling it to aol
the light masses—model (c)deesincrease stability. For this
case, the simulations are well behaved for mass ratios well
beyond practical use, up t& /m= 10, and using regularization
parameteige = 10722 m/N. Surprisingly, introducing an angular
constraint—as in model (e)—yields similar stability. Mode)

is stable for mass ratios up ta#/m = 10'°, with angular
regularization parametes, = 10~ rad/N. The importance of
this result lies in that the chain link system with reguladz
angular constraint is not only numerically stable but also a
practically useful modesince it allows deformations, vibrations,
and slacking, as might happen in response to other interecti
This contrasts with model (c) where bending deformatioms]lia
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) 5 @{5
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Fig. 1. lllustration of the link chain configurations considd. The red curve represents constraints supplementang feairwise distance constraints. The
purpose of the supplementary constraints are to increasaumerical stability of the system. These supplementary cainssrare massless cable, model
(b)-(d), and angular constraint, model (e).
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Fig. 2. The distribution ofgy and @, sampled over time for a chain link Fig. 4. The return map for a chain link system (model (a) in tliefigure)
system (model (a)). The strongest concentrations arg at0 andg, = 0. versus a chain link system with angular constraint (modelirfethe right
figure).

150

map is irregular andy(t) is nearly uncorrelated witigy (t +At),
showing evidence of high frequency, chaotic motion. For ehod
(e) however, the return map is an ellipse, indicating simple
harmonic motion of low frequency.

100

Finally, a spectral analysis of time series @f for model (e)
is shown in Fig. 5, for three values af, namely, 101,5-
Fig. 3. The distribution ofgy and ¢, sampled over time for a chain link 10 ‘?’,10 ! rad/N. For‘?a =10 r_ad/_N the system is essentially
system with angular constraint (model (e)). The magnitudgdé diminished €quivalent to the ordinary chain link system, model (a). The
and the distributions becomes bi-valued. spectral distributions clearly shows how the oscillatiood®s of
the system are suppressed and driven toward lower frequency
with decreasing value og, corresponding to increasing bending
with the stabilizing constraint, limiting interactions tithe rest resistance. In this simulation we used stretch stiffnegs=
of the scene. 10-% m/N and mass ratio# /m= 150. Both models are stable

in this case though model (a) is close to instability.
Three types of data are sampled and further analyzed in order g @ 4

to understand the mechanism behind the increased numerical o ) - .
stability. We plotg and g in Fig. 2 (model (a)) and 3 (model A schgmapc |Ilustrat|9n compoged from the stability da%a [
(e)) for the top most particle sampled in a simulation of afiwe ~ found in Fig. 6. What is happening here is that for the ordinar
system with mass ratio# /m= 100. The cable stretch parametefhain link, model (a), there is nothing that prevents transy
is g4 = 10® m/N and the bend parametey = 10~# rad/N. oscillations of the particles, at least to first order. Tramse
The system is integrated with time stép = 1/60 s over 30s displacement produce only second order Iongit_udinal di;epl
(6 turns). For the chain link system shown in Fig. 2, we hav&ent, and only second order response from the distanceraomst
strongest concentrations @ = 0 and ¢, = 0. The effect of the and the graV|t.at|qnaI pull. This system t.here.fore exhilbitgh
angular constraint, seen in Fig. 3 is clearly a large deeréas frequency oscillations in the transverse direction, whielvelop
the magnitude ofg, and a minor decrease . The bending INto numerical instabilitiesBy introducing bending deformation
resistance also makes the distributions¢gafand @, bi-valued. forces, short wave length oscillations are suppressed dwed t

This means that the cable in this case spends more time be®§tem is driven toward slow coherent long wavelength tidma
bent than straight. and is thereby stabilizedit should be emphasized that the

stabilizing bend force cannot be included as an explicitdon
The return mapsof @ are then shown in Fig. 4 for the modelthe system but must be computed as a regularized constaaint t
(a) and model (e). This is a plot ofy(t) versus g(t +At) have this effect. We expect that these results also appligid r
and is a form of discrete phase plot. For model (a), the retubody based cable.

