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Abstract

A method for adaptive model order reduction for nonsmooth discrete

element simulation is developed and analysed in numerical experiments.

Regions of the granular media that collectively move as rigid bodies are

substituted with rigid bodies of the corresponding shape and mass dis-

tribution. The method also support particles merging with articulated

multibody systems. A model approximation error is defined and used to

derive conditions for when and where to apply reduction and refinement

back into particles and smaller rigid bodies. Three methods for refinement

are proposed and tested: prediction from contact events, trial solutions

computed in the background and using split sensors. The computational

performance can be increased by 5 - 50 times for model reduction level

between 70 - 95 %.

1 Introduction

Simulation of granular matter is important for increased understanding of the
nature of granular media and as an engineering tool for design, control and
optimization of processing and transportation systems [1]. With the discrete
element method (DEM) the material is modeled as a system of contacting rigid
bodies, referred to as particles in this text. This provides detailed information
about force structures and particle kinematics on a microscopic level. DEM ac-
curately capture many of the characteristic phenomena of granular media - for
instance jamming, dilatancy, emergence of strong force chains, strain localiza-
tion, avalanches and size-segregation upon fluidization - that are difficult or even
impossible to model with continuum based methods. The required computa-
tional time increase with the number of bodies and this limit the practical use of
DEM for exhaustive simulation studies of large-scale systems and large parame-
ter spaces. One strategy to remedy this is to increase the computational perfor-
mance by use of parallel algorithms and dedicated hardware. Another strategy
is the use of implicit integration with large time-step using the nonsmooth DEM
(NDEM) [2], also known as the contact dynamics method [3,4], where velocities
may be time-discontinuous and impulses can propagate instantly through the
system.
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A third strategy, that is pursued in the paper, is to reduce the computational
complexity by identifying regions in the granular media where the particles may
be substituted by approximate models with less degrees of freedom.

1.1 Previous work

Model order reduction is well established and widely used for reducing the com-
putational complexity in solid and fluid mechanics, dynamical systems and con-
trol theory [5, 6]. In multibody dynamics, it is often used for reducing the
degrees of freedom of flexible bodies [7] while the number of multibodies are
preserved. There are few examples that resemble model order reduction for the
discrete element method. Glössmann [8] applied the Karhunen-Loéve transform
to clusters of discrete elements that show dynamic coherence to reduce the or-
der of generalized coordinates. In the combined finite-discrete element method
(FDEM) each body is represented as a discrete element that is also discretized
by a finite element method [9]. The bodies may deform, fracture and fragment
indefinitely into smaller elements based on the internal stresses. An inversion
of this is the hierarchical multiscale modeling of granular media discretized by
a coarse mesh of finite elements in combination with assemblies of fine grained
discrete elements for numerical computation of the local constitutive law for
the finite element computations [10,11]. A two-scale and two-method approach
for modeling granular materials is presented in [12], where DEM is used for do-
mains of large and discontinuous deformations and as an elastoplastic solid using
FEM in continuous domains. Automatic simplification algorithms of articulated
multibody systems have been developed and shown to increase computational
performance by two orders in magnitude on large-scale linkage systems [13,14].
Dynamic formation of both rigid aggregates (clumped particles) and elastic ag-
gregates (clustered particles), are supported by several discrete element codes
and is used for modeling grains in brittle rock [15].

1.2 Outline of the idea and the challenges

The idea is to identify regions of the granular media that collectively move
as rigid bodies and substitute each of these regions with rigid aggregates of
the corresponding shape and mass distribution. Particles and rigid aggregates
may also merge with rigid bodies or kinematic geometries that do not represent
granular media, for instance the particles in an excavator bucket may merge
with the bucket into one single rigid body. The aggregated rigid bodies still
contribute to the system dynamics but require only a few degrees of freedom.
When merged material is disturbed, by a change in external forces or boundary
contacts, it may split into smaller constituents that are either rigid aggregates
of fewer particles or single particles.

The complexity of systems with granular media in the solid state is thus
largely reduced and the computational performance increase correspondingly
while the macroscopic dynamics may be preserved. For granular media in the
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gaseous or liquid state, on the other hand, a model reduction into rigid ag-
gregates will cause significant errors. This paper is limited to model reduction
into rigid bodies. The extension to elastoplastic bodies can be imagined but
is beyond the current scope. The ultimate goal is to achieve optimal trade-
off between: maximum system reduction; minimum errors on the macroscopic
dynamics; minimum computational overhead.

The main challenge is to predict when and where merged material should
be refined, or split. Most real systems are in a combination of the three states
of granular media: solid, fluid and gas [16]. If the split conditions are too
restrictive, or the merge condition too progressive, the bulk properties become
wrong. This may appear as incorrect angle of repose, artificial resistance to
compression and shearing forces and erroneous rheology in the fluid state. If
the split conditions are too permissive, or the merge conditions too strict, most
particle will remain free and the there is no computational gain. Also, the
computational overhead of model reduction must be small in comparison to the
computational time for the fully resolved system.

The idea is illustrated in Fig. 1 with an excavator digging in a bed of granular
material. Only a finite domain of the material around the bucket is displaced and
need to be simulated dynamically. The remaining part is static and contribute
merely with supporting contact pressure. When the bucket is filled and starts
to lift, most material co-move rigidly with the bucket. If the purpose of the
simulation is to compute the dynamics of the excavator and the load forces in
the mechanism, the material and the bucket can be approximated by a single
rigid body. When the bucket accelerates or rotate slowly the force distribution
in the granular material change and it might start to flow. Several methods for
predicting splitting of the rigid aggregates are proposed and tested in numerical
experiments. The method are based either on contact events or estimating force
distribution or particle motion by computations in the background.

2 Particles, rigid aggregate and multibodies

This section is devoted to the mathematical representation of contacting par-
ticles and rigid bodies as multibody systems with nonsmooth dynamics and
kinematic constraints.

2.1 Global system variables

The variables for particles, rigid aggregates and other rigid bodies are compo-
nents of the global system variables that we denote x,v,f and M and refer
to as generalized position, velocity, force and mass although they are concate-
nations of linear and rotational degrees of freedom. Quaternions are used for
representing orientations. The matrix dimension of the global quantities are
dim(x) = 7Nb, dim(v) = dim(f) = 6Nb, dim(M) = 6Nb×6Nb, where Nb is the
total number of bodies.
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Figure 1: Illustration of model reduction in an excavation scenario simulated
without model reduction. The particles are color coded by velocity from blue
(stationary) to red. Most particles in the bed are in relative rest and would be
well described by a single rigid body. The particles in the excavator bucket may
be aggregated with the bucket into a single rigid body. The main challenge is
to predict when and where the merged material should split.

