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Abstract

The nonsmooth discrete element method (NDEM) have the potential of high
computational efficiency for rapid exploration of large design space of systems
for processing and transportation of mineral ore. We present parametriza-
tion, verification and validation of a simulation model based on NDEM for
iron ore green pellet flow in balling circuits. Simulations are compared with
camera based measurements of individual pellet motion as well as bulk be-
haviour of pellets on conveyors and in rotating balling drum. It is shown that
the NDEM simulation model is applicable for the purpose of analysis, design
and control of iron ore pelletizing systems. The sensitivity to model and
simulation parameters is investigated. It is found that: the errors associated
with large time-step integration do not cause statistically significant errors
to the bulk behaviour; rolling resistance is a necessary model component;
and the outlet flow from the drum is sensitive to fine material adhering to
the outlet creating a thick coating that narrows the outlet gaps.

Keywords: granular materials; discrete element method; validation; iron
ore pellets; pelletizing; balling circuit
2010 MSC: 00-01, 99-00

1. Introduction

Numerical simulation of granular materials is an important tool both for
advancing the fundamental understanding of many natural phenomena in

Preprint submitted to Powder Technology May 26, 2015



material science and geophysics, and for the design, control and optimiza-
tion of systems for processing, manufacturing, storage and transportation of
granular materials, e.g., grains, corn, pharmaceuticals pills, pellets, soil and
minerals. In the mineral processing industry, experiments and in situ mea-
surements are many times prohibitive for practical and economical reasons,
and in these cases, modeling and simulation play an essential role in find-
ing deeper understanding of the process, making radical improvements and
innovating entirely new solutions.

Parametrization, verification and validation are critical steps for making
sure that the simulation model provides a sufficiently accurate representation
of the real system. By parametrization we mean the process of identifying nu-
merical values of the model parameters from observations of the real system.
By the verification it is established that the computer simulation reproduces
the mathematical model. A failure indicates either a flaw in the numerical
method or in the software implementation. Validation is testing the agree-
ment between the simulated model and the real system. This determines the
predictive power of the simulated model to some given degree of accuracy
of a selected set of observables. A significant disagreement implies that the
model is not useful for describing the systems behaviour.

We consider the use of large-scale granular matter simulation based on the
nonsmooth discrete element method (NDEM) [1, 2] for the design of balling
drum outlets [3] used in iron ore pelletizing [4]. The NDEM have the potential
of high computational efficiency compared to conventional (smooth) DEM.
This enables rapid exploration of the design space. The NDEM is on the
other hand not as well tested as conventional DEM for industry applications
and scarcely put to validation tests. In this paper we present procedure and
results for parametrization of the properties of green iron ore pellets and
validation of the macroscopic bulk behaviour by comparing the numerical
simulations with camera based measurements. The measurements include
tracking of individual iron ore green pellets and characterization of bulk
behaviour in an industrial pelletizing system. The goal is to establish the
predictive power of NDEM simulations for the purpose of design and control
of pelletizing systems, including the sensitivity of the flow characteristics
with respect to certain model parameters. The NDEM method in [2] is also
extended to include a constraint based rolling resistance which is shown to
be crucial for the material distribution of iron ore green pellets.
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2. Background

2.1. Iron ore pelletizing

The iron ore pelletizing process usually has the following main stages
[4]. Comminuted fine size ore, fines, is first mixed with binder material.
Agglomeration into soft ore balls, green ore pellets, occur in balling circuits
where fines, water and undersized pellets are fed into rotating drums. In the
drum flow the green pellets are mixed with fine material and grow by layering
and coalescence. New pellets are formed by nucleation. The drum is slightly
inclined to produce an axial flow. The green pellets leave the drum through
an outlet and are size distributed on a roller sieve, see Fig. 1. Under-sized
particles are fed back to the drum. Over-sized pellets are crushed and mixed
with the fines. On-sized pellets (9 to 16 mm in diameter) are conveyed
to the induration furnace where they form hard pellets by oxidation and
sintering. After this stage the cooled pellets are ready for transportion to
distant steelmills. A typical iron ore balling circuit may have drum diameter
ranging between 3− 5 m and 8− 10 m long and circulate about 400− 1200
ton/h producing 100− 300 ton/h on-size pellets.

The mathematical modeling of granulation systems was reviewed in Ref. [5].
A smooth DEM simulation model of iron ore granules in a continuous drum
mixer was developed in [6] to analyse the flow dependence on drum design
(angle and length). In [3] a methodology based on the nonsmooth discrete
element method (NDEM) was presented for simulation based design of drum
outlets, for even flow profile of ore green pellets on to the roller sieve. Fig. 1
show an image from outlet analysis using NDEM simulation. The simulation
demonstrate that the original outlet design was far from optimal as the ma-
terial distribution on the wide-belt conveyor is inhomogeneous. As an effect,
the roller sieve cannot be used efficiently. Furthermore, the green pellets
may be damaged by the pressure from building a too thick pellet bed. A
simulation model for the analysis and design of the balling process must be
able to predict the flow and distribution of material both inside the balling
drum and on the conveyor belt below the outlet.

2.2. Nonsmooth discrete element methods

In the conventional discrete element method (DEM) the granules are
modeled as rigid bodies interacting by contact forces modeled as linear or
non-linear damped springs. We refer to this as smooth DEM as it involves
the numerical integration of smooth (but usually stiff) ordinary differential
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equations. The computational aspects of smooth DEM is covered in Ref. [7].
In the nonsmooth DEM [8, 9, 1], impacts and frictional stick-slip transitions
are considered as instantaneous events making the velocities discontinuous
in time. The contact forces and impulses are modeled in terms of kine-
matic constraints and complementarity conditions between constraint forces
and contact velocities, e.g., by the Signorini-Coulomb law for unilateral non-
penetration and dry friction. The contact network become strongly coupled
and any dynamic event may propagate through the system instantaneously.
The benefit of nonsmooth DEM is that it allows integration with much larger
simulation step-size than for smooth DEM and is thus potentially faster.