92
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30

Fig. 5. The distribution functions of vibrational frequées for model (e)
obtained from Fourier analysis of the bend angle over timee Tésults
come from simulations with varying bending stiffness= 0.1 (red line),

mass. This isA?/12 for a quadratic cross-section.

Fig. 7. The three types of deformation for a rod: stretchingabgngthox,
twisting by an angleQ and bending with a radius of curvature

V. A RIGID BODY-BASED MODEL FOR CABLES

& = 0.005 (blue line),es = 10~* (black line). Clearly increasing bending The rigid-body cable model consists Nfrigid bodies connected

resistance diminishes the spectrum of vibrations.

Fig. 6. The regularized angular constraint introducesstasce to bending.
This suppresses short wave length oscillations (left figuredfavor for long
wave length oscillations (right figure). As a result there lasss high frequency
oscillation modes that may develop numerical instabilities.

IV. ELASTICITY THEORY FOR CABLES

We consider a cable that can be modeled using Gosserat

in a chain byNc = N —1 constraints as shown in Fig. 8. Inspired
by the results shown i§ Ill, a special angular constraintis
introduced. This constraint is designed to parametrizergsac
stretching, bending and torsion between pairs of bodiesvima
that is compatible with the elasticity theory §flV. When this
constraint is regularized, physics motivated elastiatintroduced

in the cable. The regularization parameters then correlpon
to stretching, bending, and torsional stiffnesses. It khde
emphasized that regularization of the conventional lockstr@int
based on direction cosines between body-fixed vectors hasate
drawbacks. First, it does not provide a correct measurehier t
amount of deformation at large angles and second, there is
ambiguity with several local minima that causes the forc#ipo

in direction at certain angles.

A. The angular constraints

The cable constraint vector ig = (chl],(ﬂE],....,gq,T\lc])T. Each

angular constrainfi] couples body(i) to body (i +1), see Fig. 8.

theory, based on elastic rods [2]. This implies that the width of

the cable is much smaller than the characteristic lengtle safa
deformations. The simplest constitutive model is chosemedy,
the Kirchhoff relations. This corresponds to Hooke’s linéaw
generalized to 3-dimensional curves. A general deformatoa
combination ofstretchingor tangential deformationgendingor

curvature deformations, artdrsion or twisting deformations, as
shown in Fig 7. The resulting stresses depend on the mate

parameters, namely, Young’s modul¥sand Poisson’s ratia.
The deformation energy for a cable of lengdtlis U = Us+ Uy +
U, where

Us = 3¢s0%, (17)
Up = 1cpk?, and (18)
Ut = %CtQZ7 (19)

anddx is the elongationk is the curvature = R™1, with radius
of curvatureR) and twist angl€Q. The constantss, ¢y, ¢; play the
role of stiffness coefficients and ae=YA/L, ¢, =YIaL and
¢ =VYla/2(1+ o)L, whereA is the cross-section area, ahdis
the area’s moment of inertia along the central axis norradlizy

For handling large deformation the constraint must be féated
directly in terms of anglespot direction cosines. We introduce
body fixed vectorslj) = u;, that represents the local cable axis
at bodyi, and body-fixed vectord; ;) = vy andd; ;1) = W(i;1)
that are mutually perpendicular th;) andd; ), respectively.