2.2 Nonsmooth multibody dynamics

The following equations of motion for nonsmooth multibody dynamics are as-
sumed:

Mv̇+ Ṁv = fext +GT
nλn +GT

t λt +GT
r λr +GT

j λj, (1)

0 ≤ εnλn + gn + τnGnv ⊥ λn ≥ 0, (2)

γtλt +Gtv = 0, |λ(α)
t | ≤ µt|G(α)T

n λ(α)
n |, (3)

γrλr +Grv = 0, |λ(α)
r | ≤ µrr|G(α)T

n λ(α)
n |, (4)

εjλj + ηjgj + τjGjv = 0. (5)

The first equation is the Newton-Euler equation of motion for rigid bodies with
external (smooth) forces fext and constraint forceGTλ with Lagrange multiplier
λ and Jacobian G, divided into normal (n), tangential (t), rolling (r) and ar-
ticulated and possibly motorized joints (j). Details are found in the Appendix.
Equations (2)-(3) are the Signorini-Coulomb conditions with constraint regu-
larization and stabilization terms εn, τn and γt. With εn = τn = 0, Eq. (2)
state that bodies should be separated or have zero overlap, gn(x) ≥ 0, and if
so the normal force should be non-cohesive, λn ≥ 0. With γt = 0, Eq. (3)
state that contacts should have zero relative slide velocity, Gtv = 0, provided
that the friction force remain bounded by the Coulomb friction law with fric-
tion coefficient µt. Eq. (4) similarly constrains relative rotation of contacting
bodies provided the constraint torque do not exceed the rolling resistance law
with rolling resistance coefficient µr and radius r. The constraint force, GT

j λj,
arise for articulated rigid bodies jointed with kinematic links and motors rep-
resented with the generic constraint equation (5). With εj, τj = 0 and ηj = 1,
it become an ideal holonomic constraint g(x) = 0. For ε, η = 0 and τ = 1, it
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become an ideal Pfaffian constraint Gẋ = 0. With ε, η, τ 6= 0 it can represent a
generic constraint with compliance and damping. The set of equations (1)-(5)
may thus model granular materials strongly coupled with mechatronic systems,
e.g., vehicles, robots and mechanical processing units.

The Lagrange multiplier become an auxiliary variable to solve for in ad-
dition to position and velocity. The regularization and stabilization terms, ε
and γ, introduce compliance and dissipation in motion orthogonal to the con-
straint manifold. In the absence of the inequality and complementarity con-
ditions, the regularized constraints may be viewed as Legendre transforms of
a potential and Rayleigh dissipation function of the form Uε(x) =

1
2εg

Tg and
Rγ(x,v) = 1

2γ (Gv)T (Gv) [17, 18]. This enable modeling of arbitrarily stiff
elastic and viscous interactions in terms of constraint forces with direct map-
ping between the regularization and stabilization terms to physical material
parameters. This is applied to map the stiffness and damping terms from the
nonlinear Hertz contact law, or linear spring and dashpot, from conventional
(smooth) discrete element method to the constraint based and nonsmooth dis-
crete element method. The detailed constraints, Jacobians and parameters are
found in Ref. [19] and summarized in Appendix A together with the numerical
integration scheme used in this paper.

The dynamics is allowed to be nonsmooth which means that velocities may
change discontinuously in time. Impacts and frictional stick-slip transitions
may thus be considered as instantaneous events and propagate immediately
through the entire system by an impulse transfer altering the velocities from
v− to v+. The contacts are divided into impacts and continuous contacts,
depending on the magnitude of the incoming relative normal velocities Gnv−.
The impulse transfer through the system should satisfy the Newton impact law,
G(n)

n v+ = −eG(n)
n v−, with coefficient of restitution e for the impacts (n), as

well as preserve all remaining constraints (m) on velocity level, G(m)v+ = 0.

2.3 Particles

Each elementary granule is referred to as a particle and is modeled as a rigid
body with solid geometry. A particle is either free or part of a rigid aggregate
of particles. Each free particle is represented by a dynamic discrete element
obeying the equation of motions in Sec. 2.2 and may interact with other particles
and rigid aggregate bodies via contacts. Each particle that is part of a rigid
aggregate is a kinematic discrete element that co-move rigidly with the aggregate
body. No forces are applied to aggregated particles. For simplicity, particles
are assumed spherical but can easily be extended to more general geometric
shapes. Reference to a specific particle is made by latin indices, e.g., a, b, . . . =
1, 2, . . . , Np, and we use square brackets to emphasize particle index. We use the

notations ~x[a], ~v[a], ~f[a], m[a] and d[a] for position, translational velocity, force,
mass and diameter, and ~e[a], ~ω[a], ~τ[a] and I[a], for orientation, angular velocity,
torque and inertia tensor. Spatial components of a vector or matrix is indexed
by α, β = 1, 2, 3 referring to the x, y, z axes in a global Cartesian coordinate
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system, e.g., x
[a]
α and Iαβ . We concatenate these variables into a particle’s

generalized position, velocity, force and mass, denoted x[a],v[a], f[a] and M[a],
with v[a] = (~vT

[a], ~ω
T
[a])

T etc. and M[a] = diag(m[a]13×3, I[a]).

2.4 Rigid aggregates

A rigid aggregate, or just aggregate, is a rigid body that represent an aggregate of
particles co-moving as a single rigid body. The rigidity is an assumed collective
result of the contact forces creating a jammed state although no such internal
forces are modeled or computed explicitly. The variables of rigid aggregates are
represented with similar notations as for particles, e.g., x[A] and M[A], but with
capital latin indices A,B, . . . = 1, 2, . . . , Na. The set of particles that constitute
an aggregate A is denoted NA. The relation between the dynamic variables of
the aggregate and the particles are illustrated in Fig. 2 and computed as follows:

m[A] =
∑

a∈NA

m[a], (6)

~x[A] = m−1
[A]

∑

a∈NA

m[a]~x[a], (7)

~v[A] = m−1
[A]

∑

a∈NA

m[a]~v[a], (8)

I
[A]
αβ =

∑

a∈NA

m[a]

(

|~r[aA]|2δαβ − r[aA]
α r

[aA]
β

)

