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Abstract

A multiscale model for real-time simulation of terrain dynamics is explored. To
represent the dynamics on different scales the model combines the description of
soil as a continuous solid, as distinct particles and as rigid multibodies. The
models are dynamically coupled to each other and to the earthmoving equipment.
Agitated soil is represented by a hybrid of contacting particles and continuum
solid, with the moving equipment and resting soil as geometric boundaries. Each
zone of active soil is aggregated into distinct bodies, with the proper mass,
momentum and frictional-cohesive properties, which constrain the equipment’s
multibody dynamics. The particle model parameters are pre-calibrated to the bulk
mechanical parameters for a wide range of different soils. The result is a
computationally efficient model for earthmoving operations that resolve the
motion of the soil, using a fast iterative solver, and provide realistic forces and
dynamic for the equipment, using a direct solver for high numerical precision.
Numerical simulations of excavation and bulldozing operations are performed to
validate model and measure the computational performance. Reference data is
produced using coupled discrete element and multibody dynamics simulations at
relatively high resolution. The digging resistance and soil displacements with the
real-time multiscale model agree with the reference model up to 10-25%, and run
more than three orders in magnitude faster.

Keywords: deformable terrain; discrete element method; multibody dynamics;
multiscale; real-time simulation; soil mechanics

Introduction
Physics-based simulation of earthmoving equipment and soil is an important tool

for developing smarter systems that meet the increasing demands for energy ef-

ficiency, productivity and safety in the agriculture, construction, and mining in-

dustries. Simulation with real-time performance is essential when developing new

control systems, human-machine interfaces or training operators using interactive

simulators with hardware or human in the loop. Fast simulation is vital also for

applying artificial intelligence to motion planning and control of earthmoving equip-

ment. These techniques are data-hungry, requiring many repeated simulations of a

wide range of normal operating conditions as well as many, potentially hazardous,

edge cases. Although the simulations can be run mostly in parallel, real-time per-

formance, or faster, is necessary for covering a sufficiently large parameter space

within reasonable time. Simulating heavy equipment alone at real-time with good

accuracy is challenging but feasible using rigid multibody dynamics and a well-

optimized solver [1, 2]. It may seem out of reach to include also the environment,
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involving vast amount of soil with complex dynamics on scales that cross six orders

of magnitude [3].

The first physics-based models for real-time simulation of heavy equipment and

deformable terrain appeared in mid 1990, starting with Li and Moshell assuming the

Mohr-Coulomb theory and volume preserving deformations [4]. Park [5] developed

an elaborate model of the digging resistance in soil for the purpose of construction

excavator simulators. The model starts from the fundamental earthmoving equation

(FEE) [6] for a blade cutting a horizontal soil bed, assuming an active zone in the

shape of a wedge [7]. The interface between the wedge and the passive soil represent

the failure surface, stretching from the cutting edge of the blade to the free surface

of the terrain. Park extends the model to a 3D bucket digging in sloped terrain,

including the formation of a secondary separation plate by the deadload of material

in the bucket and penetration resistance from the tool’s teeth. The FEE-based

models take into account the strength of the soil, expressed in terms of its internal

friction and cohesion, but are limited to stationary conditions and do not describe

the motion of the soil. Holz et al [8, 9, 10] combined the fundamental earthmoving

equation (FEE) with contacting particle dynamics to model the cutting resistance

and motion of the soil. In this approach, static soil is adaptively converted into

particles as the tool cut the terrain. Digging resistance, based on the FEE, is applied

as a six-degree of freedom kinematic constraint with force limits on the digging tool.

A wedge-shaped active zone is assumed. The portion of terrain in the active zone

that has not yet undergone failure and particle conversion provide mass to the

FEE. The particle contacts on top of the wedge contribute as surcharge mass, and

the contacts with the tool provide additional digging resistance. Later, a similar

approach is taken in [11].

Unfortunately, relying on the FEE for the digging resistance has serious draw-

backs. It is valid only at steady state and it suffers from unphysical singularities,

as pointed out in [10]. Furthermore, the active zone possesses no inertia or momen-

tum. When accelerated motion is involved, the FEE can clearly not provide correct

dynamics and proper reaction forces. On the other hand, resolving the active zone

with contacting particles challenges the computational performance. If the particles

are not too many, real-time simulation is possible using nonsmooth contact dynam-

ics [12] or position-based dynamics [13], with a stationary iterative solver like the

Gauss-Seidel algorithm. This is associated with numerical errors that manifest as

artificial elasticity or insufficient friction [14, 15]. If the errors become too large the

soil will behave more like a compressive fluid rather than a stiff soil that yield only

if the shear stress reach critical values The errors grow with the number of particles

and applied stress and decrease with the time-step and increased number of solver

iterations. In the other limit, of a few coarse particles, the solver error decrease but

the spatial discretization errors grow large.

To cope efficiently with the disparate length and time scales, we explore a multi-

scale model for the soil dynamics. The model targets real-time simulation of earth-

moving equipment and terrain with realistic reaction forces and soil deformations.

A macroscale model, describing the rigid multibody dynamics, is simulated using a

direct solver for high numeric precision. The active soil, resolved as particles in a

mesoscale model, is simulated using an iterative solver at high-speed with large error



Servin et al. Page 3 of 35

tolerance. The key idea is that the soil dynamics is represented in both models, with

a coupling that filters out the discretization and solver errors from the mesoscale

model but capture the bulk dynamics. When an earthmoving object come in contact

with the terrain, the potential failure surfaces and zones of active soil are predicted.

The soil inside the active zones is represented using a hybrid model of contact-

ing particles and continuum solid, which support smooth transitioning between the

resting solid, liquid and gas phases. The coupling back to the macroscale model

is mediated through aggregate bodies. They have the momentary shape, mass, and

velocity of the resolved soil in each active zone. The motion of the aggregates are

constrained relative to the equipment and the terrain failure surface, in accordance

with the Mohr-Coulomb model. For blunt objects contacting the terrain, the sub-

soil stress distribution is estimated and the soil compacts if the stress reach critical

values. A microscale model, simulated using relatively small particles and high nu-

merical precision, is used for pre-calibration of the particle parameters to match the

bulk mechanical properties of a wide range of soils. The primary model parameters

of the multiscale model are the bulk mechanical properties of the soil at a given

bank state: the internal friction, cohesion, dilatancy, elasticity, and mass density;

as well as the equipment’s geometry, surface friction and cohesion. To test and vali-

date the model, simulations of excavation and bulldozing operations in various soils

are performed. The digging resistance and soil displacements from the real-time

multiscale model are compared with those from the microscale reference model.

Modelling and simulation of soil and earthmoving equipment
Length- and timescales

Soil and granular media are strongly dissipative multiphase materials with multiple

length- and timescales [3, 16]. They consist of contacting grains with size ranging

from clay at 10−6 m to cobble and boulders at 100 m. Natural soil has a certain

moisture content, that may significantly increase the strength of the soil by cohesive

forces. At sufficient moisture levels, however, a pore pressure develops that lower the

inter-particle normal forces and, consequently, the internal friction. Large deforma-

tions are commonly localized in shear bands, sometimes as narrow as a few particle

diameters. The soil outside the shear bands is displaced rigidly. Soil is strongly dis-

sipative. Therefore, the solid phase is the natural state. If it is agitated, for instance

by an earthmoving equipment, it may transition to the liquid or gaseous phases.

For sand and gravel in typical earthmoving operating conditions, the grain collision

timescale is in the microsecond regime while the liquid timescale is around a mil-

lisecond [1]. Earthmoving equipment, on the other hand, has characteristic size of

10 m, operating range of around 100 m and may displace several cubic meters of soil

per second. An earthmoving tool can be controlled with a spatial precision of about

10 mm and its geometric features is also on this scale. A typical loading cycle, with

[1]The liquid phase time scale is the characteristic time scale of particle rear-

rangements, d/
√
p/ρ, with particle diameter d, mean stress p, and specific mass

density ρ. The time scale in the gaseous state is the characteristic collision time

4[v−1(5m/4k)2]1/5, assuming a strongly damped Hertzian contact model [17], for im-

pact velocity v, particle mass m, and contact elasticity k =
√
dE/2(1−ν2), with Young’s

modulus E and Poisson’s ratio ν.
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a bucket excavator or a wheel loader, has time duration in the range between 15-30

s [18, 19]. The natural timescales of the rigid body motion is about 1-10 Hz and the

control systems typically operate at a frequency below 100 Hz [20]. These multiple

and separated length- and timescales are important to consider when modelling soil

and granular media interacting with earthmoving equipment.

Distinct particles

The discrete element method (DEM) [21] describe granular media and soil as con-

sisting of distinct contacting particles of finite size. It is a versatile model that

automatically describe soil in the solid, liquid, and gaseous phases and the transi-

tions between them. DEM is clearly applicable for simulating the soil dynamics in

earthmoving operations [22, 23, 24]. It is, however, very computationally intensive.

A common solution is to not represent the true grains with their actual distribu-

tion of size, shape, and mechanical properties. Instead, the soil is represented by a

collection of large, often spherical, pseudo particles with contact parameters - elas-

ticity, friction, cohesion and rolling resistance - that are calibrated such that the

bulk mechanical properties match the ones observed in the soil that the model is

meant to represent. The mapping between the particle parameters and macroscopic

soil parameters can be carried out using the triaxial test or cone penetration test, as

described in [25]. But even with pseudo-particles of size 10 to 100 mm, the number

of particles for representing a terrain the size of earthmoving equipment exceeds

what is currently possible to simulate in real-time using DEM.