H’gle angular constraint is formulated as

® Pa,i+1) — P+
0= qm = (0 = 9[,] (20)
@ Q)

The first three-dimensional component of the constraintecor
sponds to aphericalor ball and socketonstraint, defined from
body-fixed attachment points; ;1) andpi,.1), expressed in the
inertial frame. In terms of body center of mags, and attachment
point r(; ;) relative to body center of mass we hapg;, 1) =

X(iy + I ij+1)- The spherical constraint prevents stretching of the
cable. The constrairfi, = 6 = 0 produces a hinge about the cable
axis—and results in bending resistance after regulacaaflhe
constraint@ = Q = 0 restricts rotation about the cable axis and
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Fig. 8. The angular constraint is formulated in terms of bodgdianchor points and direction vectors illustrated in thgsiri.

produces twist force. The bend and twist angles are commded Iaxs r?i,i+T1)
J(i,i+1) = — O1x3 ’Q‘(i) . (26)
65y = arctan(|dg) x dgi 1)1/ (dgi) - diir))] (21) O3 &

- - - 0]
Qj = arctan[|d i) ¥ deiivnl/ (i) - diiivn)] — 11/2+2mm, _ _ _ _
(22) The 3x3 matr|xr< i.j) s the skew-symmetric matrix corresponding
to vectorr ; j and
where the angles are computed usigct an2 such that the

angles ranges betweenr to  and i is the winding number. A = 1 [d +d,1 q 27)
The term—71/2 is due to that the vectord;;) andd; 1) are =" a2 | d, |~

perpendicular in the rest configuration. An alternative wag 1 . d21.

constraint may be constructed by settihg) = v anddj ;. 1) = By = “F i@ [|dx [+ |OT|] dy (28)
V(i+1), Which are co-aligned in the rest state, and dropping the x x

term —7m/2 in (22). This formulation has the drawback tha\t/vheredx = dg) x dgisg d(| ) X g (irny G = [dil, d, =

the twist angle,Q, measures also bending deformations. Whﬁ
there is no bending deformation®, measures the twist angle
exactly. But when the deformation is a combination of twigti
and bending, we get an extra contributiOn— Q + 6 resulting
in an extra contribution to the bend force.df >> ¢ this error
is negligible though. As we shall see, this alternative falation
has superior stability properties in the large mass-ragine.

x|y d =dj) - d(yp), andd =d, - d<,,,+1) Observe that the

sub-block Jacobiad j) has dimension & 6. The Jacobian has a
singularity atd, = 0. This singularity is avoided by substituting
d;l with (so+dx)*1 for some very small positive numbeg.

. . . . o o .. B. Th h [
We identify the Jacobian by differentiatigin combination with e Schur complement

the fact that G= ¢ = Jv. For a cable system the Jacobian has the
The first term in the Schur complemef,introduced in (11), for

form
a cable system is
Jan Jaz)
Jo2  J23 Ay By
J= - (23 | Cu Az By
. IM LT = _ (29)
IneNe) e Ca
ANy
where the sub-block Jacobians %re
with
Las Ty ~14T -1 qT
; A =JiinMi iy +diicnMe 1 Jii 30
Jin =] Owxs (:) ) (25) 1= 00N 0 M N 59
Ous %) Bi = i M 7 (31)
i1 = Y0+ M40+ 1i+1)
2The time derivative of the arctan functidit) = arctarx(t) /y(t)) is _
Ciij = ‘](i+1»i+1)M(ii1)‘]Eli-.i+l) (32)

[yx—xy], (24)

TRty? The dimension ofA;),Bj;),Cj; is 5x 5. The total dimension of

JM~1JT for a cable system isNg x 5N¢
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C. Modeling elasticity with regularized constraints A. Groups of constraints

We introduce elasticity in the system through constraigutar- We split the constraints into groups as

ization
_ 1 T 1 %(qa»qbv)
¢—U=20 (@& ¢q) (33) - ®(Gc. G, - --) -
With diagle) = diag(s[Tl],s[TZ],....,s[Ld) and g = B : ’
diag(és, &, &, &0, &) = diagicst st esteptot).  For a @ (%, Gb, e, Ad - - -)

constraint with two neighboring elemerdsand b having length

L andL, we have the following coefficients where gy, is the constraint vector for a group of bodiesl,...)