We use a regularized version of nonsmooth DEM referred to as semi-

smooth DEM in Ref. [2], which combines the numerical stability at large
step-size with the possibility of modeling the viscoelastic nature of the contact
forces and mapping the simulation parameters to the conventional material
parameters. The constrained equations of motion, between impacts, are

Mv̇+ Ṁv = fext +GT
nλn +GT

t λt (1)

0 ≤ εnλn + gn(x) ⊥ λn ≥ 0 (2)

γtλt +Gt(x)v = 0 (3)
∣
∣λ

(α)
t

∣
∣ ≤ µ

∣
∣G(α)T

n λ
(α)
n

∣
∣ (4)

where x,v and fext are global vectors of position, velocity and external force,
andM is the system mass matrix. Rotational degrees of freedom are included
such that v and fext are vectors of dimension 6Np including components of
angular velocity and torque. The constraint forces for maintaining the non-
penetration constraint and Coulomb friction are GT

nλn and GT
t λt, where

λn and λt are the Lagrange multipliers for the normal (n) and tangential
(t) directions of each contact plane. The corresponding contact Jacobians
are Gn and Gt. In absence of regularization the constraints express non-
penetration, δ ≥ 0, where δ is the gap function, and no-slip, Gtv = 0. The
constraints can be regarded as the limit of infinitely strong potentials and
dissipation functions Uε(x) = 1

2ε
gTg and Rγ(x, ẋ) = 1

2γ
ḡT ḡ with ε, γ → 0

[10, 12]. Eq. (2) and (3) are the regularized versions of non-penetration and
no-slip, with regularization parameters εn and γt. We use finite regularization
and map the non-penetration constraint, for each contact α with gap function
δ(α), to the Hertz contact force law, f(α) = knδ

3/2
(α) , by defining g

(α)
n ≡ δeH(α) with

exponent eH = 5/4. This maps the regularization parameter to the Hertz
spring coefficient and conventional material parameters as εn = eH/kn =
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3eH(1 − ν2)/E
√
r∗, where E is the Young’s modulus, ν the Poisson ratio

and r∗ is the effective contact radius. Similarly, a dissipation term, γnGnv,
may also be added to the normal constraint multiplier condition (2). This
produce a viscous damping force term, fd = knc

√
δδ̇, in Hertz contact law

with the damping parameter defined as γn = e2
H
/knc, which relates it also to

the physical viscosity constant η by c = 4(1− ν2)(1− 2ν)η/15Eν2 [11]. See
Ref. [2] for details on the mapping of regulization parameters. The friction

constraint impose zero tangential contact velocity, G
(α)
t v(α) = 0, unless the

tangent force reach the friction bounds set by the Coulomb law, Eq. (4). The

tangent plane is spanned with two orthogonal vectors t
(α)
1 and t

(α)
2 resulting in

friction multiplier having two components λ
(α)
t = [λ

(α)
t1 λ

(α)
t2 ]T. When impacts

occur, the equations of motion are supplemented by the Newton impact law,
G(α)

n v+ = −eG(α)
n v−, with coefficient of restitution e.

For numerical time integration we use the SPOOK stepper [12] derived
from discrete variational principle for the augmented system (x,v,λ, λ̇).
Stepping the system position and velocity, (xi,vi) → (xi+1,vi+1), from time
ti to ti+1 = ti +∆t involve solving a mixed linear complementarity problem
(MLCP) [13] of the form

Hz+ b = wl −wu

0 ≤ z− l ⊥ wl ≥ 0

0 ≤ u− z ⊥ wu ≥ 0

(5)

where

H =





M −GT
n −GT

t

Gn Σn 0
Gt 0 Σt



 , z =





vi+1

λn,i+1

λt,i+1



 , b =





−Mvi −∆tM−1fext
4
∆t
Υngn −ΥnGnvi

0





(6)
and the solution vector z contains the new velocities and the Lagrange multi-
pliers λn and λt. For notational convenience, a factor ∆t has been absorbed
in the multipliers such that the constraint force readsGTλ/∆t. The diagonal
matrices Σn, Σt and Υn are given in Appendix A in terms of the viscoelastic
material parameters. The upper and lower limits, u and l in Eq. (6), follow

from Signorini-Coulomb law including 0 ≤ λ
(α)
n and |λ(α)

t | ≤ µs|G(α)T
n λ(α)

n |
with the friction coefficient µs. wl and wu are temporary slack variables.
Impacts are treated post facto. After stepping the velocities and positions
an impact stage follows. This include solving a MLCP similar to Eq. (5)
but with the Newton impact law, G(α)

n v+ = −eG(α)
n v−, replacing the normal
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constraints for the contacts with normal velocity larger than an impact ve-
locity threshold vimp. The remaining constraints are maintained by imposing
Gv+ = 0.

We use a projected Gauss-Seidel (PGS) algorithm, as described in Ref. [2]
and summarized in Appendix A, for solving the MLCP (5). The method is
implemented in the software AgX Dynamics [14]. The time-step ∆t should
be chosen

∆t . min(ǫd/vn,
√

2ǫd/g) (7)

for contact error threshold ǫ, where vn is the characteristic relative normal
contact velocity and gacc = 9.82 m/s2 is the gravitational acceleration. We
set the impact velocity threshold to vimp = ǫd/∆t. The required number of
PGS iterations depend on the size and configuration of the contact network.
For bulk systems a rough rule is Nit = 0.1 × n/ǫ, where n is the length of
the contact network (number of contacts) in the direction of gravity [2]. The
computational time tcomp per simulated time treal is

tcomp =
Ω

h
treal (8)

where Ω = KcpuNitαpNp/Ncpu, αp is the average number of contacts per
particle, Ncpu the number of cpu cores and Kcpu the average computational
time for a single PGS update. We measure Kcpu ≈ 1−6 s with a desktop
computer with Intel(R) Core(TM) Xeon X5690, 3.46 GHz, 48 GB RAM on
a Linux 64 bit system. The PGS implementation parallelizes well up to 8
cores but saturates beyond that.