Continuum

On length scales larger than the particle size, soil may be modelled using continuum

mechanics. The state of the soil is represented with scalar, vector and tensor fields

for mass density ρ(x, t), displacement u(x, t), velocity v(x, t), stress σ(x, t) and

strain ε(x, t). The fields obey the equations of mass continuity

∂tρ+ ∇ · (ρv) = 0. (1)

and momentum balance

[∂t + v ·∇]v = ρ−1∇ · σ + fext, (2)

where we use the short notation for partial time derivative ∂t = ∂
∂t , and fext denote

any external force, like gravity. In the dense regime, and the when the stress is below

a certain yield strength condition, the soil behaves as an elastic solid with some

constitutive law relating stress to strain, e.g., Hooke’s law for small deformations

σ(x, t) = C : ε(x, t). For isotropic and homogenous materials the stiffness tensor C

has only two independent parameters, often represented by the Young’s modulus E

and the Poisson’s ratio ν. When the stresses reach the yield condition the solid fails

and deforms plastically, rupture or flow rapidly. The simplest yield condition for

soil is the Mohr-Coulomb criteria. It predicts that a rigid or elastic continuum will

fail along any plane, with normal n, where the shear stress, τn =
√

(σ · n)2 − σ2
n,

satisfies

τn = µσn + c, (3)
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and the normal stress is σn = σαβnβ . The model has two parameters for the strength

of the material: the internal friction, µ, and the cohesion, c. The internal friction

is often represented by the angle of internal friction φ = arctan(µ). Analogously

with Coulomb friction, the critical shear strength grows linearly with the normal

stress (pressure). The shear stress must also overcome any cohesive strength of the

material, which is independent of the stress and strain in the Mohr-Coulomb model.

If the material yields quasistatically it may be modelled as an elastoplastic solid,

with a plastic flow rule that accounts for strain-hardening (or softening) and the

volume expansion during shear. The latter is known as dilatancy and is defined as

tr(ε̇)/3‖ ˙̄ε‖, where ε̄ is the deviatoric strain. The hardening can be incorporated in

the Mohr-Coulomb law by [16, 26] by an effective internal friction

µ = tan(φ+ ψ) (4)

where ψ = arcsin [tr(ε)/3‖ε̄‖] is the dilatancy angle. Soil may compact plastically

under uniform compression, if the applied stress is large enough to cause particle

rearrangements. This is captured by a soil’s compression index

Cc ≡
∆e

∆ ln(σ)
(5)

which measure the change in void ratio by a change in confining stress.

The finite element method is the most widely used and versatile technique for sim-

ulating deformable solids. The popular integration schemes for elastoplastic solids

[27] first compute trial strain and stress fields, and then use Newton’s method for

searching the plastic strain increment that fulfill the constitute model and plastic

flow rule at each time-step. In the regime of loose soil and large shear rate, the ma-

terial is better described as a viscoplastic solid or non-Newtonian fluid with some

constitutive law between the stress and strain-rate, like the µ(I)-rheology for gran-

ular media [28]. Cemented soil, with clay or silt particles, may fracture by brittle

failure. Mesh-based numerical methods for solid dynamics have various difficulties

with large deformations and topological changes associated with soil that undergo

plastic or brittle failure, and transition between the dense solid, dilute liquid and

gaseous phases. Meshfree methods, such as the material point method, are showing

promising results on 3D problems, coupled with multibody dynamics, but real-time

simulation of earthmoving operations remain out of reach [29, 30].

Analytical and semi-analytical solutions, derived from the continuum theory, are

valuable for both insight and for creating fast simulation models. This include the

Boussinesq type-of-equations for the stress and deformation fields underneath a

load applied on the surface of a semi-infinite domain. The reaction forces on a thin

blade cutting a soil bed has been thoroughly analysed [7]. A blade, or separating

plate, has two basic modes of operation, penetration and separation. Penetration is

the motion straight into the soil with relative velocity in tangential direction of the

plate only. Soil cavities at the tip of the blade, often equipped with teeth, are thus

forced to expand [5, 31]. The penetration resistance may be considerable although

the deformations are relatively small. Separation corresponds to movement normal

to the plate and is the main cause of soil failure and large displacements. The edge



Servin et al. Page 6 of 35

direction of motion

failure surface

soil wedge

surcharge

soil floor

direction of motion

friction

surcharge weight

wedge weight 

cohesionadhesion

ρρ

soil resistance

separation

penetration

direction of motion

failure surface

soil wedge

surcharge

soil floor

direction of motion

internal friction

surcharge weight

wedge weight 

cohesion

surface

friction

adhesion

θθ

soil resistance

separation

penetration

tool

soil surface

cutting edge

d

β

Figure 1 Illustration of a blade interacting with a soil bed. There are two modes of operation,
penetration, and separation (left). The failure surface form a wedge-shaped active zone (middle).
When a blade cut the soil there are many forces contributing to the soil resistance (right).

where the blade meet the material is referred to as the cutting edge. See Fig. 1 The

shape of the failure surface can be computed analytically in the two dimensional

case, applicable for a wide blade, using the method of stress characteristics and

assuming the Mohr-Coulomb criteria. The failure surface is often approximated with

a plane. This defines an active zone with the shape of a wedge. Rankine’s theory

for a flat soil with a blade pushing on it in the horizontal direction predicts that

the soil fails at an angle θ = π/4− φ/2 against the horizontal. In three dimensions,

the failure surface extends sideways also, which cause long berms along the sides of

a pushing blade. The separation force acting on a blade moving horizontally at a

constant speed is well described by the Fundamental Earthmoving Equation (FEE)

[6]. The FEE is motivated by wedge model of the soil failure. The force resistance

per tool width L, in the FEE is composed of four terms

F

L
= ρgd2Nγ +QNQ + cdNc + cadNa, (6)

with specific soil mass density ρ, tool penetration depth d, soil cohesion c, surcharge

force Q (per tool width) and soil-tool adhesion ca. The first term is the due to the

weight of the wedge, the second term is the additional (vertical) surcharge, the

third term the cohesive force in the failure surface, and the fourth term is the

resistance due the adhesion between the blade and the soil, see Fig. 1. The four

N -factors (found in [6, 7]) depend on the geometry failure zone, the tool geometry,

internal and surface friction, cohesion and adhesion. The quadratic dependency on

the cutting depth d reflect that the weight depends linearly on the cross-section area

of the failure zone. Note that the cohesive and adhesive force terms are proportional

to the area of the failure surface and blade contact surface, respectively. One key

limitation of the FEE is that it assumes steady state and low speed of the blade

and soil flow. Also, the N -factors suffer from singularities at certain geoemtric

configurations.

Contacting rigid multibodies

The earthmoving equipment can be simulated efficiently using rigid multibody dy-

namics [1, 2]. Articulated and actuated mechanisms are thus modelled as rigid

bodies with kinematic constraints that represent the mechanical joints, motors, and

driveline. Dynamic contacts between the bodies are best modelled as kinematic

constraints and complementarity conditions to express unilaterality, impacts and
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Coulomb friction. In the current paper, we apply rigid multibody dynamics with

contact dynamics for both the equipment and the soil, and in all the levels of the

multiscale model. Therefore, we describe the computational framework at greater

level of detail.

The state of a rigid multibody system with Nb bodies, Nj joints and actuators and

Nc contacts, is represented on descriptor form in terms of the position, x(t) ∈ R6Nb ,

velocity, v(t) ∈ R6Nb , and Lagrange multipliers, λj(t) ∈ R6Nj and λc(t) ∈ R6Nc ,

that are responsible for the constraint forces in joints and contacts. The system

position variable is a concatenation of the spatial and rotational coordinates of

the Nb bodies, x = [x, e], and the velocity variable holds the linear and angular

velocities, v = [v,ω]. The time evolution of the system state variables [x,v,λ] is

given by the following set of equations

Mv̇ = fext +GT
j λj +GT

c λc (7)

εjλj + ηjgj + τjGjv = uj, (8)

contact law(v,λc, gc,Gc), (9)

where M ∈ R6Nb×6Nb is the system mass matrix, fext is the external force, and

GT
j λj and GT

c λc are constraint forces for joints (and motors) and for contacts,

respectively. The forces have dimension R6Nb and is composed of linear force and

torque. Eq. (8) is a generic constraint equation, with constraint function gj(x),

Jacobian G = ∂g/∂x, compliance εj and viscous damping rate τj. An ideal joint

is represented with εj = τj = uj = 0, in which case Eq. (8) express a holonomic

constraint, gj(x) = 0. A linear or angular motor may be represented by a velocity

constraint (setting εj = ηj = 0 and τj = 1), Gjv = uj(t), with set speed uj(t). The

holonomic and nonholonomic constraints can be seen as the limit of a stiff potential,

Uε = 1
2εg

Tg, or a Rayleigh dissipation function, Rτ = 1
2τ (Gv)TGv, respectively

[32]. This offer the possibility of mapping known models of viscoelasticity to the

compliant constraints. Descriptor form means that no coordinate reduction is made.

The system is represented explicitly with its full degrees of freedom, although the

presence of constraints.

We consider the system to have nonsmooth dynamics [33]. That means that the

velocity and Lagrange multipliers are allowed to be time-discontinuous, reflecting

instantaneous changes from impacts, frictional stick-slip transitions or joints and

actuators reaching their limits. This is unavoidable when using an implicit integra-

tion scheme[2] because of the coupling between the state variables trough unilateral

and frictional contacts.

