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The computation of contact forces for non-penetrating bodies subject to dry friction
is particularly difficult. There is not even agreement on the correct analytic formulation
of dry frictional contacts laws [1]. Our work in this field focuses on real-time simulation
of heavy machines such as cranes, track and wheel loaders among others, for the
purpose of operator training. Dry friction plays a central role in these, and contact
forces are strongly coupled with stiff multibody systems. Performance and stability of
the numerical methods are paramount. Direct solvers are often necessary because of
the mass ratios involved and the need for fidelity. These are not scalable like iterative
ones, and do not allow simple and intuitive implementations such as non-linear Gauss-
Seidel relaxation methods. A unified framework including all aspects of the dynamics
at the theoretical level, the time discretization, and the numerical solvers themselves
is required, and this is what we present.
Consider the Lagrangian L(q, q̇) for a finite dimensional system with generalized

coordinates q, as well as indicator functions g(q, t), a(q, q̇, t) for holonomic and non-
holonomic constraints, respectively. Our technique is to augment the Lagrangian and
introduce the dissipation potential as follows

L(q, q̇) +
ǫ

2
λTλ+ λT g

R =
ǫτ

2
λ̇T λ̇+ τλ̇TGq̇ +

γ

2
α̇T α̇+ α̇T a.

(1)

The parameters ǫ, γ ≥ 0 are singular perturbation which yield perfect constraints as
ǫ, γ ↓ 0, including (∂g/∂q)q̇ = 0. The parameter τ ≥ 0 is a time constant for dissipation
and produces constraint stabilization needed in numerical integration.
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This Lagrangian is then seen as that of the two sets of bodies, namely, those with
generalized coordinates q and strictly positive kinetic energy, and those with general-
ized coordinates λ with zero kinetic energy, the ghosts. The equations of motion of the
system are then the standard Euler-Lagrange equations for constrained multibodies
in descriptor form, and subject to the non-potential forces −∂R/∂q̇, −∂R/∂λ̇, and
−∂R/∂α̇ acting on the q, λ, and α variables, respectively. Inequality constraints lead
to variational inequalities as equations of motion. Note that restrictions c(q) ≥ 0 are
never relaxed in the present framework. The ghost velocities α̇ and λ̇ are novel elements
providing for a unified treatment of holonomic and non-holonomic constraints.
Considering the variables λ as true mechanical degrees of freedom of ghost particles,

it is then possible to impose constraints and potentials of dissipation on these by
introducing secondary ghosts. When this is done, we can construct a Lagrangian and
potential of dissipation of the form

L = L(q, q̇) +
ǫ

2
νT c(q)

R = (γ/2)β̇T β̇ + β̇TD(q)q̇ + (δ/2)σ̇T σ̇ + σ̇T (µν − ‖β̇‖) +R(q, q̇).
(2)

Here, L(q, q̇) is the Lagrangian corresponding to a given multibody system with gen-
eralized variables q, and subject to potentials of dissipation R(q, q̇), which may in-
clude ghosts. The vector ν ≥ 0 contains the normal forces corresponding to a non-
penetration constraint with vector indicator c(q) ≥ 0, β̇ are the contact tangent forces,
D(q)q̇ is the projection of the velocities in the tangential contact plane, and σ̇ ≥ 0 is
the tangential contact speed.
With these definition, the variational inequalities of motion are a solvable mixed non-

linear complementarity problem by applying the Euler-Lagrange equations to each of
the variables, q, ν, β and σ. Other constitutive laws for viscoplastic materials and a
variety of non-ideal constraints can be constructed with the same approach.
We then construct an integrator using discrete time variational mechanics [2]. The

resulting semi-implicit method is stable in the limit of vanishing perturbation. A
suitable linearization yields robust constraint stabilization.
Finite regularization corresponds directly to physical elasticity and viscosity param-

eters, and the equivalence can be verified numerically. On the computational side,
the regularization parameters correspond directly to smoothing used in interior point
and smoothed Newton methods for solving complementarity problems for instance.
Using finite values for the perturbations avoids degeneracy and ill-conditioning and
can considerably accelerate the convergence of iterative methods such as the common
non-linear Gauss-Seidel ones, as we show with simulation data.
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