, (9)

~ω[A] = I−1
[A]

∑

a∈NA

m[a]~r[aA] × ~v[aA], (10)

where ~r[aA] = ~x[a] − ~x[A] and ~v[aA] = ~v[a] − ~v[A]. The kinematics of the aggre-
gated particles a ∈ NA is

~x[a] = ~x[A] + ~r[aA], (11)

~v[a] = ~v[A] + ~ω[A] × ~r[aA], (12)

~ω[a] = ~ω[A]. (13)

2.5 Multibodies

By elementary rigid bodies it is meant bodies that represent other than granular
bodies, e.g., part of an articulated multibody. Elementary rigid bodies are
also included in model reduction and may form reduced aggregates with both
elementary rigid bodies and particles. But the additional complexity of merge
and split conditions in articulated system is not covered here. For convenience
elementary rigid bodies are represented with the same notation as used for
aggregates, that is, capital index in square brackets [A].
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Figure 2: Illustration of a rigid aggregate of contacting particles and some free
particles.

2.6 Contacts

The set of contacts is denoted Nc. Integer n = 1, 2, . . . , Nc is used for contact
index and this is emphasized by round brackets, e.g., g(n). The gap function
δ(x) measure the magnitude of overlap between two contacting bodies. Contact
forces and velocities are sometimes decomposed in the directions of contact
normal, ~n and tangents, ~t1 and ~t2. The relative velocity at a contact n between

a particle a and a rigid body A can thus be written ~u(n) = ~v[a] + ~ω[a] × ~d
(n)
[a] −

~v[A]− ~ω[A]× ~d
(n)
[A] , where

~d
(n)
[a] is the position of the contact point relative to ~x[a]

and ~d
(n)
[A] relative to ~x[A].

3 Adaptive model order reduction

Let the following equations represent the full system of particles and elementary
rigid bodies coupled with constraints

Mẍ+ Ṁẋ = fext +GTλ, (14)

ελ+ ηg(x) + τGẋ = 0, (15)

having solution x ∈ R
n and λ ∈ R

m. The constraint equation (15) represent
the collection of both position and velocity constraints and it is assumed to be
appended with additional inequalities and complementarity conditions for the
multiplier. The full system, (14)-(15), is approximated with a reduced system
x̃ ∈ R

ñ and λ̃ ∈ R
m̃ with less degrees of freedom ñ < n and m̃ < m. The

reduced system belong to a subspace of the full system. We define the model
order reduction level as h = 1 − ñ/n. When h → 1 the system is maximally
reduced to one single rigid body and when h = 0 it is fully resolved in all free
particles. The approximate relation between the reduced and full system is
expressed using subspace transformation matrices P ∈ R

n×ñ and Q ∈ R
m×m̃
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such that

x ≈ Px̃, (16)

λ ≈ Qλ̃. (17)

Given a rigid aggregate, the transformation matrix P is easily constructed from
the rigid transformations in Eq. (11), that relate the positions of the aggregated
particles relative to the aggregate centre. In a rigid aggregate the inter-particle
constraints are redundant. The transformation matrix Q eliminate the redun-
dant equations when a rigid aggregate is substituted for a collection of particles.
The reduced multibody system become

M̃¨̃x = f̃e + G̃
T
λ̃, (18)

ελ̃+ ηg̃(x̃) + τG̃ ˙̃x = 0 (19)

with M̃ = PMPT , f̃e = Pfext− ˙̃
M ˙̃x, G̃ = QTGP, λ̃ = Qλ, g̃ = Qg. Note that

˙̃
M ˙̃x is included as an explicit force in f̃e as is common and often referred to as
the gyroscopic force. If the complexity of the reduced system is much smaller
than the original, ñ≪ n and m̃≪ m, the computational efficiency can increase
dramatically.

The reduced system can, however, expected to deviate more or less from the
original system. The model reduction may be applied adaptively to keep the
approximation error below a specified error tolerance. The approximation error
is defined

E(t) = x(t)−Px̃(t) (20)

and can be decomposed in two orthogonal terms E(t) = E⊥(t) + E‖(t), where

E⊥(t) =
[

1−PPT
]

x(t), (21)

E‖(t) = P
[

PTx(t)− x̃(t).
]

(22)

The orthogonal error, E⊥, arise when the trajectory of the full system is not
strictly within the subspace of the projection and do not move entirely like a
single rigid body. The error parallel to the projection, E‖, means that the motion
of the reduced system behave different from the original system although they
represent equivalent rigid systems, if E⊥ = 0. The parallel error can only be
computed a posteriori. This may be practically infeasible as it requires solving
both the full and reduced system and involve explicit projections between the
spaces. The orthogonal error, on the other hand, can be estimated a priori. By
substituting Eq. (15) into (14) and multiplying by P⊥ ≡ 1 −PPT one obtain
an evolution equation for the orthogonal approximation error

Ë⊥ = M
¯

−1
[

f
¯e
− η

ε
G
¯

Tg− τ

ε
G
¯
TG
¯
ẋ
¯

]

(23)

where M
¯

= P⊥MPT
⊥, f¯e

= P⊥fext − Ṁ
¯
ẋ
¯
and G

¯
= GP⊥. The rigid aggregate

is a good approximation only if the error is small. When the error is large, or
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growing rapidly, the reduced approximation should not be applied. When parti-
cles co-move rigidly, the third term vanishes, G

¯
ẋ
¯
= 0, since the relative contact

velocity is zero. The first and second term cancel when force balance occur in
the subspace, f

¯e
= η

ε
G
¯

Tg. This is equivalent to zero relative acceleration in

the contact points, G
¯
ẍ
¯
= 0. Observe that M

¯
−1f
¯e

= 0 in the case of uniform
gravity, since this cause no relative acceleration. We thus identify the following
conditions for a rigid aggregate to be a good approximation

−ξ−v < G
¯
(n)ẋ

¯
< ξ+v (24)

and
∣

∣

∣
f
¯e[a]
− η

ε
G
¯

T
[a]g

∣

∣

∣

∣

∣

∣
f
¯e[a]

∣

∣

∣
+
∣

∣

∣

η
ε
G
¯
T
[a]g

∣

∣

∣

≤ ξf (25)

for each contact n and particle a of the aggregate with upper and lower thresh-
olds for relative contact velocity ξ±v and force balance bound ξf . The inequali-
ties in Eq. (24) should be understood component wise for normal, tangent and
rolling. The conditions (24) and (25) provide a starting point for adaptive model
order reduction and refinement by merging and splitting particles into and from
rigid aggregates. Identifying wether particles should merge is a simple exam-
ination of Eq. (24) and (25). Predicting if and which particle should split is
non-trivial since it requires some form of estimation of the unknown dynamics
of the fully resolved system.