As contact law between particles we use a model that include cohesive-viscoelastic

normal contacts (n), tangential Coulomb friction (t) and rolling resistance (r). These

are formulated in terms of inequality and complementarity conditions for the ve-

locities, Lagrange multipliers and constraint functions. The resulting model can be

seen as a time-implicit version of conventional DEM and is therefore referred to as

[2]The alternative is to resolve the contact events using smooth trajectories, stiff

potentials and small time-step explicit time integration. In the limit of high stiffness

and small mass, the simulation time increase indefinitely with this approach.
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nonsmooth DEM [34, 14]. We use the following conditions on v and λc = [λn,λt,λr]

as contact law:

0 ≤ εnλn + gn + τnGnv ⊥ (λn + fc) ≥ 0, fc ≡ cpAp/‖GT
n ‖ (10)

γtλt +Gtv = 0, ‖λt‖ ≤ µt‖GT
n λn‖ (11)

γrλr +Grv = 0, ‖λr‖ ≤ rµr‖GT
n λn‖, (12)

where gn is a function of the contact overlap and the Jacobians, Gn, Gt and Gr,

are the normal, tangent and rotational directions of the contact forces [14]. The

parameters εn, τn, γt in Eq. (10) control the contact stiffness and damping, and fc

the cohesion. Setting these parameters to zero means that no penetration should

occur, gn(x) ≥ 0, and if so the normal force should be repulsive, λn ≥ 0. The

inclusion of fc enables cohesive normal force with maximum value cPAP, where cP

is the particle cohesion and AP is the particle cross section area. The cohesion is

active when the contact overlap is smaller than a certain cohesive overlap, set to a

fraction of the particle size, e.g., δc = 0.025d. Eq. (11) state that contacts should

have zero slide velocity, Gtv = 0, giving rise to a friction force that is bounded by

the Coulomb friction law with friction coefficient µt. Similarly, Eq. (12) states that,

as long as the constraint torque is no greater than the rolling resistance law, the

contacting bodies are constrained to zero relative rotational motion, Grv = 0. Here,

µr is the rolling resistance coefficient and r is the particle radius. It is a well-known

fact that the effect of particle angularity, on internal friction and angle of repose, can

be captured using spherical particles with rolling resistance. As explained in [35], a

n-sided polygon can be assigned a rolling resistance coefficient µr = (1/4) tan(π/2n),

which gives µr = 0.05 for an eight-sided polygon, µr = 0.1 for a square and µr = 0

for a sphere (n = ∞). We map the normal contact law, Eq. (10), to the Hertz-

Mindlin model for contacting viscoelastic spheres, fn = knδ
3/2n + kncdδ

1/2δ̇n,

where δ(x) is the contact overlap, kn = 1
3E
∗
√
d∗ is the contact stiffness, cd is

a damping coefficient, E∗ = [(1 − ν2
a)/Ea + (1 − ν2

b )/Eb]
−1 the effective Young’s

modulus, d∗ = (d−1
a + d−1

b )−1 the effective diameter for two contacting spheres,

a and b, with Young’s modulus Ea, diameter da and Poisson’s ratio νa etc. The

mapping to Eq. (10) is accomplished by gn = δ5/4, εn = 5/4kn and τn = 5cd/4.

We separate collisions into resting contacts and impacts using an impact threshold

velocity vimp. If the relative contact velocity is smaller than this value the contacts

are modelled as described above. In case of impacts we apply the Newton impact

law Gnv
+ = −eGnv

− with restitution coefficient e, while preserving all other con-

straints in the system on the velocity level, Gv+ = 0. This is carried out in an

impact stage solve, prior to the main solve for the constrained equations of motions

(7)-(9). With this division, the restitution coefficient become the key parameter for

modelling the dissipative part of the normal force. For the resting contacts we can

simply enforce numerical stability using τn = 2∆t with little consequence of the

damping being artificially strong [36].

For numerical integration we employ the SPOOK stepper [32]. It is a first order ac-

curate discrete variational integrator, developed particularly for fixed time-step real-

time simulation of multibody systems with non-ideal constraints and non-smooth

dynamics. It has been proven to be linearly stable. The numerical time integration
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scheme for advancing the system’s position and velocity from [xn,vn] at time tn to

[xn+1,vn+1] at time tn+1 = tn+∆t consist of a position update xn+1 = xn+∆tvn+1

after having computed the new velocity bmxn+1 and corresponding Lagrange mul-

tiplier λ. This is done by solving the following mixed complementarity problem

(MCP) [37] M −Gn −Ḡn

Gn Σ 0

Ḡn 0 Σ̄


vn+1

λ

λ̄

−
pnqn
un

 = wl −wu, (13)

0 ≤ z − l ⊥ wl ≥ 0 (14)

0 ≤ u− z ⊥ wu ≥ 0 (15)

where the constraints have been grouped into position constraints (no bar) and

velocity constraints (with bar), pn = Mvn + ∆tM−1fn, qn = − 4
∆tΥg + ΥGvn,

and un is the target speeds of the velocity constraints (zero for frictional con-

tacts). The regularization and stabilization terms are Σ = 4
∆t2 diag[εi/(1 + 4τ/∆t)],

Σ̄ = 1
∆tdiag (γ) and Υ = diag[1/(1 + 4τ/∆t)]. The slack variables wl and wu are

only used internally by the MLCP solver. For details about the solver, see Sec. Im-

plementation.

Coarse-graining

The process of averaging particle kinematics and contacts forces into continuous

and differentiable fields is referred to as homogenization. Coarse-graining is one

particular way of doing homogenization. This is useful when combining particle

and continuum models of granular media. The fields are computed by sampling the

particle variables using a smoothing kernel, ζ(x), that is normalized
∫
ζ(x)dx3 = 1

and approach zero on a smoothing length R. The fields of mass and momentum

density are computed ρ(x, t) =
∑
am

aζ(x − xa(t)) and p(x, t) =
∑
am

avaζ(x −
xa(t)), respectively, and the velocity field is simply

u(x, t) = p(x, t)/ρ(x, t). (16)

The rate of strain tensor can thus be computed ε̇αβ(x, t) ≡ 1
2

(
∂uα
∂xβ

+ ∂uα
∂xβ

)
. The

stress tensor is the sum of the kinetic stress σk
αβ(x, t) = −∑am

auaαv
a
βφ(x−xa(t))

and the contact stress σc
αβ(x, t) = −∑k f

ab
α,kx

ab
β

∫ 1

0
φ(x− xa(t) + sxab(t))ds, where

the summation is over the set of contacts, fabk is the contact force between particle

a and b, with branch vector xab = xb−xa. Different smoothing kernels can be used

for different purposes. The Gaussian, ζ(x) = (
√

2πR)−3 exp(−‖x‖2/2R2), make

the fields differentiable. The Heaviside function is faster to evaluate and can be

used for a discrete representation of the fields that preserve mass precisely. From

analytical studies and numerical experiments with contacting elastic spheres [16], it

is found that the elastic bulk modulus is non-linear and change with bulk volume as

∂σ/∂ε = ZE
√

∆V/V , where Z is the average number of contacts per grain. This

suggest an effective Young’s modulus of the form

E = E0

(
1± ‖ρ/ρ0 − 1‖1/2

)
, (17)
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for a small change in density ρ/ρ0 = 1 + ∆V/V relative to a reference state with

mass density ρ0 and Young’s modulus E0. The sign ± is positive for compaction

and negative for expansion. The dilatancy angle also increase with the level of com-

paction, and with it the internal friction by Eq. (4). Based on numerical simulations

and coarse-graining of dense granular media, Roux and Radjai [38] proposed

ψ = cϕ(ϕ− ϕc), (18)

where ϕ and ϕc are the current and critical porosity, at which the soil switch between

positive dilation (volume expansion) and negative dilation (volume shrinkage) upon

shearing, and cϕ is a constant that depends on the particle shape.

A multiscale model of terrain dynamics
The multiscale model has three levels of abstraction, illustrated in Fig. 2, that we

refer to as micro-, meso- and macroscale. In the microscopic model the terrain

is fully resolved by relatively fine-grained particles with contact properties pre-

calibrated to represent various type of soil, e.g., dirt, gravel, or sand. It serves as

a ground-truth reference model, simulated off-line in advance with relatively small

time-step and high numerical accuracy. The output is used for validation of the

coarser scale models and, if necessary, for calibration of parameters not known from

theory or experiments. The meso- and macroscale models are simulated in real-time

and synchronously coupled to each other. The terrain deformations and soil flow is

integrated using the mesoscale model, with a hybrid representation of the soil that

combine coarse particles and fields discretised with a regular grid of voxels. Input

to the mesoscale model is the motion and contact forces of the equipment at the

interfaces to the terrain. This is provided by the macroscale model, which focus on

the rigid multibody dynamics of the equipment, and any other objects interacting

with the terrain. The equipment experience the resting terrain as a quasistatic

surface and each region of agitated soil as distinct dynamic bodies, whose shape,

mass velocity and mechanical strength is aggregated from the mesoscale model.

It is a significant feature that each of the three models use the same parameters

to characterize the soil properties. These are mapped to the model parameters for

the particle, voxel, and aggregate body dynamics. The parameter mapping relies in

part on the theory of continuum soil mechanics and in part on parameter calibration

using the microscale model. The primary soil parameters include mass density ρb,

internal friction angle φb, cohesion cb, dilatancy angle ψb, bulk elasticity modulus

Eb, that characterise the mechanics of the soil as found in a natural bank state.

These are collected in a bulk parameter vector pb = [ρb, φb, cb, ψb, Eb]. The bank

state refers to the state at which the true soil is found in nature. It may be the

result of geological, meteorological and machined processes, that leave the soil at

a particular packing density and moisture content. Two soils with identical (real)

particles may thus have different bank state properties and are considered as two

distinct soil with different bulk parameters pb.

Microscopic model

At highest resolution we represent the terrain as a set of relatively fine-grain

frictional-cohesive particles, NP, and the equipment as a set of rigid multibodies,
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Figure 2 Overview if the multiscale model. The microscale model is simulated off-line for
validation and calibration of the mesoscale and macroscale models, that are simulated in real-time
coupled to each other. The mesoscale model combines a coarse particle and continuum
representation of the soil inside the active zone. The active soil is aggregated into a single body
with frictional-cohesive couplings with the resting terrain and the rigid multibody equipment.