2.3. Rolling resistance constraint

There are several physical causes for rolling resistance, see, e.g., Ref. [15].
These include the effect of particle shape deviating from a spherical ideal-
ization, plastic or viscous deformations of the object itself or in the contact
interface, frictional slippage in the contact interface and surface adhesion.
In the idealization of rigid bodies, rolling resistance may be modeled as a
torque, τ r, on the contacting bodies counteracting their relative rolling mo-
tion. Similarly to Coulomb friction, the rolling resistance torque is limited
in magnitude by |τ r| ≤ µrr

∗
ab|fn|, where 0 ≤ µr is the rolling resistance coef-

ficient, r∗ab = rarb/(ra + rb) is the effective contact radius of two contacting
geometries a and b. When the source of rolling resistance is purely geometric
the rolling resistance coefficient can be derived from the shape. For octagon
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shape µr = 0.1 [16]. Rolling resistance is important to include for correct
prediction of single particle motion as well as for the collective behaviour
of granular materials, e.g., formation of stable piles with accurate angle of
repose, stress and strain relationships in dense packings and the shear rate in
flowing systems. An overview of the conventional smooth DEM models and
their agreement with experiments is found in Ref. [15]. Some rolling resis-
tance models in smooth DEM work well for quasi-static systems while poorly
for flowing systems and vice versa. In nonsmooth DEM, where the contact
forces and dynamics are computed implicitly, e.g., as kinematic constraints,
a single model can be used for both regimes. Only a few models of rolling
resistance for nonsmooth DEM can be found in literature [17, 18, 19] and no
reported results concerning parametrization and validation with experimen-
tal data.

We extend the nonsmooth DEM model by including additional rolling
resistance constrains in Eq. (5) of the form Grv = 0 and constraint force
(torque) τ r = GT

r λr/h. Consider a contact α between two granules, a and
b, with linear and angular velocity vectors denoted u and ω. Let the con-
tact plane have unit normal n and orthonormal tangents t1 and t2. This is
illustrated in Fig. 2. The condition for zero relative rolling velocity can be
expressed

03×1 =





tT1 (ωa − ωb)
tT2 (ωa − ωb)
nT(ωa − ωb)



 =





01×3 tT1 01×3 −tT1
01×3 tT2 01×3 −tT2
01×3 nT 01×3 −nT





︸ ︷︷ ︸

Gr







ua

ωa

ub

ωb







(9)

from which we identify the constraint Jacobian for rolling resistance. By the
geometry of the Jacobian it is clear that this constraint force is indeed a
torque. We denote the components of the multiplier λr = (λrt1 , λrt2 , λrn)

T .
The third constraint 0 = nT(ωa − ωb) oppose relative twisting and produce
torsional force. We linearize the limits on the torque, |τ r| ≤ µrr

∗
ab|fn|, and

obtain additional multiplier conditions to Eq. (5)

−µrr
∗
abλn ≤ λrt1 ≤ µrr

∗
abλn (10)

−µrr
∗
abλn ≤ λrt2 ≤ µrr

∗
abλn (11)

−αrnµsr
∗
abλn ≤ λrn ≤ αrnµsr

∗
abλn (12)

where αrn is a factor depending on shape with value zero for perfect spheres
and up to 1 for shapes with contact surface area as for a cube. A regulariza-
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tion term Σr is added to the new diagonal block in H, see Appendix A, and
the corresponding components in b are set to zero.

3. Identification of iron ore green pellet parameters

The identified parameters for onsize iron ore green pellets are summarized
in Table 1.

3.1. Mass and geometry

Iron ore green pellet have mass density of about 3700 kg/m3. The shape
is approximately spherical with diameter ranging between 9 and 16 mm and
shape factor 1 in the range 0.7− 0.95.

3.2. Elasticity

The elasticity and strength of iron ore green pellets was investigated
by Forsmo et al [20]. Assuming a relation between pressure force fn and
compression δ of the form of Hertz contact law, fn = knδ

3/2, we iden-
tify kn = (0.35 ± 0.05) × 106, which translates to Young’s modulus E =
3kn(1 − ν2)/

√
2d = 6.2 ± 0.7 MPa , see Fig. 3. We assume Poisson ratio

ν = 0.25.

3.3. Restitution

The coefficient of restitution is identified from drop tests where ore green
pellets impact on a surface coated with a 10 mm thick layer of ore material
packed to similar density as of ore green pellets, see Fig. 4. The green pellet
was released from height 0.45 m and bounces to a height of 12 ± 4 mm,
which implies an impact velocity v− = 2.97 m/s and a post impact velocity
v+ = 0.49 ± 0.08 m/s. The coefficient of restitution e = −v+/v− is thus
found to be e = 0.18± 0.04.

3.4. Surface friction

The friction coefficient, µs, between two ore surfaces is identified by mea-
suring the required force f for pulling a block of packed ore over a surface
of packed ore, see Fig. 5. From the Coulomb law, f = µsmgacc, we find
µs = 0.91± 0.04

1The shape factor of a cross-section of area A and perimeter length L is 4πA/L2. A
sphere has shape factor 1 and a square has roughly 0.78.
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3.5. Rolling resistance

The rolling resistance coefficient is determined from observing the angle
φr at which the ore green pellet starts to roll down an inclined plane. We
observe φr = 17.8 ± 0.1◦. With τ r = (d/2) sin(φr)fn we thus identify the
rolling resistance coefficient to µr = 0.32± 0.02.