An algorithm for numerical simulation of nonsmooth multibody systems of
the form of Eqs. (1)-(5) and with adaptive model reduction is given in Algorithm
1. The algorithm is based on the SPOOK stepper [18] using fix timestep, ∆t,
and involve solving a mixed complementarity problem (MCP) with matrix H,
vector b and regularization and stabilization matrices Σ and Υ that are found
in the Appendix. A popular choice of MCP solver for NDEM is the projected
Gauss-Seidel (PGS) method, which is also listed in the Appendix. It should be
straightforward to modify the algorithm to other time-integration schemes and
solver methods for nonsmooth dynamical systems. The test for model reduction
is done directly after the continuous MCP solve when the new velocities are
known. If this instead is placed after the position update, some contacts that
fulfil condition (24) may be lost due to infinitesimal geometric separation. This
would make the model reduction unnecessarily sensitive to solver truncation
errors. Particles with contacts that fulfil the test are merged. The test for model
refinement is done after contact detection and before solving the impact stage
MCP. This way the rigid aggregates can be split before the impact impulses are
computed and transferred. Otherwise the granular matter will behave overly
rigid. The merge and split processes are described in more detail below as well
as a number of methods for predicting model refinement.
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Algorithm 1 main algorithm

1: define constants and parameters
2: initialil state: (x0,v0)
3: for i = 0, 1, 2, . . . , t/∆t− 1 do ⊲ time-stepping
4: [g,Nc] = contact detection(xi,vi)
5: [G,Σ,Υ] = compute contact data(xi,vi,Nc)
6: split(xi,vi,g,G,Nc) ⊲ model refinement
7: H = compute H(M,G,Σ)
8: b− = compute b (G,vi, e)
9: [v+

i ,λ
+
i ] = mcp(H,b−) ⊲ impact stage MCP

10: b = compute b(g,G,v+
i , fext,Υ)

11: [vi+1,λi+1] = mcp(H,b) ⊲ continuous stage MCP
12: vi+1 = co-move(xi,vi+1) ⊲ update aggregate particles
13: merge(xi,vi,g,G,Nc) ⊲ model reduction
14: xi+1 = xi +∆tvi+1 ⊲ position update
15: end for

3.1 Merge

The model reduction test consist of traversing the contact network Nc and
testing the condition for rigid motion in Eq. (24). The condition is divided into

G
(n)
n[aA]v ∈ [−ξi-mrg

nv , ξs-mrg
nv ], (26)

G
(t)
t[aA]v ∈ [−ξmrg

tv , ξmrg
tv ], (27)

G
(r)
r[aA]v ∈ [−ξmrg

rv , ξmrg
rv ], (28)

where we separate between incident and separating normal velocity thresholds,
ξi-mrg
nv and ξs-mrg

nv , and use symmetric tangential and rolling velocity thresholds
ξmrg
tv and ξmrg

rv . The test result in a set of disconnected networks representing
rigidly co-moving bodies. Each such network is merged into rigid aggregates.
Both particles and elementary rigid bodies are allowed to merge into aggregates.
All bodies that are merged into an aggregate body are changed from being a
dynamic body to a kinematic body co-moving with the new aggregate body. The
aggregate variables m[A], ~x[A], ~v[A],~I[A], ~ω[A] are computed by Eq. (6)-(10). The
total mass and momentum is preserved when bodies are merged. The merge
procedure is illustrated in Fig. 3. It should be emphasized that the contact
network need not a force network, which would require solving Eq. (1)-(5), but
merely a connectivity network, and is automatically produced by the contact
detection algorithm.

3.2 Split

There are a number of ways to predict if and how the reduced model should
be refined by splitting the rigid aggregates into smaller aggregates and free
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Figure 3: Illustration the merge procedure: detection of contacts involving
two aggregates and 11 free particles (left), identification of two disconnected
networks fulfilling the merge conditions (middle), creating two new aggregates
(right). The colour intensity codes velocity.

particles. One strategy is to rely on contact events, that is, trigger splitting
by impacts and separations. Another strategy is to do a fast trial solve in
the background, using a more resolved model, and decide splitting from the
outcome. A third, more heuristic approach, is to add split sensors in the system.
The placement of the sensors can be made automatic, after a posteriori analysis
of previous simulations of the same or similar system, or manually, based on
experience or perspicacity. The split methods can also be used in combination
with each other. The different methods, illustrated in Fig. 4, are outlined in
further detail below and tested in numerical experiments. Observe that the split
process does not affect on the total mass or momentum. The process of splitting

Figure 4: Illustration of different split methods: contact split (left), trial solve
split (middle) and sensor split (right). Blue particles have impacting or sepa-
rating contacts. Red particles are aggregate particles that are to be split from
the aggregate. The dashed grey box represent a split sensor.

an aggregate is the same irrespective of the method used for the prediction. The
split particles are made dynamic and the new aggregates are determined and
created as in the merge process, by analysing the contact network after removing
the split particles and applying Eq. (6)-(10).
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3.2.1 Contact split

Contacts are either impacting, continuous or separating depending on the sign
and magnitude of the relative velocity. For each contact n ∈ Nc, between
particle a and aggregate A, the following conditions for normal, tangential and
rolling motion are tested

G
(n)
n[aA]v /∈ [−ξi-cnv , ξ

s-c
nv ], (29)

G
(n)
t[aA]v /∈ [−ξctv, ξctv], (30)

G
(n)
r[aA]v /∈ [−ξcrv, ξcrv], (31)

with impact split threshold denoted with i-c and separation split threshold with
s-c. If either of the relative contact velocities are found to be outside the valid
domain, the aggregate is refined by splitting off particles at the contact node
n. The split may be applied to some split depth Nc-spl ∈ N along the contact
network from the impact (or separation) node in order to capture shock prop-
agation phenomena. Observe that the split action is merely a redefinition of
which particles are free and which are kinematically bound to aggregate bodies.
This does not immediately alter the position or velocity of any particle. The
split is then proceeded with solving the impact stage MCP and the continuous
stage MCP, see Algorithm 1. There is therefore no risk, other than unnecessary
computations, of splitting too many particles. These will be merged back with
the aggregate if the merge condition is fulfilled after solving the impact and con-
tinuous MCP. The numerical experiments presented in this paper is limited to
splitting aggregate particles that are triggered by impact or separation directly
and their contact neighbours, i.e., Nc-spl = 2. Impacts between two aggregates
are treated the same way.