with no closed loops (e.g., a cable) aggl a group of constraints

= YA (34) and bodies d,d,...) with no common members to the previous
L@ +Lm) group, etc., The grouping of constraints and bodies areerhos
Yia so to form a minimum number of groups with tree-topology. In
Co= m (35) @ we collect constraints for interaction between the groups a
Yl loop-closing constraints.
= A 36) _ . .
@ 2(1+0)(L@) + L) ( The Jacobian has the form, after appropriate re-numbefiigeo
where we have made the transformation from curvakurel/R bodies, J
to bend angleéd as the measure for bending, for which tloeal a J
bend energy reads, = (1/2)c,68? when we assume locally small J= A (38)
bend angles such that ~ 6/(L) +L)). As we have a well -
defined measure for the bend angle, the method can handée larg RN

deformations. Although the linear force model is questim@an
this regime, it is straight forward to extend this model temes For the Schur complement matrix in (11), this means
valid for large bend angles, i.e., by replacipg= 6 with some )

. : Sua Sui
more general, non-linear, functiap(0).

S=IM LT a2 = ooow (39)
D. Contacts 5 S ) S
a g i

An impulse-based method was used to handle colliding auﬁ]ere&sz;MflJ;T—i—At*zsxéxy with x,y € a, B i 3 de-

continuous contacts in which penetrations were elimindigd
iterative projections. A simple Coulomb friction model walso
applied. To make the collision and contact models condistéh

constraint based interactions, the impulses are treatelisasete
forces, integrated over a time step. In production codegtmeact
impulses should be an integrated part of an iterative sobver g Solver strategy

introduced on the constraint level, in which case the prbé

computing the constraint forces from (10), extends to aalineGauss-Seidel iterations are performed at the constraiotipgr

notes the full Jacobian with all blocks zero besides the sub
Jacobianl, and &y is non-zero and equal to the identity matrix
if x=y. The Lagrange multiplier i3 = (AJ,A;,...,AF)T.

complementarity problem [20]. level. Each group of constraints is solved using a directhouht
taking advantage of the narrow main-diagonal bandwidticstre
VI. THE LINEAR SOLVER in each sub-system. The reason for choosing the GausslSeide

algorithm is that it is simple to implement and when the gyste
We assume now that there is a large number of bodies andhas topology close to tree-like with a few closing loops, it
corresponding large number of constraints. For structwitls converges rather rapidly. The solver algorithm for the cletep
tree-like topology, there exist methods for which the cotapu system is given in Algorithm 1.
tional time scales linearlyO(Nc), with the number of bodies and
constraints [8], [35]. But when the topology of the consitai
includes closed kinematic loops it is more difficult to finfi@ént
numerical algorithms, especially when contacts are censdl If
a direct matrix solver with dense matrix representationpisliad
to (11) the computational time scales @NS). Many systems
in VEs havealmost tree structure topology with only a few
closed loops because of constraints interconnecting niaaa t
two bodies, as is the case for theassless cable strated29]),
or because of contacts and collisions. A preconditioneds&au
Seidel algorithm that is easy to implement but a good com@®m A Model validation
for the case at hand is now presented. In particular, thisesad
shown to scale linearly with the number of cable elements ale begin with numerical experiments to validate the physica
to provide solutions that are accurate enough for the maiss rabehavior of the cable model. The theoretical relations betw
considered. applied forces and geometrical deformation can be found.m,

VIl. RESULTS

Numerical experiments were performed to validate the paysi
behavior of the proposed model, verify numerical stabilépd
test the performance. The numerical code is an implementati
of the rigid body cable model developed §nV and following
Algorithm 1.
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Algorithm 1 Time stepping the system 0.5
1: Accumulate external forces E/YA
2: Compute impulses and accumulate collision forces, make
position projections