4. Verification of simulated pellets

Material parameters in Table 1 are translated to simulation parameters
of NDEM according to Sec. 2.2 and verified in elementary tests described
below. The results are summarized in Table 2. Simulation parameters are
set to ∆t = 0.01 s, Nit = 150 if nothing else is stated.

4.1. Elasticity

The elasticity model is verified in simulation by compressing a pellet
between a moving piston and a static plane. The piston moves in 0.02 mm/s
towards to the plane. The measured constraint force GT

nλn/∆t coincide
with the Hertz model with an effective elasticity coefficient keff = fn/δ

3/2

deviating from kn with maximally 2% at δ/d = 0.1 for time step ∆t = 5 ms.
The deviation decrease for smaller overlap and with decreasing time step.
In the case of a single particle compressed towards to the static ground by
external force, the result match to machine precision.

4.2. Restitution

The impact model is verified by measuring the re-bounce height hb from
dropping particles from height hd and computing the effective coefficient
of restitution eeff =

√

hb/hd. The impact stage reproduce the impact law
v+ = −ev− to machine precision. However, finite time-stepping cause im-
pact overlaps of magnitude δ ≤ ∆tv+. This produce errors in the particle
trajectories of the same order. Furthermore, the division of contacts into an
impact stage and continuous contact stage can produce residual energy at
contact separation that cause violation of the impact law. Thus, the effective
dissipation can be smaller than predicted by the impact law, i.e., the effec-
tive restitution become bigger. The effect is more notable for low-restitution
materials and appears as an effective restitution larger than e. The test is
performed for drop height ranging up to 0.45 m and time step 5 ms and
0.2 ms. The results are shown in Fig. 6. The effective restitution become
0.17± 0.07 and 0.175± 0.004, respectively. Note that given the drop-height
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0.45 m and an error tolerance of ǫ = 2%, the time-step rule ∆t . ǫd/vn imply
∆t = 0.4 ms. The time-step 5 ms, on the other hand, correspond to an error
tolerance of ǫ = 100%. The verification results are thus in good agreement
with these error estimates but it is clear that using too large time-step may
cause significant errors in energy dissipation at impacts.

4.3. Surface friction

The surface friction model is verified by simulating a pellet being pressed
towards a static plane and pulled horizontally until it starts to slide. The ef-
fective friction coefficient is computed as the ratio of the horizontally applied
force at slide onset over applied normal pressure, µs,eff = ft/fn. The result
agree with µs to machine precision.

4.4. Rolling resistance

As verification of rolling resistance we measure the maximum angle φr

where a simulated ore green pellet doesn’t start rolling on an inclined plane
and compute the effective rolling resistance coefficient µr,eff = sin(φr). The
result is φr = 17.84◦ and µr,eff = 0.31, to be compared to the corresponding
values 17.8± 1◦ and 0.32 from experiment. The discrepancy is due to trun-
cation error of the residual in the Gauss-Seidel solver but is of no practical
significance to the results in the paper. As a complementary verification test,
we simulate the deceleration of a fast rolling pellet on a horizontal plane as-
suming no-slip. The result agree with the analytical solution v̇ = −5

7
µrgacc

to machine precision.

5. Observed bulk behaviour of iron ore green pellets

We use two on-line production balling circuits at LKAB pelletizing plant
in Malmberget, Sweden, for observation and validation of iron ore green pellet
bulk behaviour. The circuits, referred to as rk1 and rk5, are identical but
run with different feed rate. The balling process was described in Sec. 2.1
and the balling circuit is illustrated in Fig. 7. The key parameters are given
in table 3. We observe and validate three bulk properties: the angle of repose
of static piles on the conveyor of on-size pellets, the properties of the flow
inside the balling drum and the spatial distribution of material on the wide-
belt conveyor that results from the interaction of the flow with the outlet
geometry.
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5.1. Pile shape

The resting angle of repose, θr, is measured on the conveyor belt trans-
porting on-size green pellets from the balling circuit to the induration furnace.
An elongated pile is formed on the conveyor by feeding material from another
conveyor, aligned perpendicularly to the first. The drop height is 0.3 m and
feed rate 14.4 ton/h. The pile formation is filmed with high-speed cameras,
see Fig.8. The average angle of repose of the pile is found to be θr = 34± 3◦.

5.2. Flow in an inclined drum

The flow inside balling drum rk1 was observed during 30 minutes of
stable production of green ore pellets. A camera was placed at the end of
the outlet to capture the flow inside the drum , see. Fig. 9. The drum was
fed with mass rate Ṁrk1 = 340 ton/h divided in 110 ton/h iron fines mixed
with binding agents and 230 ton/h return feed of undersized material. The
drum rotation produce a circulating flow that is nearly stationary and in the
rolling or cascading regime [21]. At the bottom of the drum the material
form a plug zone where ore pellets co-move rigidly with the drum rotation.
The material is lifted up to some maximal angle θ1 where particles begin to
slide and form a shear zone of a gravity driven flow on top of the plug zone
down to the drum bottom at angle θ2, Fig. 9. The dynamic angle of repose
is identified by the surface inclination, i.e., θ′r = 180◦ − 1

2
(θ1 + θ2).