3.2.2 Trial solve split

A trial solver is run in the background to estimate the dynamics of the full
system. The background system state is initialized by projecting the reduced
sub-space system back to the full resolution space of Eq. (11)-(13). The purpose
of the background solve is not to do precise integration of the particle positions
and velocities but to provide sufficient estimate for if and how to split rigid ag-
gregates. Assuming that the state of the reduced system from previous timestep
was a good approximation of the full system it is conjectured that doing a PGS
solve of the full system MCP with low number of iterations N tr

it will suffice for
this, although the error of such a simulation would increase rapidly over time.
Other alternatives can be imagined, e.g., doing the background computation
using other solvers or on a partially resolved system. The background trial so-
lution is tested for the following conditions for relative velocity of each contact
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n ∈ Nc

G
(n)
n[aA]v /∈ [−ξi-trnv , ξs-trnv ], (32)

G
(n)
t[aA]v /∈ [−ξtrtv, ξtrtv], (33)

G
(n)
r[aA]v /∈ [−ξtrrv, ξtrrv], (34)

and the following conditions for force and torque balance are tested separately
for each aggregated particle a

|~fe[a] −GT
f [a]λ|

|~fe[a]|+ |GT
f [a]λ|

< ξtrf , (35)

|~τe[a] −GT
τ [a]λ|

|~τe[a]|+ |GT
τ [a]λ|

< ξtrτ . (36)

where GT
f [a]λ and GT

τ [a]λ are the force and torque components of the sum of

generalized contact forces acting on particle a, GT
[a]λ =

∑

b∈Na
c

GT
[ab]λ. The

Jacobians are the blocks for linear and rotational degrees of freedom GT
[a] =

[GT
f [a],G

T
τ [a]]. Observe that λ has replaced η

ε
g in the force balance condition

(25). This is a stronger test as it can detect also acceleration due to impulse force
propagation through the system that has not yet resulted in relative contact
velocity or particle displacements. The particles that are indicated by the tests
are eliminated from the aggregate body and activated as a dynamic particle. In
the numerical implementation a small perturbation is added to the denominators
to avoid numerical round-off errors.

3.2.3 Sensor split

The split sensor is simply a geometrical shape that triggers model refinement of
aggregate bodies that overlap with the sensor geometry. The splitting is applied
only to the aggregate particles that overlap the sensor. Observe that the sensors
are physically transparent and do not produce any contact forces. Split sensors
is a useful tool for when it can be anticipated where model refinement is required
without doing a background trial solve. The sensor must be given a size, shape
and position, either manually or automated based on data from simulations,
models or experiments.

4 Numerical experiments

The described method for adaptive model order reduction is investigated in
numerical experiments. The test systems are a conveyor with a continuous for-
mation of a pile on one end and discharge at the other end, a granular collapse
and granular flow in a slowly rotating drum. The granular dynamics from using
model reduction is compared with reference simulations run in full resolution.
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Table 1: Model and NDEM parameters
d 13, 10 mm
ρ 3700 kg/m3

kn 3 kN/m
e 0.18
µt 0.91
µr 0.32
∆t 5 ms
Np 4− 90 · 103
Nit 150
N ref

it 150, 500

The achieved model order reduction level, h(t) = 1 − Ñp(t)/Np, is monitored.
The systems are selected to represent different types of flow and transitions
between static and dynamic states. Model reduction can be expected to work
well for the formation of piles where the dynamics mainly occur in the surface
layers. For granular discharge and collapse there is high risk of approximation
errors by to predict when and where the aggregate should split and flow. In a
slowly rotating drum the granular flow separate in one layer of rapid flowing
material (shear zone) on top of a plug zone that co-rotate with the drum. The
plug zone does not rotate as an ideal rigid body, however, but has a small creep
shear [20] that may render model reduction into rigid aggregates problematic.
The simulations are made using the simulation software AgX Dynamics [21]
with a prototype implementation of the adaptive model reduction algorithms in
Lua scripts [22]. The prototype implementation is not optimized for speed and
memory and the tests are therefore limited to relatively small systems ranging
between Np = 4− 90 · 103 particles. The model and NDEM simulation param-
eters are listed in Table 1 and the adaptive model order reduction parameters
in Table 2. A linear contact model is used, with normal stiffness kn, and may
easily be replaced by the nonlinear Hertz contact law. Mono-sized spherical
particles are used, except in the granular collapse where bi-disperse spheres are
used. Gravity acceleration is 9.81 m/s2. Videos from simulations are available
as supplementary material at http://umit.cs.umu.se/modelreduction/.

The pile formation is performed by emitting particles at a rate of 1000 s−1

from 0.1 m above a planar conveyor surface moving with horizontal speed 0.1
m/s. The emitter surface is 15d× 4d, in which the particle positions are chosen
randomly. The particles quickly come to relative rest on the conveyor, forming
an elongated pile, roughly 10d high and with static angle repose θconv. The
angle of repose is computed as the average inclination of the pile surface defined
by the surface particles in the mid section of the conveyor, neglecting particles
resting directly on the conveyor surface, see Fig. 5. The discharge take place
on the end of the 50d long conveyor, where the material loose support and flow
over the edge. The cross sectional flow distribution in the horizontal plane is
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Table 2: Model order reduction parameters
parameter value

ξi-mrg
nv 2.5 mm/s
ξs-mrg
nv 2.5 mm/s
ξmrg
tv 2.5 mm/s
ξmrg
rv 0.5 rad/s
ξi-mrg
na 5 m/s2

ξs-mrg
na 5 m/s2

ξmrg
ta 5 m/s2

ξmrg
ra ∞ rad/s
Nc-spl 2
ξi-cnv 0.15 m/s
ξs-cnv ∞ m/s
ξctv 0.15 m/s
ξcrv ∞ rad/s
N tr

it 50, 100
ξi-trnv 2.6 m/s
ξs-trnv 0.26 m/s
ξtrtv 0.26 m/s
ξtrrv ∞ rad/s
ξtrf 0.15, 0.25

ξtrτ ∞
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measured 15d below the conveying surface and the geometric centre of the flow
is computed, (xc, yc). The result is time averaged over 6 s. The conveyor system
involves 90 · 103 particles when the conveyor is filled.