: Accumulate gyroscopic force

: Compute and accumulate constraint forces: 0.3} 1

: loop {group a of constraint$

compute sub-block Jacobialy, and Schur complement

blocks Syq and Sy etc. 0.2

compute trial solutiom? from SygA9 = by

: end loop 0.1} .
9: loop {N; times or until convergenge

10:  loop {group a of constraint$

0.4} .

oo b w

© N

. ; _ n+1 0 - - - :

110 Build Lo = =Y p<a SupAg 0 0.1 0.2 0.3 0.4 AL 05
12: Build Uy = — Zﬁ>a SGB/\E
13: Solve Soror)\clrer_1 =bg +Lg +Uq Fig. 10. Results from stretching experiments for the givehadespatial
14.  end loop discretizations and materials. The theoretical curve ismgivy the solid line.
15: end loop
16: Accumulate constraint forcef, = J})\a C
17: Step velocities and positions using symplectic Euler t
18: Adapt the level of detail—merge/split bodies 200}
19: Feed the new state to the viewer

150}

1001

50
0 1 1 1 1
0 50 100 150 200 O

Fig. 11. Results from twisting experiments for the given sktspatial
discretizations and materials. The theoretical curve iemgivy the solid line.
The simulation develops instabilities in the regime of extredeéormations
producing to large tensions, e.g., at 2.4 turns of the 10 sl stble.

Fig. 9. Snapshots from numerical experiment with bending avidgting is displayed in Fig. 11. The total twist angle of the cableges
deformations. up to 233 radians, or approximately 37 turns, except for the
steel material. In the case of steel cable, the simulati@ores
unstable at large tensiom,= 6.8-10° Nm, and large rotations,

These experiments are conducted on a cable of lebgt.0 m, 15 radlgns or 2:4 tyrns and for dIVISIOH.WIth 24 segments due
to spurious oscillations. The stable region for steel range

. - "~ .
with rectangular cross section aréa= 10 ?, lumped into h}gher values for coarser segmentation, e.g., for divigith 12

N = 3,6,12 24 rigid segments and for the material parameters o . 17 . .
rubber, nylon and steel(= 2. 107, 2-1°, 2. 10MN/m?). The Segments it ranges up to=4.2-10° Nmand 96 radians rotation

. e o . or 15 turns. However, these large tensions do not occuralitye
Poisson ratio is set to.8. Snapshot from the twisting and bendln%l g L Aty
. - s an actual steel cable breaks or plasticizes under suaihsstr
experiments are found in Fig. 9.

Note that when the individual twist angle between two segsen
Results of the pull experiment are found in Fig. 10. Thisddlse exceeds & the winding number must be included in (22) for
theoretical relationf /YA= AL/L, where f is a force pulling in these experiments to be possible.

the ends and directed outward. We note that the curve cce:'scidl_he bend test is performed by apolving a bending toraue on the
well with theory and that there is no dependence on the dpatia P Y applying g torq

discretization, i.e., of number of rigid body elements. e nu- ends of the cable. The applied torque makes the cable form a

. . . circular arc with a well-defined curvature radius, see Fighat
merical experiment the force ranges up t Nand deformations . - oS
is estimated from the segments center of mass positions. The
up to 50% for rubber, nylon and steel.

relation between torque and curvature radius from the nigader
For the twist experiment we apply a torque on the ends of tlegperiment is compared to the theoretical relaticaY Ia/R. The
cable. The theoretical relation between twist angle andumis result is displayed Fig.12, with torque normalizedtyy=Y la/1.
T=0cQ=(Yla/2(1+ 0)L)Q. The result of the twist experiment Except for the most coarse discretization, wih= 3, the curves