From camera measurements it is found θ1 = 120± 2◦, θ2 = 167± 2◦ and
θ′r = 35±5◦. The inclination of the drum also lead to an axial transportation
flow, presumably localized to the shear zone. Cloth tracers are dropped into
the drum and tracked by camera in order to measure the surface velocity
of the bulk flow, vs, and its axial and cross-sectional components, vsz and
vs⊥. The measurement region is limited by the angles θ3 and θ4 and between
the drum center and beginning of the outlet, as indicated in Fig. 10. The
measurement results are found in Table 4. The measurement of θ1 and θ2
is based on a 100 s recording. The surface velocity is computed by time-
of-flight from 10 passages of cloth tracers over the measurement region. We
compute the axial bulk transportation velocity as vtr = Ṁ/ρAχ, where A ∈
[Amin, Amax] is the bulk cross-section area and χ is the packing ratio. The
upper and lower bounds of the cross-section area are determined by assuming
either the shape of circle sector or of an annulus sector, both limited by θ1
and θ2, see Fig, 10. This give Amin = 0.18 m2 and Amax = 0.27 m2. The
packing ratio is assumed χ = 0.7.
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The video material also reveal that the drum interior is not perfectly
cylindrical but has a structure of bumps and dimples formed by fine material
adhering and loosening from drum interior surface, see Fig. 9. This drum tex-

ture presumably lead to an increased effective surface friction, higher lifting
of the material and induce more flow disturbances.

5.3. Material distribution on wide-belt conveyor

The spatial distribution of material on the wide-belt conveyor depends on
the flow structure inside the drum and of the geometric shape of the outlet.
The outlet is 2.3 m long and has three spiral shaped gaps. The inner and
outer width of the gaps are e1 = 4.7d and e2 = 7.9d in the z′ direction. We
describe the resulting material height profile by h(y, t− x/vb). The goal is a
constant height profile h(y, t−x/vb) = h0 which is presumed to maximize the
efficiency of the roller sieve. The flow of material at the end of the wide-belt
conveyor, x = 0, is captured using video camera over a time period of 16
s. The height profile is extracted by image analysis using feature matching
to localize the conveyor belt and color gradient for tracking the material
surface. A sample is shown in Fig. 11. A 2D height profile h(y, t− x/vb) is
reconstructed for comparison with simulations in Sec. 6. The time averaged
profile at x = 0 is computed as

h(y) = 1
t2−t1

∫ t2

t1

h(y, t)dt (13)

The result from rk1 and rk5 are found in Fig. 18. The coefficient of variation
of the height profile is

σh =

√

1
wb

∫ wb

0

[
h(y)− 〈h〉

〈h〉

]2

dy (14)

where 〈h〉 = 1
wb

∫ wb

0
h(y)dy is the average height. The observed values are

σrk1

h = 0.41 and σrk5

h = 0.33, which are acceptable although not optimal.
The design objective of producing a uniform profile of pellets correspond to
σh = 0.

6. Validation of the simulation model

The observations of ore green pellet flow in the balling circuit described
in Sec. 5 are used for validation of simulated bulk behaviour. The validation
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results are summarized in Table 4. The simulation model is parametrized
by the values in Table 1 found from experiments. Monosized particles with
diameter d are used. All simulations are performed with time-step ∆t = 5
ms, Nit = 150 PGS iterations and vimp = 0.05 m/s, unless otherwise is
mentioned. See Sec. 6.4 for an analysis and discussion regarding the choice
of time-step. Videos from simulations are found at http://umit.cs.umu.

se/granular/video/.

6.1. Angle of repose

A long pile is formed by dropping particles at rate 14.4 ton/h from a
0.05 × 0.4 m2 source elevated 0.3 m over a planar surface moving 0.1 m/s
relative to the source, see Fig. 12. The cross-section profile is measured as the
average from 20 segments between 10d and 60d from the source, see Fig. 13.
The average angle of repose is found to be θr = 36 ± 2◦. To examine the
sensitivity to rolling resistance, the simulation is also performed with rolling
resistance coefficient µr decreased to 10%. The piles disperse more and the
resulting angle of repose become 22◦. With zero rolling resistance coefficient
the initial pile formation has angle of 15◦ but quickly melt to 0◦. Rolling
resistance is clearly needed for the formation of piles with correct shape. A
simulation with time-step ∆t = 0.2 ms was also made to investigate the effect
of errors from large time-step integration. The resulting angle of repose is
33±2◦. The difference is believed to reside from larger overlap errors occuring
at impact in the ∆t = 5 ms simulations. Both results are within the standard
variation of the observed angle of repose 34± 3◦.

6.2. Flow in an inclined drum

A virtual replica of the inclined rotating drum is constructed from CAD
drawings. The interior drum texture is modeled by perturbing the cylindrical
surface with a random distribution of gaussian shaped bumps of width 50
mm and height in the range 30 to 50 mm. The average density of bumps
is 20 per m2. The texture cover also the outlet interior. A particle source
is placed at the center of the drum emitting particles of diameter d at a
rate Ṁrk1 = 340 ton/h. The simulation is first run for five evolutions (60
s) to create a nearly stationary flow, see Fig. 14. The particle dynamics
is then captured during one drum evolution, 12 s. The analysis is limited
to a 1 m long section centred between the source and the outlet and, for
the surface flow, between angles θ3 = 135◦ and θ4 = 160◦. Sample plot
of the velocity field and mass density field from a cross-section is shown in
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Fig. 15 computed by coarse graining on a grid with mesh size of 1d. The
plug zone where material co-rotate rigidly with the drum is clearly visible.
The axial transportation occur in the shear zone layer above the plug zone.
The surface shape and flow is slightly irregular and nonstationary. The time
averaged mass distribution is shown in Fig. 15. The average dynamic angle
of repose is found to be θ′r = 34± 2◦.

The average bulk transportation velocity in the measurement region is
0.22 ± 0.02 m/s. The surface between angles θ3 and θ4 is tracked over time
and the average surface velocity is found to be vs = 1.27 ± 0.09 with cross-
sectional and axial components vs⊥ = 1.17± 0.09 m/s and vsz = 0.49± 0.03
m/s.