The granular collapse test is made with 4000 particles emitted randomly from
above into a frictionless cubic container with side length 15d. The particles are
left to comte to rest before model reduction is applied. One side-wall is raised
quickly and the particles are left to collapse by the new and unstable force
configuration. Since the side walls are frictionless the raising of the wall does
not disturb the particles other than the change in the confining pressure. The
granular collapse last for about 0.7 s, after which the particle have come to rest
in a semi-pile with well-defined angle of repose, θcollapse. The evolution of the
angle of repose is tracked by estimating the motion of the plane defined by the
particles on the top surface of the granular cube, discarding any particles that
disconnect from the main contact network. Images from simulations are shown
in Fig. 6.

The rotating drum has diameter D = 40d, width w = 7d and is run with
angular velocity Ω = 0.5 rad/s. The corresponding dimensionless Froude num-
ber is Fr ≡ DΩ2/2g ≈ 0.01, which is in the dense rolling flow regime. The
side walls are frictionless while the cylinder surface has the sama friction as be-
tween particles. A slow dense nearly stationary flow with Np = 4864 particles is
established within one drum revolution without applying model reduction and
starting from a regular particle distribution. An image from the simulations is
shown in Fig. 7. The particles have bi-disperse size distribution d1 = 13 mm
and d2 = 10 mm. The mass distribution and cross sectional flow velocity field
are measured and the dynamic angle of repose, θdrum, is computed by tracking
the a D/2 wide section of the surface around the drum centre. When using
sensor split, the sensor is placed around the estimated lift height.

5 Results

The simulation results are labeled either ref-500, ref-150, cs-150, tr-150-50-f or
ctr-150-50-fv, where the first prefix refer to reference simulation or the method
for model reduction, the first number is the number or PGS iterations and the
second number is the number iterations in the background trial solver (tr) using
force balance condition only (f) or in conjunction with velocity condition (fv).
It was found that separation splitting was very sensitive to parameters and
typically lead to either a propagation of splitting over the entire aggregates or
not enough splitting. Therefore it is not applied, i.e., ξs-cnv = ∞, and contact
splitting need to be combined with either sensors (cs) or with trial splitting
(ctr). The results are summarized in Table 3.

The resting angle of repose of the pile formed on the conveying surface is
found to be 40.3± 0.8◦ using contact splitting. This is in good agreement with
the references 41.5 ± 0.7◦ for Nit = 500 and 40.6 ± 0.5◦ for Nit = 150. The
discharge flow at the end of the conveyor is presented in Fig. 8. The cross-
sectional flow distribution is very similar in the three simulations. The model
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v [m/s]
0 0.75 1.50.50.25 1.0 1.25

Figure 5: Simulation test for pile formation and discharge on the ends of a
conveyor. The colour is coded by particle velocity relative to the conveyor
speed and ranges from 0 (blue) to 1.5 m/s or above (red).

Table 3: Simulation results

ref-500 ref-150 cs-150 tr-150-50-f tr-150-50-fv
θconv 41.5± 0.7◦ 40.6± 0.5◦ 40.3± 0.8◦

hmean
conv 0 % 0 % 85 %

θcollapse 36◦ 30◦ 38◦ 34◦

hcollapse 0 % 0 % 50− 100 % 50− 100 %
θdrum 44± 3◦ 43± 2◦ 49± 5◦ 44± 3◦ 45± 2◦

hmean
drum 0 % 0 % 70± 10 % 40± 10 % 40± 10 %
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t = 0 s

t = 0.1 s

t = 0.2 s

t = 0.6 s

t = 1.2 s

t = 0.6 s

Figure 6: Image sequence from granular collapse. The colour is coded by par-
ticle velocity ranging from 0 (blue) to 0.5 m/s or above (red). The top five
figures are reference simulation and the bottom figure uses model reduction
with background trial solve split.
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|v - ω×r|
|ω×r|

0 0.10.05

Figure 7: Image from drum flow simulation. The colour is coded by particle
relative velocity to rigid co-motion with the drum, ranging from 0 (blue) to
10% or above (red). The top figure show the reference simulation, the middle
one uses model reduction with background trial solve split and the bottom one
contact event and sensor split.
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Figure 8: The discharge flow through a horizontal cross-section beneath the end
of the conveyor. The contour plots show the accumulated particles distribution
from the reference simulations Nit = 500 (left), Nit = 150 (right) and simulation
with model reduction using contact and sensor splitting (right). The crosses
mark the geometric centre of the particle distributions.

order reduction level was steady around h = 85 % during the simulation.
The distribution of particles after the granular collapse are displayed in

Fig. 9. The positions are measured at time t = 2 s. The angle of repose,
θcollapse, of the Nit = 500 reference pile is 36.2◦, to be compared with 29.9◦

for the Nit = 150 reference and 37.5◦ and 34◦ for model reduction with back-
ground trial solve with force (f) and force and velocity (fv) split conditions,
respectively. The evolution of the inclination angle of the top surface of the
collapsing cube is found in Fig. 10. The initial collapse is similar in all the
simulations except the tr-150-50-f that evolve somewhat slower initially. The
Nit = 150 reference simulation reach as highest 34◦ and then decrease gradually
due to insufficient sliding and rolling resistance with that number of iterations.
The model reduction simulation become rigid at its maximum angle and fail
to resolve the final relaxation of the slope through small avalanches, that are
present in the Nit = 500 reference simulation. The combination of contact split
and background trial split did not resolve this. The evolution of the model re-
duction level is found in Fig. 11. In the background trial solve split simulation
the reduction level varies between 50 and 100 %. This is close to the theoretical
maximum for the given thresholds, found by analysing the Nit = 500 reference
simulation.