NRB, with some set of joints and actuators. Let N B
P denote the set of particles in

direct contact with a body B ∈ NRB of the equipment. The equations of motion for

the earthmoving body and the terrain particles, labelled a, are

mav̇a = f ext
a +GT

aBλaB +
∑
a′∈N a

P

GT
aa′λaa′ , (19)

mBv̇B = f ext
B +GT

BλB +
∑
a∈NB

P

GT
aBλaB, (20)

where GT
BλB is the constraint force coupling the earthmoving body to the rest

of the equipment, GT
BaλaB is the contact force on the body from particle a, and

GT
aa′λaa′ is the inter-particle contact force between particle a and a′. The body-

particle interfacial force is the source for the digging resistance perceived by the

equipment. The interfacial stress alters also the internal stress in the soil, causing

shear failure or brittle rupture if it reach the critical stress.

The particles can roughly be divided into two domains. Either they are part of

the active zone, NA
P , which is sheared or rigidly displaced by the earthmoving body,

or they remain part of the resting bed of particles, NC
P . The domains are separated
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by a failure surface AC. If the earthmoving body is a tool with penetrating teeth

or a sharp edge, the particles in direct contact with that constitute a third domain,

ND
P . The particle domains are illustrated in Fig. 2.

We use a pseudo-particle representation of the soil. That means that the particles

do not represent the true grains with their actual distribution of size, shape, and me-

chanical properties. Instead, the soil is represented by a collection of relatively large

spherical particles with specific mass density and contact parameters - elasticity,

friction, cohesion and rolling resistance - pp = [ρp, µt, µr, cp, Ep]. These parameters

are calibrated to numerical values that give the particle soil the desired bulk me-

chanical properties pb. The size of the pseudo-particles is chosen small enough to

resolve the important features of the equipment and precision at which it can be

controlled, i.e., around 10− 50 mm in earthmoving applications.

Mesoscale model

The mesoscale model is a medium-resolution model of the soil dynamics using a

hybrid particle-continuum approach. The soil in the active zone is primarily repre-

sented by coarse particles. The continuous soil model has two phases, resting solid

mass and fluidized mass. The former represents resting soil outside the active zone

and is considered an elastoplastic solid. The latter complement the use of particles

for representing soil displacement in the active zone. The fluidized mass is convected

with the coarse-grained velocity field of the particles, and subject to gravity. The

macroscale model supplies the equipment’s motion and contact forces at the terrain

interface as input to mesoscale model. This is the basis for predicting the active

zones and provide boundary conditions that drives the mesoscale soil dynamics.

A regular grid is used for the discrete representation of the continuum model. The

grid cells, or voxels, are labelled i = (i, j, k) by the triplet of integer positions in the

grid, aligned with the global coordinate axes. Each voxel has a centre point xi =

[xi, yi, zi] and constant volume V0 = l30. Each voxel has a variable mass mi, velocity

vi, compaction wi and occupancy ϕi. These are collected in a state vector si =

[mi,vi, wi, ϕi]. The evolution of si is treated by a cellular automata, with transition

rules that implements convection of fluidized mass, plastic compaction at critical

sub-soil stress, conversion between the particle and continuum representation, and

surface flow if the local slope exceeds the soil’s angle of repose δb [39, 4]. For

cohesion-free materials it coincides well with the internal friction angle, given by

Eq. (4). With cohesion it may be larger [40]. Beyond this slope the terrain is not in

a stable equilibrium, and will fail by avalanching into a valid state. The transitions

are constructed to preserve the total mass to machine precision.

The voxel mass density, ρi = ρs
i + ρf

i, is composed by the density of resting solid,

ρs
i, and fluidized mass, ρf

i. All voxels in the terrain are fully occupied, ϕi = 1,

with solid mass and empty of fluidized mass, except for surface voxels, that may

have occupancy less than unity, ϕi = V s
i /V0 ∈ [0, 1]. These voxels, and the ones

above the surface, may also contain fluidized mass. The solid mass density has a

natural bank state value ρb but can vary locally within the range ρis ∈ [ρmin, ρmax]

if subject to compaction or swelling, wi ≡ ρis/ρb. The amount of solid mass in a

voxel i is consequently mi
s = ρisV

i
s = wiϕiρbV0. The upper and lower limit on the

mass density imply that the compaction is bounded by the upper and lower values
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wmax = ρmax/ρb and wmin = ρmin/ρb. We identify S ≡ w−1
min as the swell factor of

a soil that is transformed from bank state to its maximally loose packed state.

The surface voxels define a surface heightfield, z = h(x, y), that is used for contacts

with the particles, the equipment, or any other objects in the macroscale model.

It has a discrete representation hij = h(xi, yj). The height value in a column with

index (i, j) is the centre position, zi′ of the top-most non-empty voxel, i′ = (i, j, k′),

plus the local mass fill ratio relative to that voxel centre, i.e.,

hij = zi′ + (ϕi′ − 1/2)l0, (21)

This make the surface heightfield a continuous function of the solid occupancy, see

Fig. 3. Between the grid points the surface height field is interpolated linearly.

The response by the terrain is different for contacts with sharp and blunt geome-

tries. The former lead to shear failure with a localized failure surface while the latter

cause soil compaction. If the contacting body has a sharp cutting edge, a co-moving

active zone is predicted. The motion of the terrain inside the active zone is resolved

by particles and fluidized mass. See Fig. 3 for illustration. The basic shape of the

active zone is that of a wedge, defined by the cutting edge, the soil failure surface

that extends from the edge to the free surface of the terrain, and the separation

plane of the cutting body. The slope of the failure surface, θ, depends on the soil’s

internal friction, φ, and the orientation of the separation plane relative to the to

the terrain surface, β. From simulations with the microscale model we identify the

following model

θ(φ, β) =
π

2
−
(
φ+ β

2

)
, (22)

This extends the classical Rankine failure angle π
4−

φ
2 to sloped terrain. Furthermore,

to handle nonuniform distributions of material, the active zone is discretised in a

set of parallel wedges in the lateral direction.

As the cutting body moves through the soil, the active zone overlap with new

voxels. Overlapping soil is converted from solid mass, to particles or fluidized mass,

The amount of converted mass is computed using Eq. (21), such that the surface

voxel’s fill ratio take the exact value where the surface heightfield coincides with

the failure surface, see Fig. 3. The liberated mass is converted into new particles or

growth of existing particles in the vicinity of the voxel, provided the local void ratio

allows it. To avoid ending up with too small particles (poor performance) or too

large particles (discretization error) the particle size is restricted to a given range

[dmin, dmax]. The size range is chosen such that the number of particles remain within

the limits of real-time simulation. Any residual mass, that cannot be converted into

particle mass, is converted into fluidized mass in the voxel. At the next time-step,

the fluidized mass is again candidate for formation and growth of particles. If it

reaches a surface voxel outside the active zone, it is converted back to resting solid

mass, whereby the surface heightfield is increase accordingly. The inertia of the

coarse particles is assumed to dominate over the dilute fluidized mass. Therefore,

we simply model the flow of fluidized mass by conserved advection

∂tρf + ∇ · (ρfu) = rf. (23)
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where u(x) is the coarse-grained particle velocity field, using Eq. (16), and r(x, t)

is a source (or sink) term for mass converted from (or to) particle mass or solid

mass. Any fluidized mass that is found in a voxel with no particles is projected in

the direction of gravity towards the surface where it is converted into solid mass.

When a cutting body is raised from the terrain surface a gap may arise between

the edge and the surface. In reality, the gap is normally closed by fine-grain soil

flowing from the active zone. Mesoscale particles that are coarser than the gap

cannot represent this. Instead, this is modelled by particles (and any fluid mass) in

the vicinity of the cutting edge loosing mass to the surface voxels at the gap. This is

illustrated in Fig. 3. The amount of mass necessary to fill the gap is computed using

Eq. (21). Particles losing mass shrink correspondingly until they reach the lower size

limit, where they are converted to fluidized mass. The process of converting soil from

solid mass to particle and fluidised mass, and back, enable cutting and grading with

high precision, despite the particle and voxel discretization being much coarser. It

should also be noted that the operations for mass conversion and transport are by

construction guaranteed to preserve the total mass to machine precision.

current height

previous height

current blade tip pos

new height

solid mass

grown/shrunk particles

converted mass

previous failure plane

current failure plane

current heightfield

tn tn+1 tn+1
post

fluidized mass

hi mi

mi

s

f

active zone

a)

b)

Figure 3 As a blade and its active zone moves into the terrain (a), new solid voxels are resolved
into particles or fluidized mass that form the aggregate body. The voxel height value,
corresponding to the solid occupancy, is found by projection to the failure plane of the active
zone. When the blade is raised (b), the gap is filled by solid mass converted from fluidized or
particle mass in the vicinity of the edge.

The time evolution of the coarse particles, NCP, is governed by the equation of

motion

mbv̇b = f ext
b +GT

bBλBb +GT
bCλCb +

∑
b′∈Nb

CP

GT
bb′λbb′ (24)

and mass balance at voxel i containing the particles N i
CP∑

b∈N i
CP

ṁb = −ṁi
s − rif , ‖ṁb‖ ≤ 3mb

db
d′max, d ∈ [dmin, dmax]. (25)

where GT
bBλBb is the contact force from the cutting body and GT

bCλCb from the

terrain surface. The change in solid mass, ṁi
s = wiϕ̇iρbV0, is linked to the change in
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the surface heightfield imposed by the moving cutting body. The change in particle

mass depends on the change in solid mass, but is constrained by a maximum particle

growth rate, d′max, and size range. If the change in solid and particle mass does

not match, the residual mass is converted to or from fluidized mass at rate rif ,

provided mi
f ≥ 0. Since the contact model is scale-invariant by construction, the pre-

calibrated parameter pp will give the mesoscale model the desired bulk mechanical

properties pb. Particles that come to rest outside the active zone are converted

to solid mass, whereby the surface heightfield increase correspondingly. Soil that

has undergone rapid flow tend to be more loose packed than the original bank

state. To model this, each soil is assigned a swell factor S = ρb/ρmin. Voxels with

mass converted from particles to solid mass are thus given the compaction value

wi = 1/(1 + s) and the local solid mass density ρs
i = ρb/(1 + S). The effect on the

soil’s strength by the change in compaction is addressed below.