To test the sensitivity to rolling resistance, the simulation is also per-
formed with rolling resistance coefficient µr decreased from 0.33 to 0.03. The
effect on the flow is significant. The dynamic angle of repose becomes 25±2◦

and the surface velocity vs = 0.6±0.1 with components vs⊥ = 0.43±0.1 m/s
and vsz = 0.41 ± 0.03 m/s. Hence, rolling resistance is a necessary model
component also for the simulated drum flow to agree with observations. The
effect on the flow by variations of the surface friction, elasticity and particle
size was also investigated and found to be small. The time-averaged cross-
sectional flow velocities and dynamic angle of repose was affected by roughly
5 % by the changes µ′

s = 0.9µs, E
′ = 0.5E, E ′ = 2E and d′ = 0.8d.

6.3. Material distribution on wide-belt conveyor

The third validation test is the distribution of ore pellets on the wide-
belt conveyor below the drum outlet. This tests the predictive power of
NDEM simulation to capture the non-stationary granular flow created by the
interaction with a moving irregular geometry. Sample images from simulation
is shown in Fig. 14. Simulations are performed both with the original outlet
design (rk1-o and rk5-o), in Fig. 1 and 14, with gap width {eo1 : eo2} =
{11.8 : 39.4}d, the CAD models of modified outlet that are in operation
(rk1 and rk5), see Fig. 7, with {em1 : em2 } = {4.7 : 7.9}d as well as outlet
geometry models that include coating effect of fine material that make the
effective gap width smaller (rk1-c and rk5-c), {ec1 : ec2} = {3.1 : 6.3}d. The
gap models are illustrated in Fig. 16.

First, a stationary flow through the drum is established from a feed of
rate Ṁrk1. The simulations are then run for three drum evolutions, t = 36s,
while recording the material distribution on the wide-belt conveyor. The
simulations involved nearly 1 M particles for which the total computational
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time on a 12 cpu machine become of the order 10 hours, see Eq. (8). A
sample height surface from the rk5 simulation is found in Fig. 17. The time-
averaged profile from rk5 and rk1 is found in Fig. 18 and the coefficients of
variation are found in Table 4. To compare the simulated and experimentally
measured profiles we compute also the relative coefficient of variation

σh−h̄ =

√
√
√
√ 4

wb

∫ wb

0

[

h(y)− h̄(y)

〈h〉+
〈
h̄
〉

]2

dy (15)

where h(y) is a profile from simulation and h̄(y) is the profile from experi-
mental observation. The simulations confirm that the original outlet model,
rk5-o, was indeed a very poor design as it produce a nonuniform profile
with almost all material distributed on the right hand side of the wide-belt
conveyor and σrk5−o

h = 0.83. But also the simulation with the modified CAD
model, rk5-m, distribute a substantial excess of material on the right-hand
side. Much more than the experimental observation from balling drums as is
seen both in Fig. 17 and 18, and by the value of the relative coefficient of vari-
ation σrk5−m

h−h̄
= 0.47. The clogged outlet geometry, rk5-c, agree better with

observation, σrk5−c
h−h̄

= 0.35, but not entirely. In the region y ∈ [1.5, 2.0] m the
experimental profile show a material depletion that has no correspondence
in the simulated profile.

We hypothesize that the material depletion is due to the coating being
inhomogeneous and time-dependent. Supposedly, the coating increase grad-
ually as material adheres until it reaches a critical thickness and become
too heavy to support its own weight and drop from the outlet. We test
this by modifying the gap geometry to an inhomogeneous coating, eic(z′),
as illustrated in Fig. 16. The results from the simulations with inhomoge-
neous gap coating, rk5-ic, match the experimental observations fairly well,
σrk5−ic
h−h̄

= 0.11.
Variations in surface friction, elasticity and particle size were tested to

rule out that the deviation in material distribution is mainly due to too
imprecise material parameters. The time-averaged bed profile was affected
by roughly 5 % by the changes µ′

s = 0.9µs and E ′ = 2E. The changes
E ′ = 2E and d′ = 0.8d affect the bed profile by roughly 15 %. As can be
expected, with smaller particles the bed is shifted more to the right. The
effect is significant but not enough to explain the deviation from the observed
profile. The sensitivity of time-step size is considered in the next subsection.
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6.4. Dependency on time-step size

The balling circuit simulations are run with time-step ∆t = 5 ms. This
choice is based on the formula Eq. (7) and an assumed impact normal velocity
vn ∼ 0.02 m/s and error tolerance ǫ = 0.01. This assumed impact velocity is
characteristic for flow in a drum with rotation speed ωd = 0.53 rad/s, causing
a characteristic shear rate σ̇ ∼ 2ω/[1 − cos(θ/2)], where the circular sector
angle is θ = θ2 − θ1. There are impacts with higher contact velocity in the
system but we assume the statistical occurrence of these are small and their
error contribution to the overall bulk behaviour is insignificant. On the other
hand, as found in Sec. 4, using too large time-step may lead to significant
errors in the energy dissipation for impacts. Adapting the time-step for
high velocity would have severe effects for the computational time. Particles
impacting with the pellet bed on the wide-belt conveyor, for instance, have
velocity up to

√
2gacchdb ∼ 3 m/s. The required time-step for maintaining

an error tolerance of ǫ = 0.01 for these contacts is 0.04 ms.
The distribution of impact velocity and contact overlap from a simulation

with ∆t = 5 ms of material flowing from the drum onto the belt conveyor are
presented in histograms in Fig. 19. Analysis show that 7% of the contacts
are impacts, i.e., occur with relative normal velocity higher than vimp = 0.05
m/s and less than 0.01 % has velocity higher than 1 m/s. The majority
of contact overlap are below the error tolerance ǫ = 0.02 but 17 % of the
contacts have larger overlap. The overlap range up to 2d, which is consistent
with the impact velocity between particles and drum, or conveyor, ranging
up to 5 m/s.