Ref. [22]. The experiments argretching twisting and bending
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1 ‘ ‘ ‘ ‘ TABLE Il
Tt THE MAXIMAL STABLE MASS RATIO Q//[/m AND ITS DEPENDENCE ON
1
YOUNG'S MODULUS AND CROSSSECTION PARAMETERQ.
0.8
Y (GN/M?) T B (m?) [ Ne [ (A/M)max
200 107 24 10
06l s 200 10° 24 107
' S R 200 10* 24 108
I 200 10° 24 10*
oa v - 2000 10 24 10°
Ar S : — theory | 1 200 6 10
' o Ng=24 200 6 102
o Ng=12 200 103 6 103
0.2f N o. N.=6 200 107 6 10*
VO _ (ﬁ
v N.=3 2000 10 6 1
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 Rl 1

solver for the entire system. The conclusion is that the limit
Fig. 12. Results from bending experiments for the given sespstial //{/m: 10° (A /m=10° f.0r thre? iterations) can pe 'nlcreaSEd
discretizations. The theoretical curve is given by thedstilie. Torque is considerably further by using a direct solver or an itemtelver

normalized by normalized by; = Y|A/1 For the case of discretization of with better convergence, e.g., a Conjugate gradient solver
the cable into three segments the error is considerabletthervaise the values

are in close agreement with theory.

C. Computational performance

fit the theory well, and increasingly so with increasing nembf

3 The computational cost of cable simulation using the method
segments, from 10 %0\¢ = 6) to 2.5 % (c = 24) deviation.

presented in this paper is now investigated. The hardwaed us
in these experiments consists of a Intel Pentium M 1.7 GHz
_ - processor and 512 MB RAM. Timing results are shown in Fig. 13,
B. Numerical stability for 3 iterations, which by observations is enough to givéitits

for a cable attached to the world and supporting a heavy load

Numerical stability_ is investigated by simulating the rootiof a ¢ .# /m=100. The figure shows the time spent for computing
light cable supporting a heavy mass. One end segment of e C3y,¢ ¢onstraint forces and the time for some of the subpresess

is anchored to the world by a spherical_ constraint, and therpt ;. doing that, namely, building the Schur complement blocks
heavy segment, is let to fall under gravity. The end segmarts solving the diagonal matrix equation for the first step in the

given the mass/, whereas all other segments are of M&sS ,,55-Sejdel iterations (the preconditioning step) aadithe for
The cable is modeled using the regularized angular constéi y,4 jterations. Observe that the computational cost scaleghly

§ V-A. Constraint forces are computed via the Schur complémeg, e,y with the number of cable elements. This holds farger
method of (11). Stability is tested by giving the system @eéar opaing a5 well. Thus, spending/@D s on cable computations

disturbance—moving the anchor position. This induces plemad per time step, with this particular hardware, enables tigze-
motion with large amplitude. Instability is identified asrd@  gjmyation of cables with more than 100 segments. The itemat
amplitude oscillations of the light segments. The depeagenge minor contribution to the computational time and thensa
between mass ratio, cable stiffness (the Young's modvlasd performance is achieved for mass ratio/m= 10° with 20
cross-section parametf) and numerical stability is displayed injierations and 50 elements. This number can be increastefur
Table 1. The paramete is defined as = cs/cp = A/la @nd  py ging faster hardware and further code optimization. By
depends on the cross-section area and shape of the cable (fghying adaptive resolution it is possible to keep the nemb
quadratic cross sectioff = 12/A). Outside this regime, larger ¢ gjements at a minimum and increasing the resolution only
mass ratios or smaller bending resistance (controlleythe 551y when required. The drawback of adaptive resoluion

system becomes numerically unstable and the simulatioakbre, ¢ the computational time required at each time step warie
down. The numbers in Table Il were obtained using the altema unpredictably.