We assume that contacting blunt bodies cause soil compaction, if the subsoil

stress reaches critical values. Since the displacements are small it is not necessary

to resolve these deformations using particles. Instead, we operate directly on the

local compaction of solid mass wi. The contact forces fk = GT
BCλBC between the

blunt body B and the terrain surface C are obtained from the macroscale model.

The forces act at some contact points xk that enclose a contact patch of area AbBC.

The subsoil stress σi in a voxel i at depth zi, and the resulting plastic deformation,

can be estimated from analytical solutions and numerical extensions [41, 42]. As a

first order approximation, we use the model, σi = σbBC

[
1−

(
zi/
√
AbBC + z2

i

)3
]
,

for a circular distributed normal load, σbBC =
∑
k fk/AbBC, on a semi-infinite elastic

solid. The compaction can be estimated from the compression index in Eq. (5) and

by noting the relation to the void ratio w ≈ 1 + eb − e. Noting that the void ratio

and compaction are related by w ≈ 1 + eb− e we obtain the following model for the

compaction in a voxel i due to subsoil stress at a depth zi beneath the contact

wi = 1 + Cc ln(σi/σb), (26)

with clamping to the set bounds wi ∈ [wmin, wmax]. Typical values for the compres-

sion index range between 0.001 (dense sand) and 1 (soft clay) and we use σb = 1

kPa is the consolidation stress for the bank state. A change in compaction alters

the mass density in the voxel to ρi = ρbwi and mass is shifted downwards column

wise to preserve the total mass. This reduce the fill ratio of the surface voxels at the

contact and the surface heightfield is reduced correspondingly. The increased level

of compaction also makes the material stiffer and stronger. From Eqs. (17) and (18)

we obtain the following models for the bulk elasticity, dilatancy angle and effective

angle of internal friction

Ei
bulk = E0

bulk (1± kE‖wi − 1‖nE) , (27)

ψi = cψ (wi − wc) , (28)

φi = φb + ψi, (29)

where the stiffening parameters kE, nE and have default values 1 and 0.5, respec-

tively, but can be tuned to represent more complex soil. The parameter cψ = ∂ψ/∂w
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control the rate of hardening, with 0.1−1.0 radians being a typical range. The crit-

ical compaction, wc, determines whether the soil at bank state is expanding or

compressing under shear. It is related to the bank state dilatancy angle ψb by

wc = 1− ψb/cψ The compacted state is permanent until the soil is disturbed, e.g.,

by earthmoving equipment interacting with it.

Macroscale model

The macroscale model focus on the rigid multibody dynamics of the equipment,

B. The resting terrain is perceived as a surface heightfield, C. In each active zone,

evolved in time by the mesoscale model, the soil is aggregated into a single body

with the inertia, centre of mass and velocity of the particles and fluidized mass.

These aggregate bodies, labelled A, have the degrees of freedom of rigid bodies but

finite mechanical strength. This is accomplished by compliant frictional-cohesive

contact constraints at the interfaces of the aggregate to the terrain surface, which

currently coincide with the failure plane, and to the equipment. The equations of

motion are

MAv̇A = f ext
A +GT

ABλAB +GT
ACλAC, (30)

MBv̇B = f ext
B +GT

BλB +GT
BAλAB +GBC

TλBC +GT
BDλBD. (31)

where the constraint forces GT
ABλAB and GT

ACλAC act on the aggregate from the

equipment and the terrain failure surface, respectively. The equipment is held to-

gether and actuated by GT
BλB. The separation resistance and the inertia of the

soil in the active zone is mediated by GT
BAλAB. Through GT

BCλBC, the equipment

experience direct contact with the terrain surface, e.g., tyres, tracks or the exterior

of the bucket. Soil cutting objects may also be subject to a penetration resistance

force GT
BDλBD. See Fig. 2 for illustration of the interaction interfaces.

Each mesoscale active zone, A, is aggregated to a macroscale body with the fol-

lowing mass, inertia tensor, centre of mass, linear and angular velocity

MA =
∑
a∈NA

P

ma +
∑

i∈NA
f

mi, (32)

IA

αβ =
∑
a∈NA

P

ma

(
‖xa − xA‖δαβ + xaαx

a
β

)
+
∑

i∈NA
f

mi

(
‖xi − xA‖δαβ + xiαx

i
β

)
,

(33)

xA = M−1
A

∑
a∈NA

P

maxa +M−1
A

∑
i∈NA

f

mixi, (34)

vA = M−1
A

∑
a∈NA

P

mava +M−1
A

∑
i∈NA

f

mivi, (35)

ωA = I−1
A

∑
a∈NA

P

ma(xa − xA)× va + I−1
A

∑
i∈NA

f

mi(xi − xA)× vi, (36)

where N A
P and N A

f denote the set of particles and voxels with fluidized mass in

active zone A.
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The contacts aggregated from the AB and AC interfaces are turned into the

following velocity constraint

0 ≤ γnλn +Gnv ⊥ (λn + fc) ≥ 0, fc ≡ cbA (37)

γtλt +Gtv = 0, ‖λt‖ ≤ µ‖λn‖. (38)

Eq. (37) prevent relative motion in the normal direction, i.e., compressive or tensile

deformations. Note that, unlike model Eq. (10), this model does not include a

contact overlap. This make the aggregate viscoplastic in nature, with no sense of

any reference configuration. The viscous damping is controlled by the parameter

γn = ∆t/(casEb), where cas is the aggregate’s damping coefficient (referred to as

aggregate stiffness multiplier in the implementation). If the force is tensile and

reach the cohesive force limit, given by cbA, separation may occur at the interface.

Eq. (38) prevent sliding motion in the failure surface and in the interface to the

equipment, unless the forces reach the Coulomb condition. The friction coefficient

in the failure surface is set to the soil’s internal friction µ = µb. At the equipment

interface the friction coefficient is set by the tool’s surface friction µ = µtool. The

contact points between the aggregate body A, the equipment B and the failure

surface C is the reduced set of contact points from the mesoscale model that best

approximate the two contact areas, AAB and AAC, with four contact points each.

This is illustrated in 2D in Fig. 2.

If the cutting edge has a thickness or is equipped with teeth, there may be a

significant penetration force, GT
BDλBD in addition to the separation force. This is

modeled with the following velocity constraint

GBDvB = 0, GT
BDλBD ≤ fpt ≡ nt [pt + (ct + ptµt)/ tan θt]At, (39)

whereGBD = tB is a unit vector for the direction of penetration, e.g., pointing in the

direction of the teeth. For penetration to occur, the tool must overcome the force

limit fpt [43], which depend on the tool’s friction coefficient µt and adhesion ct, and

on the number of teeth nt, with cross-section area At, tooth angle θt. The tooth

pressure, pt, is modelled using the finite cavity expansion theory [31]. In the plastic

limit the tooth pressure become pt = p0 +[Υ + (α− 1)p0] / [2 + α] under cylindrical

expansion, where Υ = 2ct cosφ/(1 − sinφ), α = (1 + sinφ)/(1 − sinφ). The mean

pressure is computed by p0 = 1
2ρgz [(1 +K0) + (1−K0) cos(2β)], taking the lateral

earth pressure and tool inclination into account [43], where K0 is the coefficient of

lateral earth pressure, ρ is the specific soil mass density, z is the penetration depth

and β is the insertion angle. A simple model for the coefficient of lateral earth

pressure is given by Jaky [44] as K0 = 1− sinφ.

Complex digging tools

A bucket used for excavation or wheel loading is more complex than a blade. It

can be seen as a bottom plate, with a curved back wall and sidewalls that allow

material to accumulate in the bucket. This deadload form a secondary separation

plate, at an angle much steeper than the bottom plate. This affect the stress distri-

bution, the shape of the active zone, by Eq. (22), and ultimately also the digging
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resistance. Furthermore, the forces from the soil that surrounds the bucket act both

tangentially (friction) and normally. This cause additional digging resistance as well

as strong resistance for motion in the lateral directions. Buckets are also used for

other purposes than digging. It is a common operation to do surface leveling and

compaction using the bucket exterior. To support these features we treat a bucket

as a composite model of an elementary digging tool and a set of soil deformers as

described below.

A digging tool has a cutting edge ec, a parallel top edge et, and a penetration

direction tc orthogonal to these edges and to the normal of the bottom plate nc.

This is primary separation plate of the digging tool. See Fig. 4 for an illustration. A

convex digging tool has an inner shape that is the void enclosed by the cutting edge,

top edge and the concave tool surface connecting them. The face that connect the

cutting edge and the top edge has normal ntc. If the bucket is full, this face act as

a secondary separation plate. If the digging tool is a simple blade there is no inner

shape and nc = ntc. For concave tools we track the amount of material accumulated

in the inner shape (deadload) and do linear interpolation of the secondary separation

plate nfill between nc and nct. This changes the angle β in Eq. (22) and thus the

slope of the failure surface.

β

θ

βfill

deadload

ec

et

nc

nfill

nct

tc

β
θ

ec

et

nc

tcnd

ed

Figure 4 The left images illustrate a digging tool with a cutting edge ec (red line), separating
plate nc (red face), deformer edge ed (blue line), deformer face nd (blue face) and top edge et

(yellow line). The inner shape is indicated with the dashed lines. The normal nfill of the secondary
separation plate range from nc to nct depending on the fill ratio of the inner shape. The three
active zones, discretized by vertical wedges, is illustrated from the rear (upper right) and from
above (lower right).

A soil deformer is simply a separation plate with no penetration resistance and

no inner shape. It is defined by a deformation edge ed and a parallel top edge et.