To verify the assumption that ∆t = 5 ms is indeed a valid time-step
and that the errors from high-velocity contacts do not have a significant
contribution to the bulk behaviour, a simulation was also run with time-step
∆t = 0.1 ms. The drum flow characteristics are θ′r = 33±2◦, vtr = 0.23±0.03
m/s, vs = 1.0 ± 0.1, vsz = 0.45 ± 0.03 m/s and vs⊥ = 0.9 ± 0.1 m/s for the
rk1. This is in good agreement with both the experimental observation
and with the ∆t = 5 ms simulations in Table 4. Histograms of the contact
normal velocity and overlap from the ∆t = 0.1 ms simulation is found in
Fig. 20. At finer time-discretization more contact events can be resolved
in time. The impact threshold vimp = ǫd/∆t become roughly 2.5 m/s, i.e.,
essentially all contacts are resolved as continuous contacts. Furthermore, in
this regime the time-step is small enough for the normal contact dissipation
to be resolved with the physical viscosity from Hertz contact law, i.e., τn =
max(ns∆t, εn/γn) become εn/γn = c/eH. We identified c ≈ 1 ms, from the
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high-speed camera measurements in Fig. 4. These adjustments of vimp and
τn with time-step are important. Otherwise the small time-step simulation
model become too dissipative and produce a flow that does not agree well
with observations.

7. Conclusions

A successful parameterization, verification and validation of a NDEM
model for iron ore green pellets for the design and control of balling circuits
has been demonstrated. The parameterization consists in the direct identi-
fication of individual ore green pellet physical parameters. The procedure
involves no parameter calibration. The simulated bulk behaviour in the for-
mation of piles and flow in a rotating inclined drum agrees with camera-based
measurements in the pelletizing plant. The angle of repose agrees within 5%
and the flow velocity within 10 %. The pellet distribution on the wide-belt
conveyor from the drum outlet show a more significant discrepancy between
simulation and real system. The proposed explanation is that the simulated
and actual outlet geometry do not agree although they are based on the same
CAD model. Observations reveals that fine material adheres to the inside of
the drum and outlet, creating a thick coating that alters the geometry. In
particular, the outlet gaps become more narrow. Simulations confirm that
the outlet flow is sensitive to this effect and that the material distribution
produced by outlet geometries where this is included agree better with obser-
vation. The coating is believed to be dynamic in nature, gradually increasing
in thickness until it breaks and drop, making the outlet gap narrowing vari-
able and inhomogeneous. This has the consequence that even if a stationary
flow inside the drum can be achieved, the material distribution on wide-belt
conveyor and roller sieve will nevertheless have variations. The conclusion is
that the outlet should be designed with materials and geometric shape which
minimize the amount of coating or at least minimize the variability and effect
on the flow.

The sensitivity of the simulation model to parameters is also investigated.
It is shown that the rolling resistance is a necessary component of the model
to obtain stable piles and the rolling resistance coefficient significantly affect
the shape of piles as well as the flow characteristics in the rotating drum.
The drum flow is found not to be sensitive to particle size. For an accurate
conveyor bed profile beneath the outlet the detailed outlet geometry and
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rolling resistance are the critical parameters, but next to this the particle
size was also found to be important.

It is also demonstrated that using time-step as large as 5 ms do not
cause any statistically significant errors to the bulk behaviour as compared
to using 0.1 ms although the larger time-step occasionally produce large
errors in contacts between individual particles. As contrast, a conventional
DEM simulation would require a time-step of size ∆tDEM ≤ 0.17

√

m/kn
[22], which evaluates to 0.02 ms for the given material parameters. Hence,
NDEM simulation provide a time-efficient and reliable tool for exploring and
optimizing the design and control of iron ore pellet balling drums and of
similar systems. Future work should include extension to nonuniform and
variable size distribution of ore green pellets and modeling of the mixing
with ore slurry and the agglomeration process inside the drum.
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Appendix

A. Simulation algorithm

The algoritm for simulating a system of granular material using NDEM
with PGS solver is given in Algorithm 1. The projection on line 14 limit
the multipliers to the Signorini-Coulomb law. Each contact α between body
a and b add contributions to the constraint vector and normal and friction
Jacobians according to

δ(α) = nT
(α)(xa + d(α)

a − xb − d
(α)
b )

g(α) = δeH(α)

G(α)
na = eHg

eH−1
(α)

[

−nT
(α) −(d

(α)
a × n(α))

T
]

G
(α)
nb = eHg

eH−1
(α)

[

nT
(α) (d

(α)
b × n(α))

T
]

(16)

G
(α)
ta =

[

−t
(α)T
1 −(d

(α)
a × t

(α)
1 )T

−t
(α)T
2 −(d

(α)
a × t

(α)
2 )T

]

G
(α)
tb =

[

t
(α)T
1 (d

(α)
b × t

(α)
1 )T

t
(α)T
2 (d

(α)
b × t

(α)
2 )T

]
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Algorithm 1 NDEM simulation with PGS solver

1: constants and parameters
2: initialization: (x0,v0)
3: for i = 0, 1, 2, . . . , t/∆t do ⊲ Time stepping
4: contact detection
5: compute g,G,Σ,Υ,D, see Eq. (18)
6: impact stage PGS solve vi → (v+

i ,λ
+
i )

7: bn = −(4/∆t)Υngn +ΥnGnv
+
i

8: pre-step v = v+
i +∆tM−1fext

9: for k = 0, 1, . . . , Nit − 1 or |r| ≤ rmin do ⊲ PGS iteration
10: for each contact α = 0, 1, . . . , Nc − 1 do

11: for each constraint n of contact α do

12: r
(α)
n,k = −b

(α)
n,k +G(α)

n v ⊲ residual

13: λ
(α)
n,k = λ

(α)
n,k−1 +D−1

n,(α)r
(α)
n,k ⊲ multiplier

14: proj(λ
(α)
n,k,v) → λ

(α)
n,k ⊲ project

15: ∆λ
(α)
n,k = λ

(α)
n,k − λ

(α)
n,k−1

16: v = v +M−1GT
n,(α)∆λ

(α)
n,k

17: end for

18: end for

19: end for

20: vi+1 = v ⊲ velocity update
21: xi+1 = xi +∆tvi+1 ⊲ position update
22: end for

The diagonal matrices and Schur complement matrix D are

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1Nc×Nc

Σt =
γt
∆t

12Nc×2Nc

Σr =
γr
∆t

13Nc×3Nc
(17)

Υn =
1

1 + 4 τn
∆t

1Nc×Nc

D = GM−1GT +Σ

19



The mapping between regularization parameters and material parameters
are

εn = eH/kn = 3eH(1− ν2)/E
√
r∗

τn = max(ns∆t, εn/γn) (18)

γ−1
n = knc/e

2
H

and we use γt = γr = 10−6, ns = 2.
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versity Electronic Press, 2007, pp. 40–48.