definition of the twist angle ii§ V-A. With the ordinary definition,

the maximum mass ratio is a factor 10 smaller. The maximum

mass ratio increases with the bending and twist elastitityhe p_ Limitations of the approach

numerical experiments, we use the time step=1/60 s and

gravity is set tog =10 m/s?. Stable simulation with mass ratiosIn this paper we use a simple impulse based collision mod#l wi
up to .#/m=10° are achieved for 20 Gauss-Seidel iterationsCoulomb friction. This approach can be used for handlingamn
The required number of iterations depends foremost on thetween the load and other heavy or static objects and skacki
mass ratio and stays relatively constant during simulatibm cable with self-contact or contact with environment. Thethrod
hoisting system. Moderate mass ratios up.#6/m= 10° are presented here scales linearly with the number of cable setgm
stable using only 3 iterations. Using the iterative soh@mrlarge But when the cable is under large tension a more refined and
mass ratios with too few iterations results in a large ereqg,, robust method is needed. This is likely to introduce a depeog
large separation between the top two elements. In a MATLA8n the number of contacts. Preliminary investigation sstge
implementation of the system, however, we achieve masgsratthat none of the standard techniques for rigid body contsct i
of .# /m= 10 for the given time steg\t = 1/60 using adirect suitable for handling frictional contact in real-time witiable
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Fig. 13. Timing results with 3 iterations. 'c-force’ is thetdab time for Fig. 14. A demonstration system representing a gantry crane.
computing the constraint force and scales linearly with esyssize. The
computation of the Schur complement matrix has the worst scaling
parallel from trolley and through the hook block and back to

result. The fact that the cable elements have very thin gtrgmetro”ey such that the hook is suspended to slide freely albreg

. . S . massless cables. The free sliding represents frictionds=els
complicates the contact issue further. This issue is thasfdor .

. S L . on the hook-block over which the cable may run. The user may
future investigations. For the application context heheré is

minimal contact interaction with the environment interactively vary the length of the massless cables, psérw
) correlated or individually, and thereby raise, lower ot the

We have found that cable elasticity introduced as a reqddri hook; load (yellow)—a heavy block of masMiyaq; rigid body
constraint improves the numerical stability and enablesting cable (gray)—rigid blocks of masd/;, all connected pairwise
simulation with large mass ratios. For large mass ratiogelrer, using the angular constraint with parameteysy, ¢.. The heavy
the required elasticity may be stiffer than for the actudblea hook and load are included as the top and bottom element®of th
material. A solution to this is to make the elasticity dependhe cable, as this drastically increases the stability. Thesnudghe
current load force such that the cable is stabilized by aficéatly ~ intermediate cable elementsNaple

large stiffness when it is under very large tension and esdaw
normal material stiffness when the load force drops, e.gemthe
load is resting, allowing the cable to slack. Likeways, bl be
possible to avoid unwanted bending resistance when the talsl
a few contacts by reducing the stiffness at the active linkst
of the high-frequency modes in the cable will still be sugges
by the bending resistance in the other links.

Gravity is set toG = 10 m/s?>. The system is integrated with
time stepAt = 1/60 s using the preconditioned block Gauss-
Seidel solver o VI with 3 iterations and 10 collision iterations.
The cable parameters acg = 10’ N/m,cs=5-10° N/m,cp, =

10> N/rad,¢c = 10®> N/rad and mass ratioMipad/Mcable =
300/0.3 = 1000. For the prototype implementation of the full
crane system however, we have not achieved similar mags rati
The presented method is associated with numerical digsipatstability as reported i§ VII-B. In order to reach mass ratios of
of the cabledeformation The effect on the swinging motion of Mipad/Mcable = 10%, the system was stabilized by rescaling the
hoisting systems is marginal. The nature of this dissipatiod inertia tensor of the cable elements by a factor 20. Fig. bivsh
how it compares to other numerical integrators is discusseda snapshot of the simulation. When the load rests on the droun
more detail in Ref. [30]. the cable slacks, as displayed in Fig. 15, the geometricgbesh
of the cable depends on the material elasticity parameters.