Sample states from model reduction of drum flow simulations are presented
in Fig. 7. The evolution of the dynamic angle of repose is found in Fig. 12. The
time-averaged angle of repose for the reference Nit = 500 is θdrum = 44±3◦. The
background trial solve split method produces a flow with angle 44±3◦ while the
contact plus sensor split methods produces a flow with angle 49± 5◦ and with
notable artefacts appearing as structures with angle much larger than the angle
of repose and high lifting of material in the drum. This is also the reason for
the bigger variation on the averaged angle of repose. No thresholds were found
for the contact split method alone that showed any significant model reduction
but did not produce large approximation errors (overly rigid). No thresholds
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Figure 9: The final particle distribution in the granular collapse simulations:
(a) Nit = 500 reference; (b) Nit = 150 reference; (c) model reduction tr-15-50-
f; (d) model reduction tr-15-50-fv. The blue line indicate the angle of repose
computed from the surface defined by the red particles.
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Figure 10: Evolution of the top surface angle during granular collapse.
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Figure 11: Model reduction level as function of time in granular collapse.
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Figure 12: Evolution of the dynamic angle of repose in the rotating drum.
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Figure 13: Model reduction level h as function of time in the rotating drum.

were found for the contact split method alone that showed any significant model
reduction but did not produce large approximation errors (overly rigid). The
model reduction level over time is presented in Fig. 13. For the contact method
plus sensor split method it varies between 50−75 %. The background trial solve
split oscillate between 25 and 50%. No parameters were found that gave higher
level of reduction without increase of artifacts in the dynamics.

6 Computational acceleration

The potential computational acceleration of using model order reduction in
NDEM simulations is estimated and discussed in this section. The time required
for simulating treal seconds of evolution is the product of the number of time
steps and the computational time for each step

tcomp =
treal
∆t
· [tcoll + tmod + tsolve] (37)

with time serially separated in collision detection, tcoll, model order reduction,
tmod and solver time, tsolve. We define the computational speed-up from model
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order reduction as S ≡ t0comp/tcomp(h), where t0comp refer to a simulation of the
fully resolved system without adaptive model reduction, while tcomp(h) is the
time for a simulation with model reduction level h. It is characteristic for NDEM
simulations that tsolve ≫ tcoll, e.g., 88% of the total time was reported in [23].
We therefore discard collision detection time from here on. When using PGS,
the solve time can be estimated by tsolve = Kcpu · Nc · Nit/S‖, where Kcpu is

the computational time for doing a single contact constraint solve, Nc ∼ npÑp

is the number of contact constraints assuming on average 2np contacts per
particle, and S‖(Ncpu) is the parallel speed-up of Ncpu cores. Given a spatial
error tolerance, ǫ, the required number of iterations scale with the number of
particles as Nit = cÑγ

p /ǫ [19], for constant c ≈ 0.1 and exponent γ = 1/nD that
depend on the whether the system is close to a linear column (nD = 1) , 2D
plane (nD = 2) or a 3D volumetric system (nD = 3). The solve time can thus
be written

tsolve(h) = cKcpu [(1− h)Np]
1+γ /ǫS‖. (38)

The computational overhead for doing merge and refinement using contact or
sensor based splitting do not involve more than one pass through the contact net-
work. The computational time can thus be estimated by tmod = αKcpunpNp/S‖

for some constant α < 1, since the operations do not involve solving the local
contact problem. This imply the following speed-up

S ≈ 1

αN−γ
p + (1− h)1+γ

. (39)

Using background trial solve split for model reduction is more demanding.
If a PGS background solve can be limited to fraction β < 1 of the full system
and run with a larger error tolerance, ǫmod > ǫ, the computational overhead can
be estimated to tmod = cKcpu [βNp]

1+γ
/ǫmodS‖ and the speed-up become

S ≈ 1

β1+γ · ǫ/ǫmod + (1− h)1+γ
. (40)

The computational speed-up, depending on model reduction level h and
overhead factor δ = αN−γ

p or δ = β1+γ · ǫ/ǫmod, is plotted in Fig. 14 for
the case of 3D volumetric systems (γ = 1/3). A significant speed-up of a
factor 5 can be achived even at the modest model reduction level h = 0.7.
The speed-up can reach up to 50 at h = 0.95 and overhead δ = 0.01. The
potential speed-up is lost almost entirely if the computational overhead cannot
be made lower than δ = 0.1. This should be easy to accomplish in the case of
contact and sensor based splitting, especially for large systems where δ ∝ N−γ

p .
Achieving a significant speed-up from background trial solve split thus relies on
β1+γ · ǫ/ǫmod . 0.1. This can be reached if it is sufficient to apply background
solve on a fraction of β = 0.2 of the full system or use a background error
tolerance ǫmod = 10 · ǫ. Combining the two possibilities, an overhead of about
0.1 can be reached by β = 0.5 and ǫmod = 4 · ǫ. The prototype implementation
do not scale sufficiently well for large systems to verify these estimates. To
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Figure 14: The computational speed-up depending on model reduction level and
computational overhead.

ease prototyping and experimentation with different algorithms and parameters
for model order reduction these routines were implemented in a Lua scripting
framework which lead to an unnecessary amount of data copying of states.

7 Conclusion and discussion

A method for adaptive model order reduction for nonsmooth discrete element
simulation has been developed and analysed. In the reduced model rigid ag-
gregate bodies are substituted for collections of contacting particles collectively
moving as rigid bodies. Conditions for model reduction and refinement are de-
rived from a model approximation error. The scaling analysis show that the
computational performance may be increased by 5 − 50 times for a model re-
duction level between 70− 95 % given that the computational overhead do not
exceed the given scaling conditions. The method is highly applicable for gran-
ular systems with large regions in resting or rigidly co-moving state over long
periods. It is less efficient and harder to parametrize for systems with sudden
and frequent transitions between rigid to liquid or gaseous regime and it is di-
rectly inappropriate for systems dominated by shear motion. Furthermore, the
presented method is fully compatible with rigid multibody dynamics and can
support particles merging with articulated mechanisms, such as the excavator
in Fig. 1.

A number of observations were made in the numerical experiments. When
doing model refinement based on contact events, it is in general insufficient to
split only particles that are impacted directly. The refinement typically need to
propagate further into the contact network. The refinement depth N spl

c = 2 was
used in the experiments. Refinement based on contact separation events was
found to be particularly difficult to parametrize and was eventually not used
at all. Small changes in the separation threshold easily altered the behaviour
from non-responding to splitting propagating throughout the contact network.
As an effect, contact event based refinement is not reliable for simulating quasi-
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stable configurations and gravity driven flow. In the absence of impacts, rigid
aggregates remain rigid indefinitely. Split sensors can be used to remedy this
when there is knowledge on where to place such sensors to guarantee refinement.

When using background trial solve it was found that the force balance con-
dition alone give reliable prediction for model refinement. No improvement was
found by adding torque balance or contact velocity conditions. Using back-
ground solve, velocity condition alone led to higher fluctuations in the model
order reduction level than using both force and velocity conditions.