They form a face with normal nd. The active zone from a soil deformer is not

automatically resolved using particles, unless the velocity of the deformation edge

exceed a given threshold. This avoid using particles to simulate the terrain when it

remains at steady state.

A bucket can thus be represented with soil deformers for the exterior faces and

with a digging tool for the cutting blade and the bucket interior. Fig. 4 shows a

bucket with two side walls, each assigned a soil deformer. Together with the digging
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tool, this gives rise to a total of three active zones, which are discretised in the

lateral direction. The backside of the bucket can also assigned a deformer, in which

case the number of active zones sum to four. If not, the soil cannot be displaced by

the backside of the bucket other than by pure compression.

The aggregate normal forces is modeled by Eq. (37). It is a velocity constraint,

which are prone to numerical drift. The drift has no significance in soil cutting but

prohibit proper resistance of soil deformers resting or being pressed onto a soil bed.

A drift will cause them to sink unnaturally into the soil. This is remedied by adding

a stabilizing perturbation ξgn to the constraint, i.e., γnλn +Gnv → γnλn + ξgn +

Gnv, which turn it into a ordinary contact constraint. Transitioning between the

velocity constraint (providing smooth soil cutting) and contact constraint (avoiding

artificial sinkage) is achieved by making the stabilization coefficient ξ a function of

the orientation of the deformer relative to the terrain surface.

Algorithm

The multiscale terrain model can be summarized by the Algorithm 1.

Algorithm 1 Multiscale terrain
domains

1: initialize terrain
2: set surface heightfield h(x, y) and bank state soil parameters pb = [φb, cb, ψb, Eb]
3: set initial voxel states si = [mi,vi, wi, ϕi],
4: apply cellular automata to ensure the surface heightfield is soil-consistent
5: initialize earthmoving equipment [x,v, g]B

6: set contact parameters for bodies and terrain surface [µ, c, e, E]BC

7: set digging tool edges and direction vectors [ec, et, tc] and [nt, At, θt]
8: set deformers → [ed, et]
9: while running simulation do

10: conversion of resting and active soil
11: for each body B intersecting the terrain C
12: compute active zones, discretise in wedges with failure angle θ(φ, β)
13: convert resting soil in active zones to particle and fluidized mass
14: convert resting particles outside zones to loose solid mass with wi = wmin

15: apply cellular automata to re-distribute resting soil violating the angle of repose
16: update the surface heightfield h(x, y) from the voxel state si
17: do collision detection
18: add contact constraints in the macroscale and mesoscale simulations
19: for each active zone do
20: aggregate body A from voxels and particles using Eq. (32)-(36)
21: add aggregate velocity constraint (37)-(38) with interfaces AB and AC
22: end for
23: penetration resistance
24: estimate pressure on edge/tooth and compute maximum penetration resistance
25: add the penetration constraint Eq. (39)
26: time-step Eq. (7)-(9)
27: solve the macroscale MCP using direct LDLT solver → [v,λ]B

28: solve the mesoscale MCP using iterative PGS solver → [v,λ]b

29: update positions xi+1 = xi + ∆tvi+1

30: soil compaction
31: estimate the sub-soil stress from the surface contact forces BC
32: update the soil compaction wi using Eq. (26)
33: displace resting solid mass vertically in compacted voxel columns
34: update the soil strength parameters p(w)
35: end while

Implementation
The multiscale model was implemented in the C++ physics engine AGX Dynamics

[45]. It supports real-time simulation of rigid multibody and particle systems with
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contacts, articulation joints and non-smooth dynamics. Numerical time integration

is made with the SPOOK stepper. A block-sparse LDLT solver with pivoting [46] is

used as direct solver for the macroscale model, and for the equipment subsystem in

the meso- and microscale models. The solutions are exact to machine precision. The

dynamics of the contacting particles is solved to lower precision using a projected

Gauss-Seidel (PGS), which is accelerated using domain decomposition for parallel

processing and warm-starting [14, 15]. The microscale reference simulations are run

with 1 ms time-step and 500 PGS iterations. The multiscale model is run with 16.7

ms time-step, for real-time simulation at 60 Hz, and with 10 PGS iterations for the

mesoscale particle model. This corresponds to an error tolerance of about 1 % and

10 %, respectively, according to the model in [14] and for the test systems in this

paper. The voxel data representations and operations are implemented using the

Open VDB library [47]. It is optimized for large, sparse, time-varying volumetric

data discretised on a 3D grid and support hierarchical representations.

Soil library
It is important that the bulk and particle representations are dynamically consistent.

That means that the particle parameters, for each soil, need to be calibrated to the

values that produce the desired bulk properties, e.g., internal friction, cohesion,

angle of repose etc. Otherwise they do not describe the same material and there

is risk that the conversions between particle and continuum inject energy to the

system, which can lead to numerical instability. Therefore, 15 soils were calibrated

in advance to the bulk mechanical properties. These are listed in Table 1. The bulk

parameters, at bank state, were chosen from tabulated values for different materials,

e.g., gravel and sand. To narrow down the particle parameter search space, we were

guided by friction measurements of sand grains. The particles are given the Young’s

elasticity of E = 109Pa, Poisson’s ratio 0.15, specific mass density 2200 kg/m3 and

coefficient of restitution 0. Since there may exist many types of sand and gravel

(with different distributions of size, shape, microscopic friction, packing density

and moisture level), each with distinct bulk properties, an integer is added to the

name to distinguish between them. We also created a set of purely frictional soils (fs)

and cohesive-frictional soils (cfs) with no particular real soil in mind. For testing

purposes a frictionless and a cohesive-frictionless soil (cs) were also created, but

they are noyt expected to be of practical use.

A (virtual) triaxial test was used for parameter calibration, following the proce-

dure and setup in [25], but with a lesser packing density. The model of the triaxial

cell consists of frictionless rigid bodies for walls, 250 mm wide, driven by motors that

are servo-controlled to maintain a given normal stress, σi, i = 1, 2, 3 = xx, yy, zz.

The particle samples have uniform size distribution with diameter ranging between

27 and 33 mm, and initial porosity 0.42. The strength of each soil is tested by driv-

ing the horizontal walls at a vertical speed of 5 mm/s while controlling the vertical

walls to maintain a given consolidation stress σ2 = σ3. Tests are performed with

different consolidation stresses in the range from 1 kPa and 75 kPa. The motion of

the walls and the stresses on them are registered during the simulation. Example

measurements of the stress deviator, σ1 − σ3, as a function of the lateral strain are

shown in Fig. 5 for the materials gravel-1 and wet-sand-1. The internal friction
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and bulk cohesion were determined from the Mohr’s circles at failure stress, see

Fig. 6. The procedure was repeated, for each soil and consolidation stress, two or

three times with different particle initial states. The results are found in Table 1.

Due to fluctuations and uncertainty in the Mohr method, the cohesion-free soils

show an apparent cohesion of up to 2 kPa at most. In these cases, the bulk cohesion

is explicitly set to zero. From the triaxial tests we also measure bulk elasticity as

the secant modulus, Eb = ∆σ1/∆ε1 halfway before failure, and the dilatancy angle

from ψ = arcsin [∆tr(ε)/3∆‖ε̄‖]. The dilatancy angles are computed from the strain

curves in Fig. 7. These bulk parameters are determined for a medium consolidation

stress of 15 kPa. The procedure was repeated for all the 15 soils in Table 1.

Table 1 A small library of soils with particle parameters pre-calibrated to desired bulk parameters
using a triaxial test.

Bulk parameters Particle parameters
Soil name φb cb ψb Eb µt µr cp

gravel-1 44◦ 0 11◦ 4.6 0.4 0.3 0
sand-1 39◦ 0 9◦ 4.5 0.3 0.1 0
sand-2 32◦ 0 8◦ 3.5 0.3 0.02 0
wet-sand-1 33◦ 8.7 8◦ 4.0 0.3 0.1 30
dirt-1 40◦ 2.1 13◦ 6.5 0.4 0.1 2.5
dirt-2 37◦ 4.9 10◦ 4.6 0.4 0.1 12.7
dirt-3 35◦ 21 10◦ 5.8 0.4 0.1 63.7
fs-strong 42◦ 0 13◦ 3.8 0.5 0.1 0
fs-weak 35◦ 0 8◦ 2.8 0.3 0.05 0
cfs-strong 32◦ 7.1 7◦ 4.6 0.3 0.05 23
cfs-medium 32◦ 4.3 7◦ 4.2 0.3 0.05 12
cfs-weak 21◦ 4.8 6◦ 3 0.15 0.025 23
cfs-weakest 12◦ 2.4 1◦ 1 0.06 0.01 23
cs-weak 5◦ 3.1 2◦ 0.7 0.0 0.0 50
frictionless 6◦ 0 1◦ 0.25 0.0 0.0 0
Units deg kPa deg MPa kPa
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Figure 5 The principal stress as function of the vertical strain from triaxial test on gravel-1
(left) and wet-sand-1 (right). Initially the principal stress grows nearly linearly, from which the
secant modulus is determined, until shear failure occurs and the principal stress saturate.

Simulation tests
The multiscale model was tested and evaluated using two primary test systems,

which are bulldozing and excavation in a flat soil bed. For reference, the same silua-

tions were performed using the microscale model. The digging resistance, resulting

terrain surface heightfield and computational performance of the two models was

then compared. All materials in Table 1 was subjected to tests, see the supplemen-

tary Video 1 and Video 2. The results for three frictional soils (gravel-1, sand-1,
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Figure 6 The Mohr circles for determining the internal friction and cohesion from triaxial test on
gravel-1 (left) and wet-sand-1 (right).
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Figure 7 The volumetric strain as function of the deviatoric strain from triaxial test on gravel-1
(left) and wet-sand-1 (right). The dilatancy angle is measured during the shear failure phase,
where the slope is positive and close to linear. It was found ψgravel-1 = 11◦ and ψwet-sand = 8◦

for σ3 = 15 kPa.

frictionless) and three cohesive soils (dirt-1, wet-sand, cfs-weak) are reported

more detail. In the microscale simulations the soil bed consisted of 50e3 particles,

with size uniformly distributed between 55 and 45 mm and specific mass density

of 2200 kg/m3. The voxel size in the multiscale model was 0.1 m, the specific mass

density also 2200 kg/m3 but the bulk mass density was set to 1474 kg/m3 which

correspond to a void ratio of 0.33. Default value for the aggregate stiffness multiplier

was set to 0.001 and 1.0 at the terrain and tool interface, respectively.