VIII. A PPLICATION TO VIRTUAL ENVIRONMENTS Figure 16 displays how the energy evolves as a function of tim
for the crane model system with steel cable and set to swgngin

A visual interactive real-time simulation was built as atpro motion initially. The total energy drops by 20% during these
type application for testing the developed method. The pgek s and most of this during the initial 5 s. The energy loss istdue
Colosseum306], an authoring framework for VEs, was usethumerical dissipation of the cabtieformationand has marginal
for the graphics framework, and this was supplemented with @ffect on the swinging motion of the load. The nature of this
implementation of the rigid body cable model developed M gjssipation and how it compares to other numerical integsas
and numerical integration according to Algorithm 1. discussed in more detail in Ref. [30].

A gantry crane model was built as shown in Fig. 14, and

composed as follows. Atatic crane constructior{red), and a IX. SUMMARY AND CONCLUSIONS

trolley (blue), attached to the crane beam by a lock constraint.

The user interactively controls the trolley position aldhg beam. We have found that simulating hoisting cable for VEs as rigid
The trolley mass isMyoley; hook (blue and black)—a heavy body elements connected by regularized constraints ehdble
block with a hook, all modeled as a single rigid body wittstable simulation at large mass ratios and large time stags a
box geometry and mashlhok; massless cablglight gray)— ii) physics based modeling of deformation forces with simarati
two massless cables [29], with stiffness coefficiept runs in parameters in direct relation to conventional materiabpeaters.
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which tends to produce fluctuating torsional forces for anasit
straight cable. The numerical stability is investigated are find

that the stability regime ranges up to mass ratiggm= 10° at

time stepsAt = 1/60 s. Timing analysis show linear complexity

in system size and that cables with 50-100 elements can be
simulated in real-timeft = 1/60 s) with a hardware with modest
computational speed.

The developed method meets the requirements for simulafion
hoisting cable in VEs, listed ifi I-A. Further experimentation and
development should be done to further increase the rolasare
interactivity. The experiments shows numerical instéibgi when
the cable is under large tensions and influenced by contguou
and colliding contact. And for the simulation of the entirarme
system in§ VIII, we were forced to stabilize the system by
rescaling the inertia tensor of the cable elements by a rf&fo

Fig. ]_.5. The load is resting on th(_e _ground. The ggometricabesh}i the in order to reach mass ratios Mload/Mcable: 10*. This defiance
slacking cable depends on the elasticity of the material.
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is, presumably, resolved by employing a less brute impudsess

or by treating contacts as a linear complementarity problem

a MATLAB implementation of the system, however, we achieve
mass ratios of# /m= 10° for the given time stepgit = 1/60
using adirect solverfor the entire system. It seems possible
to significantly improve the robustness of the current sysby
using a direct solver or an iterative solver that convergesem
quickly, e.g., a conjugate gradient solver. We will consithés

in future publications.
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Fig. 16.
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The key is theangular constraintintroduced ir§ V, that is natural physical modeling for virtual environments.

for handling deformation energies based on elasticity thelkhe
model can handle large deformations, e.g., twist anglesesling

2. We were led to this model from numerical experiments with
a particle based cable model that showed that the inclusion o
bending resistance to the system, as a regularized contstrd!
suppresses transverse high frequency oscillations anehbiyne
increases the numerical stability. In numerical experitnemnith
particle based cable we achieve numerically stable sinouladf
hoisting with mass ratios well above practical use, e.gh \aad
mass 18° more massive than cable particles, at large time steﬁé
At =1/60 s using symplectic-implicit mixed integration strategy.
This stabilizing effect cannot be achieved using explighding
forces. We demonstrate that efficient time integration cfteys [4]
including the rigid body based cable model can be achievbid. T
is exemplified with an implementation where the constraintés (5]
are computed using a block Gauss-Seidel algorithm thazesil
the sparse banded structure of the cable subsystem. In imaMer[G]
experiments we demonstrate validity of the model in congoeri

to theoretical relations between geometrical deformatiom
force. Alternative measures for the bending and torsion lwan 7]
found in Refs. [13] and [31] — these could also form the bamis f
angular constraints and deformation energy. An importaptoe

(2]
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