To increase the applicability of adaptive model order reduction for discrete
element methods further, the reduced model need to be extended beyond rigid
aggregates to elastic and shearing modes. The application of model order re-
duction to conventional smooth DEM is also an interesting question to address.

Appendix

A. Numerical integration of NDEM

The numerical time integration scheme is based on the SPOOK stepper [18]
derived from discrete variational principle for the augmented system (x,v,λ, λ̇)
and applying a semi-implicit discretization. The stepper is linearly stable and
O(∆t2) accurate for constraint violations [18]. Stepping the system position and
velocity, (xi,vi) → (xi+1,vi+1), from time ti to ti+1 = ti + ∆t involve solving
a mixed complementarity problem (MCP) [24]. For a NDEM system the MCP
take the following form

Hz+ b = wl −wu

0 ≤ z − l ⊥ wl ≥ 0

0 ≤ u − z ⊥ wu ≥ 0

(41)

where

H =









M −GT
n −GT

t −GT
r

Gn Σn 0 0
Gt 0 Σt 0
Gr 0 0 Σr









, (42)

z =









vi+1

λn,i+1

λt,i+1

λr,i+1









, b =









−Mvi −∆tM−1fext
4
∆t

Υngn −ΥnGnvi

0
0









, (43)

and the solution vector z contains the new velocities and the Lagrange multipli-
ers λn, λt and λr. For notational convenience, a factor ∆t has been absorbed
in the multipliers such that the constraint force reads GTλ/∆t. The upper and
lower limits, u and l in Eq. (41), follow from Signorini-Coulomb and rolling re-
sistance law with the friction and rolling resistance coefficients µt and µr. Since
the limits depend on the solution this is a partially nonlinear complementarity
problem. wl and wu are temporary slack variables. Each contact n between
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body a and b add contributions to the constraint vector and normal, friction
and rolling Jacobians according to

g(n) = ~nT
(n)(~x[a] + ~d

(n)

[a] − ~x[b] − ~d
(n)

[b] )
eH
(α),

G
(n)
n[a] = eHg

eH−1
(α)

[

−~nT
(n) −(~d(n)

[a] × ~n(n))
T

]

,

G
(n)
n[b] = eHg

eH−1
(α)

[

~nT
(n) (~d

(n)

[b] × ~n(n))
T

]

, (44)

G
(n)
t[a] =





−~t(n)T1 −(~d(n)

[a] ×~t
(n)

1 )T

−~t(n)T2 −(~d(n)

[a] ×~t
(n)

2 )T



 ,

G
(n)
t[b] =





~t
(n)T

1 (~d
(n)

[b] ×~t
(n)

1 )T

~t
(n)T

2 (~d
(n)

[b] ×~t
(n)

2 )T



 ,

G
(n)
r[a] =







01×3 ~t
(n)T

1 01×3 −~t(n)T1

01×3 ~t
(n)T

2 01×3 −~t(n)T2

01×3 ~n(n)T
01×3 −~n(n)T






,

G
(n)
r[b] =







01×3 −~t(n)T1 01×3 ~t
(n)T

1

01×3 −~t(n)T2 01×3 ~t
(n)T

2

01×3 −n(n)T 01×3 ~n(n)T






,

where ~d
(n)

[a] and ~d
(n)

[b] are the positions of the contact point n relative to the
particle positions ~x[a] and ~x[b]. The orthonormal contact normal and tangent

vectors are ~n(n), ~t(n)1 and ~t(n)2 . For linear contact model eH = 1 and for the
nonlinear Hertz-Mindlin model eH = 5/4. The diagonal matrices Σn, Σt , Σr

and Υn contain the contact material parameters and are as follows

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1Nc×Nc
,

Σt =
γt
∆t

12Nc×2Nc
,

Σr =
γr
∆t

13Nc×3Nc
, (45)

Υn =
1

1 + 4 τn
∆t

1Nc×Nc
.

The MCP parameters map to DEM material parameters by εn = eH/kn, γ
−1
n =

knc/e
2
H
and τn = max(ns∆t, εn/γn), with elastic stiffness coefficient kn and vis-

cosity c. For the Hertz-Mindlin contact law, kn = eHE
√
r∗/3(1 − ν2) where

r∗ = (ra + rb)/rarb is the effective radius, E is the Young’s modulus and ν is
the Poisson ratio. For small relative contact velocities the normal force approx-

imates G(n)T
n λ

(n)
n ≈ ε−1

n G(n)T
n g

(n)
n = ±kn

[

g2eH−1
n + cg

2(eH−1)
n ġn

]

n. High ingo-

ing velocities are treated as impacts and this is done post facto. After stepping
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the velocities and positions an impact stage follows. This include solving a MCP
similar to Eq. (41) but with the Newton impact law, G(n)

n v+ = −eG(n)
n v−, re-

placing the normal constraints for the contacts with normal velocity larger than
an impact velocity threshold vimp. The remaining constraints are maintained

by imposing G(n)v+ = 0. This can be expressed by a matrix multiplication
Gnv+ = −EGnv−, where the diagonal matrix E values alternate between e
and 0 for impacting and resting contacts, respectively. The MCP is solved us-
ing a projected Gauss-Seidel (PGS) algorithm, as described in Ref. [19]. The
algorithm is listed in Algorithm 2. The NDEMmethod with PGS solver is imple-
mented in the software AgX Dynamics [21]. In the present study γt = γr = 10−6,
ns = 2 was used and a linear contact model, eH = 1, for consistency with con-
tacts between elementary rigid bodies and aggregate bodies, for which linear
contact constraints are default in AgX.

Algorithm 2 PGS solver for the MCP

if impact stage then

bn = EGnv

else if continuous stage then

bn = (4/∆t)Υngn −ΥnGnv

pre-step v = v+∆tM−1fext
end if

q = [−bT
n , 0, 0]

T

for k = 1, . . . , Nit and while criteria(r) do
for each contact n = 0, 1, . . . , Nc − 1 do

for each constraint α of contact n do

r
(n)
α,k = −q(n)

α,k +G(n)
α v ⊲ residual

λ
(n)
α,k = λ

(n)
α,k−1 +D−1

α,(n)r
(n)
α,k ⊲ multiplier

λ
(n)
α,k ← projCµ

(λ
(n)
k ) ⊲ project

∆λ
(n)
α,k = λ

(n)
α,k − λ

(n)
α,k−1

v = v+M−1GT
α,(n)∆λ

(n)
α,k

end for

end for

end for
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