In the bulldozing test, shown in Fig. 8, a blade cuts a bed of dirt-1 soil and

pushes the material in front of it. After some distance, the material is dumped in a

pile, as the blade is stopped, lifted, and reversed. The cutting depth is 0.05 m and

the length is 5 m. The blade has mass 100 kg, sectioned vertically in two plates, 1.6

m wide, 0.37 m tall, 0.02 m thick, and with a relative angle of 55◦. It is attached

with a lock constraint to a kinematic body that is driven with horizontal speed

of 0.5 m/s. See the supplementary Video 3. For the penetration force, the blade

is assigned 80 teeth of 10 mm length and maximum radius, while the minimum

radius is set to 2.5 mm. The penetration force scaling is then calibrated to 10 for all

materials except for gravel, dirt-1 and wet-sand which are given the value 20.

Fig. 9 and 10 show the force from the terrain on the blade as a function of the

horizontal position x. The force from the multiscale and reference model largely

follow each other, especially during the intermediate phase, starting after the blade

is lowered into the ground (x = −2.75 m) and ending where the blade begins to

rise (x = 1.5 m). In the intermediate phase, the horizontal force grows gradually as
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Figure 8 Simulated bulldozing for comparing the multiscale terrain model (left) and the
microscale reference model (right, particles colour coded by particle height position) at time 8 s
and using material dirt-1. Second and third row show sideview of the microscale model (particles
colour coded by velocity, blue to red by 0 to 1.5 m/s) and the multiscale model, at time 0, 2, 4, 6,
8, 10 and 12 s. See supplementary Video 1.

soil accumulates in front of the blade, until material start spilling off at the same

rate. The vertical force is nearly constant in this phase. The bulldozing resistance

for gravel is larger than for sand and for the frictionless soil, as can be expected

by the difference in internal friction. The more fine-grained reference model has

larger fluctuations than the coarse-grained multiscale model. This may seem counter

intuitive. Presumably this is due to the higher numerical precision (smaller time-

step and larger PGS solver iteration count) of the reference model, that capture the

granular nature of the soil better, i.e., formation of strong force chains, that grow

and collapse in an irregular manner. The multiscale model, on the other hand, much

of the fluctuations are lost due to the coarse-graining of particles and fluidized mass

into a single aggregate body. The time-averaged force of the models agrees generally

within 25%. The largest deviations occur during the lowerinmg and raising of the

blade. The contributions to the force on the blade from penetration and separation

resistance in the multiscale model are shown in Fig. 11 for the case of dirt-1. It can

be concluded that the penetration force is overestimated during the phase of raising

the blade. It dominates the vertical component of the force. The resting and densely

packed soil is forced to expand at the tip of the blade. When the blade is raised,

the cutting edge moves through the shear zone, which should be looser and offers

lesser resistance to penetration than dense soil. This is automatically captured by

the resolved reference model but not in the multiscale model. In all cases, the pile of

accumulated material in front of the blade is higher and steeper with the reference

model than with the multiscale model. This is consistent with the larger time-step

and lower PGS solver iteration count in the multiscale model, which imply larger

numerical errors that manifest themselves as excessive slipping and rolling in the

particle contacts. However, since the soil’s bulk properties have been calibrated in

advance the errors affect the size of the aggregate but not on its fundamental shape

or strength. In a sense, these mesoscale errors are filtered out in the aggregation

process to the macroscale model and do not propagate into the digging resistance. As
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Figure 9 Force resistance from bulldozing using three frictional soils and the microscale model,
with snapshot taken at 8 s.
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Figure 10 Force resistance from bulldozing using three cohesive soils and the microscale model,
with snapshot taken at 8 s.

expected, the digging resistance is much smaller for frictionless soil. It is smaller

for the multiscale model than for the reference model. This can be understood by

the fact that particles in the multiscale model slide over a frictionless plane while the

motion of the particles in the refence model are damped by the dissipative contacts

(zero restitution) with the irregular surface formed by the resting particles.

The resulting surface height profiles, after a completed bulldozing cycle, are shown

in Fig. 12 and 13. The multiscale and reference models are in good agreement for

gravel-1 and sand-1. The depth of the cut strips agrees within 10 millimetres and

the dimensions of the side berms are agree by roughly 10 %. The deviation in height

profiles for the frictionless soil have the reason that is explained above. For the

cohesive soils the deviation between the models is larger. The reference model with

dirt-1 give wider side berms and a wider pile. The relative error is up to 50 %.

For the strongly cohesive soils (wet-sand-1 and cfs-medium) the difference even

larger, up to 100 %. For reference model almost all soil is accumulated in front of
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Figure 11 The digging resistance from bulldozing a bed of dirt-1 soil simulated using the
multiscale model. The force is divided in the contributions from the penetration and separation
models.
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Figure 12 The resulting surfaces from bulldozing in three frictional soils using the multiscale
model (top row) and the microscale reference model (middle row). The difference is shown at the
bottom row.

the blade. The behaviour of the different soil materials under bulldozing is shown

in the supplementary Video 1. The particle cohesion appear to be much stronger in

the reference model than with the multiscale model.

The excavation test with dirt-1 can be seen in Fig. 14 and in the supplementary

Video 4. The excavator model consists of four dynamic bodies and 4 joints: a

bucket on the end of an articulated arm, with an outer and inner boom, attached to

a revoluting base on static foundation. The test follows the setup of [24] where only

the boom articulation joint is actuated, i.e., the inner arm is held fix. The bucket

is 1.2 m wide, 1.2 m long, 0.9 m high. It weighs 100 kg and has a thickness of 0.05

mm. The outer arm is 3.24 m long and weighs 300 kg. A hinge motor drives the arm

to rotate at target speed 0.1 rad/s which translates to 0.4 m/s at the bucket cutting

edge. For the penetration force, the blade is assigned 24 teeth of 50 mm length and

maximum radius, while the minimum radius is set to 10 mm. The penetration force

scaling is then calibrated to 2 for all materials except. The force exerted on the

bucket during the digging can be seen in Fig. 15 and 16. Observe that the bucket

moves in the opposite direction to the bulldozing test, i.e., from right to left. The

bucket start penetrating the soil and fil the bucket at x = 2.0. The horizontal force

peak around x = 0 m. Up to this point, the force in the vertical direction has been

dominated by the penetration resistance, see Fig. 14. The weight of material inside

and in front of the bucket increase gradually, as do the resistance to shearing the
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Figure 13 The resulting surfaces from bulldozing in three cohesive soils using the multiscale
model (top row) and the microscale reference model (middle row). The difference is shown at the
bottom row.

Figure 14 Simulated excavation for comparing the multiscale terrain model (left) and the
microscale reference model (right, particles colour coded by particle height position) at time 8 s
and using material dirt-1. Second and third row show sideview of the high-resolution model
(particles colour coded by velocity, blue to red by 0 to 1.5 m/s) and the real-time model, at time
0, 2, 4, 6, 8, 10 and 12 s. See supplementary Video 3.

soil along the failure plane. From x = 0.5 m to x = 0 m these are in balance and

after this the soil weight and the shear resistance dominate the vertical component

of the digging force. At x = −1.0 m the bucket breaks loose from the ground. The

weight of the material in the bucket can be observed as the residual vertical force Fz

at x = −2.5. There is good agreement between the models for the peak horizontal

force and the residual vertical force. Overall, the time-averaged forces agree within

25 %. There is a trend for the multiscale model to overestimate the vertical digging

resistance during breakout around x = −0.5 m. From Fig. 17 it is not clear wether

the penetration force or the separation force is to blame. As in the bulldozing test,

there are significant deviations between the models for the strongly cohesive soils,

in particular wet-sand-1. With the reference model, the force fluctuates heavily

between x = 1.0 m and x = −1.0 m, see Fig. 16. The reason for this is the strong

cohesion. It prevents the soil from flowing freely and gradually fill the interior of

the bucket. Instead, a strong soil beam is formed. This can be seen in the cross-

section image in Fig. 16 for wet-sand. The force fluctuations grow large when the
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Figure 15 Force resistance from excavation using three frictional soils and the microscale model,
with snapshot taken at 5 s.
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Figure 16 Force resistance from excavation using three cohesive soils and the microscale model,
with snapshot taken at 5 s.

beam hit the interior back wall of the bucket. The beam starts to compress, buckle

and fail in an irregular manner. The aggregate in the multiscale model does not

represent such modes of deformations and failure and does not produce large force

fluctuations. The height profiles after an excavation cycle are shown in Fig. 18 and

19. For gravel-1 and sand-1 the width and height of the trench, side berms and the

pile are in relatively good agreement. The depth of the trench agree within 10 mm

and the other features within 10 % on average. For dirt-1 the side berms and pile

is roughly 50 % larger for the reference model, and for wet-sand and cfs-weak the

pile is more than twice as tall. The behaviour of the different soil materials under

excavation is shown in supplementary Video 4. It is clear that the strongly cohesive

soils are much more cohesive in the reference model compared to the multiscale

model.