[13] K. G. Murty, Linear Complementarity, Linear and Nonlinear Program-
ming, Helderman-Verlag, Heidelberg, 1988.

[14] Algoryx Simulations. AGX Dynamics, December 2014.

[15] J. Ai, J.-F. Chen, J. M. Rotter, J. Y. Ooi, Assessment of rolling resis-
tance models in discrete element simulations, Powder Technology 206 (3)
(2011) 269–282.
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Figure 2: Illustration of two contacting granular geometries a and b. Rolling resistance
constraint produce a torque, τ r, limited in magnitude relative to the normal contact force
fn in a similar way as the Coulomb friction force ft.

Figure 3: Measurement of elasticity and strength of iron ore green pellets from Forsmo et
al in Ref. [20] Fig. 1 and 13c.
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Figure 4: Measurement of coefficient of restitution by impacting ore green pellet captured
at 100 Hz.

Figure 5: Measurement of surface friction (left) and rolling resistance (right).
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Figure 7: Illustration of the balling circuit.
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Figure 8: Photos from angle of repose measurement.

Figure 9: Sample images of drum interior (left and middle) and distribution on wide-belt
conveyor (right). The bulk flow of ore pellets circulate in the lower left section of the drum.
The fine material adhere to the drum walls and form an irregular surface coating. The
middle image show a close-up of the irregular drum surface and coating of fine material
around the outlet gaps.

Figure 10: Pellet flow in rotating inclined drum.
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Figure 11: Sample images from extraction of height profile on wide-belt conveyor in rk5.

Figure 12: Images from simulation of pile formation.
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Figure 13: The average pile profile and its linear interpolation for different values of rolling
resistance. For µr = 0 the pile quickly disperse to zero angle of repose.
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Figure 14: Image from simulation showing material distribution inside drum (top) and on
the wide-belt conveyor (bottom). The original outlet deisgn is used. Particles are color
coded by velocity and height, respectively.
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Figure 16: The different outlet gap functions e(z′) in rk5 simulations.

Figure 17: The height surface of the material distribution on the wide-belt conveyor in
rk5. Left image is the result from video measurement and the others from simulation.
The second to fifth images are from simulations using the original outlet (o) , modified
outlet (m), with uniform gap coating (c) and with inhomogenous gap coating (ic).
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balling drum and conveyor system from simulation using ∆t = 5 ms. The contacts are
divided into continuous contacts (red) and impacts (blue).
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balling drum and conveyor system from simulation using ∆t = 0.1 ms. The contacts are
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Table 1: Identified iron ore green pellet parameters.

ρ 3700 kg/m3 mass density
d 12.7± 3 mm diameter
E 6.2± 0.7 MPa Young’s modulus
e 0.18± 0.04 coefficient of restitution
µs 0.91± 0.04 surface friction coefficient
µr 0.32± 0.02 rolling resistance coefficient

Table 2: Summary of results from verification tests.
Test Quantity Result Comment

Elasticity ‖keff − k‖/k 0− 2% error 2% at ρ/d & 0.1 and ∆t & 5 ms

Restitution ‖eeff − e‖/e 1% ∆t . min(ǫd/vn,
√

2ǫd/g) and ǫ =
0.01

Friction ‖µeff − µ‖/µ 0% fulfilled to machine precision
Rolling resistance ‖µr,eff − µr‖/µr 0− 1% 1% error at rolling onset.

Table 3: Specification of balling circuit parameters.
Notation Value Parameter

ωd 0.53 rad/s drum rotation speed
βd 7◦ drum inclination
D 3.7 m drum inner diameter
L 8.1 m drum length
{e1 : e2} {4.7 : 7.9} d inner : outer gap width
wb 2.4 m width of wide-belt conveyor
vb 0.19 m/s speed of wide-belt conveyor
hdb 0.45 m distance drum to conveyor

Ṁrk1 340 ton/h mass flow rate in rk1

Ṁrk5 275 ton/h mass flow rate in rk5
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Table 4: Validation of simulated bulk behaviour by comparing with observations in balling
circuits.

Test Quantity Observation Simulation

Pile shape θr 34± 3◦ 36± 2◦

Drum flow θ′r 35± 5◦ 34± 2◦

vtr 0.20± 0.03 m/s 0.22± 0.02 m/s
vs 1.31± 0.06 m/s 1.27± 0.09 m/s
vsz 0.58± 0.05 m/s 0.49± 0.03 m/s
vs⊥ 1.18± 0.07 m/s 1.17± 0.09 m/s

Bed profile rk1 σh 0.41
rk1-o 0.83
rk1-m 0.66
rk1-c 0.46
rk1-ic 0.44

σh−h̄ 0
rk1-o 1.01
rk1-m 0.81
rk1-c 0.54
rk1-ic 0.27

Bed profile rk5 σh 0.33
rk5-o 0.83
rk5-m 0.68
rk5-c 0.42
rk5-ic 0.42

σh−h̄ 0
rk5-o 0.71
rk5-m 0.47
rk5-c 0.35
rk5-ic 0.11
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