The active zone model, Eq. (22), is validated using the reference model. The

induced particle motion when digging in flat and sloping soil of the type dirt-1

with an excavator bucket can be seen in Fig. 20 and in the supplementary Video 5.
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Figure 17 The digging resistance from excavation in a bed of dirt-1 soil simulated using the
multiscale model. The force is divided in the contributions from the penetration and separation
models.
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Figure 18 The resulting surfaces from excavation in three frictional soils using the multiscale
model (top row) and the microscale reference model (middle row). The difference is shown at the
bottom row.

The shape of the wedge formed by the mobilized soil is indicated. The angle between

the dynamic separation plate and the soil surface is estimated to βflat = 42◦ and

βsloped = 45◦ in the two configurations. Eq. (22) imply failure planes with inclination

θmodel
flat = 47◦ and θmodel

sloped = 45◦, respectively. From the reference model we estimate

the failure angles at θref
flat = 53◦ and θref

sloped = 40◦, respectively, which correspond to

a 12 % error.

We analysed also the computational speed of the multiscale model and the refer-

ence model, aware that the results depend on implementation, optimization efforts

and the hardware specification[3] The analysis was performed on the excavation test

system shown in Fig. 14 and the result is summarized in Table 2. The number of

rigid bodies N rb and particles Np are given for the multiscale model and reference

model. The number of equations, for the velocity update and constraint multiplier,

are divided by what is treated by the direct solver, N rb
eq , and by the iterative solver,

Np
eq. The multiscale model has a real-time factor of 1.5, i.e., the computational

time is 11 ms per simulation time-step 16.7 ms. That means that there is room

for simulating a more complex vehicle at real-time speed. The reference model has

a real-time factor of 0.001, meaning that each 1 ms time-step on average take 1 s

to compute. In both cases, solving the MLCP is what dominate the computational

[3]The tests were run on a desktop computer with Intel Core i7-7800X CPU at 3.5

GHz and 32 GB RAM.
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Figure 19 The resulting surfaces from excavation in three cohesive soils using the multiscale
model (top row) and the microscale reference model (middle row). The difference is shown at the
bottom row.

5342
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45

Figure 20 Analysis of the active zone when digging in a flat (left) and sloped (right) soil bed with
a complex bucket. The particles are colour coded by their velocity, with blue to red ranging from 0
to 1 m/s. See supplementary Video 5.

time. The price of introducing the aggregate bodies (the main aggregate and a back

deformer) and penetration constraints is an increased number of equations (N rb
eq )

processed by the direct solver, namely 36 additional equations (77% increase). The

relative speedup of 1500 is an effect of the 16.7 times larger time-step, 67 times

fewer equations for the iterative solver, and 50 times less iterations.

Table 2 Performance analysis of the excavation test involving N rb rigid bodies and Np particles. .
The direct MCP solver process N rb

eq equations, and the iterative solver Np
eq equations. The multiscale

model is 1500 times more efficient due to the lesser number of equations for the iterative solver, less
number of iterations, and larger time-step.

N rb Np N rb
eq Np

eq Np
it time-step [ms] real-time

multiscale 8 950 85 1.8e4 10 16.7 1.5
reference 4 50e3 48 1.2e6 500 1 0.001
ratio 2 0.019 1.77 0.015 0.02 16.7 1500

Finally, the multiscale model is demonstrated in use with full vehicle models in

complex earthmoving scenarios. Fig. 21 shows a wheel loader digging in a steep

wall of soil. See supplementary Video 6. The active zone in the cutting direction,

discretised in five parallel wedges, is visualized in the right image. There are also

active zones on each side of the bucket originating from the soil deformers. The

different size and inclination of the wedges reflect the nonuniform distribution of

mass. The active zone in the digging direction is resolved with particles, but not the
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Figure 21 A wheel loader digging in a step pile of soil. The resistance is too large for breaking out
and instead the rear of the vehicle is raised from the ground. The right image shows the active
zones, discretised in soil wedges, and the cohesive-frictional contacts between the aggregates and
the terrain. See the supplementary Video 6.

Figure 22 Demonstration of variable soil compaction and swelling. The subsoil stress from the
tires cause compaction (dark grey). Particles that are converted back to resting solid become
more loosely packed (light grey) than nominal bank state.

side deformers because of low lateral velocity. The contact points of the aggregate

bodies are visualized with orange vectors. In the left image the lift cylinders are

actuated to raise the bucket. However, the lift force cannot overcome the digging

resistance and, consequently, the rear of the wheel loader is lifted from the ground.

This effect would not occur by the weight of the bucket and aggregate alone. It is

necessary to account also for the frictional-cohesive forces between the aggregates,

the bucket, and the terrain, to capture the full resistance to breaking out from

the wall. Variable soil compaction is illustrated in Fig. 22 and visualized by the

intensity of the grey terrain. Medium grey represents nominal compaction at the

bank state, at which the bulk strength parameters are defined. Light grey represent

soil that has dilated due to shear deformations, e.g., have been dug or pushed with

the bucket. That soil has lower compaction and weaker strength according to the

swell factor and dilatancy angle, respectively. Dark grey represent soil that has been

compacted, e.g., due to compressive stress from the tires. It has higher compaction

and strength than the bank state value. The right images show the wheel loader

driving into the left pile of loose soil that is easily compacted.

The involvement of additional rigid bodies interacting both with the earthmoving

machine and the terrain is demonstrated in Fig. 23 with a fullsized tracked excavator

digging a deep trench. The rocks contact directly with the excavator bucket, via

the direct solver, but also with the particles, through the iterative solver. The rocks
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Figure 23 Demonstration interaction with other rigid bodies (red rocks) while digging a trench
with a tracked excavator. See the supplementary Video 7.

Figure 24 Demonstration of high-precision bulldozing in a large terrain using a tracked vehicle.
See the supplementary Video 8.

force the soil to distribute around the rock inside the bucket or pile up around the

rocks on the ground. The terrain is initialized with a high state of compaction such

that the trench can sustain steep side walls. See the supplementary Video 7.

The capability of representing large terrains, everywhere deformable, is demon-

strated with the bulldozing example in Fig. 24 and the supplementary Video 8.

Observe that the terrain is cut precisely at the dozer’s cutting blade, with a pre-

cision much finer than the coarse particles, and match the vertical motion of the

blade. The effect of bulldozer chassis and blade oscillations can be observed as wave

pattern in the cut terrain surface.

Discussion
The results show good performance of the multiscale model and mostly fair agree-

ment with the the reference model, needing little calibration. But there are a num-

ber of limitations with the method also. The most significant deviation occur for

strongly cohesive soils, where the particle cohesion appear much stronger in the ref-
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erence model than in the multiscale model. Furthermore, the shape of the active zone

is a crude approximation. It is clear from both the underlying theory and numerical

studies that the shear failure surface is not a plane and the active zone is not well

approximated by a wedge, or several parallel wedges. The deviation in the digging

resistance at breakout indicate that the slope of the failure surface is not correct,

or that the assumption of shear band localization is false. The active zone model in

the present paper requires some manual work with defining edges, direction vectors,

teeth etc. Ideally, the dependency on such geometric features should emerge from a

model that merely takes the 3D geometry of a digging tool as input. The damping

coefficient of the rigid aggregate has not been derived from the underlying theory or

scrutinized using the microscale reference model. An alternative to improving the

active zone model by analytical means is to take a data-driven approach. Following

Wallin [48], it is possible to train a model, from resolved reference simulations, to

rapidly predict the digging resistance and the flow field in a granular bed from a

digging tool of particular 3D shape without explicitly defining any cutting edges,

direction vectors or teeth. Potentially this can be used for predicting the shape and

mechanical strength of the active zone with higher precision and generality, and

possibly also the soil displacements. The drawback of the data-driven approach is

the need for running many simulations in advance, covering a wide range of soils,

terrain shapes, and tool trajectories to have a useful model.

The computational bottleneck in the tested implementation is the mesoscale par-

ticle simulation. It is run synchronously on CPU with the macroscale simulation

using fix and identical time-step. This is not necessary but made so for simplicity

because the simulation software, AGX Dynamics, is designed for strong coupling

between the multibody dynamics and the (nonsmooth) DEM simulation. It might

be worth investigating alternative, possibly asynchronous, methods for simulating

the active soil, e.g., smooth DEM on GPU.

The mesoscale model support plastic compaction of the solid terrain but not shear

deformations. That is a major limitation for simulating deep ruts and vehicles or

other objects sinking or being buried in the terrain.

Finally, the presented method relies on a having a soil libary where particle para-

maters are pre-calibrated to match the bulk mechaical paramaters. The current

library, involving 15 different soils, can easily be extended to a wider range of more

soils, e.g., to include the over 100 virtual soil samples that was mapped in [25].

From such data-sets it is possible to identify mapping functions pp → pb, such that

new soils can be introduced on-the-fly. That is import for making machine learning

models robust and transferable from one domain to an other, e.g., from the sim-

lation domain to the physical domain, using domain randomization [49]. However,

the current model does not support inhomogeneous soil or mixing of two or more

soils. That extension is left for future development.

Conclusion
It has been found possible to simulate earthmoving operations in real-time with a

model that captures the rigid multibody dynamics of the equipment, the reaction

forces from the terrain, and much of its deformations and flow dynamics. With a

multiscale model the terrain’s active zones are represented simultaneously as a rigid
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body, as particles and as a continuum. A direct solver is applied to the multibody

system for high numerical precision and an iterative solver to the particle system

for scalability. The models are made dynamically consistent through a soil library

that is calibrated in advance using a reference model simulated at high-resolution.

The performance, realism, and capability to represent a wide range of materials and

scenarios make the solution suitable for simulation-based development control and

automation of earthmoving equipment.
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32. Lacoursiére, C.: Regularized, stabilized, variational methods for multibodies. The 48th Scandinavian conference

on simulation and modeling (SIMS 2007), Göteborg, 30–31, 40–48 (2007)
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Figure 25 Move Figure 1 here. Illustration of the multiscale model.


