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Fast and stable simulation of granular matter and machines is achieved 

through a unified model for particles, fluids and rigid bodies based on 

constraint multibody systems and using dynamic resolution. 

INTRODUCTION 

We present mathematical models and numerical techniques designed to address 

the challenges of real-time simulator training for earth moving equipment involv-
ing heavy vehicles and granular matter. The same techniques have also been ap-

plied to mix granular matter with a nearly incompressible SPH model of water. 
The central elements in our technique are a unified model based on constrained 

multibody systems including point particles and rigid bodies, a dynamic resolu-
tion technique based on merging and splitting elementary bodies. The numerical 

integration is based on a time-discrete variational formulation of analytic mechan-
ics, which is closely related to the Rattle and Shake [3] solvers. We have modified 

these by introducing stabilized linear approximations to avoid solving the non-
linear equations exactly [5]. Frictional contact forces are modeled using a linear 

complementarity (LCP) formulations similar to those already well-known in this 
field [8]. Our deviation from these models is mainly in the solution technique, 

which mixes a direct LCP solver for computing normal forces and a Gauss-Seidel 
(GS) process to solve for the frictional ones. The SPH model includes kinematic 
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constraints for incompressibility and for the boundary conditions. The latter are 

formulated as non-penetration conditions producing also buoyancy for immersed 
bodies. Another novelty of our overall method is the introduction of dynamic 

resolution using a merge-split technique based on local analysis of contact forces 
and complementarity conditions. A significant result is the real-time simulation of 

a tractor, which can shovel granular matter consisting of moderately small ele-
ments integrated in an interactive 3D application used for operator training. The 

conventional computational techniques for granular materials are based either on 
modeling the system as distinct particles [7] or using continuum mechanics with 

specific constitutive laws for granular matter and discretization using finite ele-
ments or mesh-free methods. In turn, the discrete element techniques are phrased 

either as penalty methods, e.g., the Hertz contact model, requiring very small time 
steps. Complementarity formulations of contact models solved using Gauss-Seidel 

iterations [9] can use larger time steps, but have slow, linear convergence. By con-
trast, interactive applications put strong constraints on speed and time steps. There 

are usually roughly 10 milliseconds to compute a 1/60 second update. With this 
budget, there is usually only time for a single step with size h = 1/60 s. In turn the 

stable simulation of machines demands precise solutions to maintain stability. 
One additional reason for the choice of our integration method is that it is solidly 

anchored in discrete time mechanics and is in fact much more stable than higher 
order explicit methods. It is also necessary to explicitly compute the Lagrange 

multipliers with good precision, using a direct method for the most part, or with a 
good preconditioner. Our experience has shown that neither explicit penalty 

methods nor GS based solver can be tuned to provide sufficient stability.  

THEORY AND METHODS  

Our starting point is the descriptor form of multibody dynamics. We write M 
for the system mass matrix, G for the constraint Jacobians, x for the generalized 

position variables v for the velocities, and  for the Lagrange multipliers. The 

constraint indicators are g(x) and these can be either equality or inequality condi-

tions.  
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After discretization and linearization, our time stepping method requires the so-

lution of the following Mixed Linear Complementarity Problem (MLCP) 
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,       with  H =
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G

  and   z =
v

. (1) 

Vectors l and u are lower and upper bounds, and vector b contains stabilization 

terms to avoid numerical drift away from the in constraint surface. The slack vari-
ables w+, w- are discarded once the solution is computed. The inequalities and or-

thogonality should be understood component wise.  is a non-negative diagonal 

matrix which protects against constraint degeneracy and introduces a small 

amount of elasticity. We typically use perturbations which are eight orders of 
magnitudes less than the masses. Details of this model are presented elsewhere, 

along with a description of our direct solver which is based on a non-smooth 
Newton method [5,4]. It is still impractical to solve system (1) directly for very 

large matrices. Reasonable approximations of Coulomb frictional forces also 
prove impractical to solve directly and therefore, we have resolved to a split itera-

tive method in which normal forces are computed directly and frictional ones are 
processed using a GS process. For SPH fluids, we have used both GS and precon-

ditioned Conjugate Gradient solvers with success [1] to produce very near incom-
pressibility as well as mixed simulation involving boundary conditions and buoy-

ancy.  

The H matrix for coupled system has the form of nested dissection shown in Fig. 

1 where the blocks, from left to right, “fluid”, “rocks” and “vehicle” each have the 
matrix form shown in Eqn. (1). For the latter, examples of the sparsity pattern of 

the H matrix are shown in Fig. 1 for each of the subsystems (20.000 fluid parti-
cles, 30 rocks and 12 machine parts). The “contact” blocks involve pairwise con-

straints couplings between elements of the subsystems and consist of relatively 
few equations. The fluid matrix in Fig. 1 scales linearly with the number of parti-

cles. This is because each particle brings in a fixed number of element per row, 
around 25 for the SPH kernel we use. For the rigid rock model, each body brings a 

number of contacts (at worst 20) related to the shape of the geometry. A good di-
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rect solver such as SuperLU [6] scales linearly for such problems. Note that both 

the rock pile and the loader are overdetermined.  

  

Fig 1. Schematic illustration of the system matrix H and its sparsity patterns. 

The dynamic resolution algorithm is illustrated in Fig. 2. Contacting bodies are 

merged into rigid super-bodies, the filled geometries, if the relative velocity at the 
contacts are below a given threshold and contact forces are all sufficiently posi-

tive. A merge event is marked in the figure with a dashed line. Conversely, any 
geometry exposed to an impacting, sliding or separating contact is split from the 

super-body it belongs to. Split and merge events are propagated using GS itera-
tions ordered as a breadth first traversal starting at the transition points. Splits and 

merge operations are recursive so that meta bodies can be agglomerated and split. 
Elementary bodies are atomic and cannot be fractured. The merge-split operations 

preserve the important invariants, namely, total mass, inertia, momentum, angular 
momentum. The energy is preserved up to the accuracy implicitly set by the 

thresholds. 

 

Fig 2. Illustration of the dynamic resolution technique. 

THEORY AND METHODS  

Still frames from our earth moving training simulator are shown in Fig. 3. On a 

laptop with 64 bit 3.03 GHz processor and 4 Gb RAM a single simulation with a 

pile of 500 rocks and a tractor made of 12 bodies and 15 joints, the computational 
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time was between 2-3.5 s per 1 s of simulation time in single thread mode. The 

variation depends on the amount of interaction between the vehicle and the pile. 

The time step is 1/60  0.017 s, and the rocks are represented as composite 

spheres with mean size of 0.6 m, and realistic mass density. The numerical solver 

takes roughly 75% of the time and collision detection dominates the remaining 
time. Using dynamic resolution, the computational time per simulated second is 

reduced to 0.1 s when the pile is at rest, 0.8 when running the load bucket into the 
pile and interacting with 150 bodies and 1.6, or when driving over the rocks with 

the vehicle. For these examples, the split-merge procedures take up to 5% of the 
computational time while it improves the speed by 100-2000%, depending on the 

amount of interaction. 

   

Fig 3. Image from prototype system, final wheel loader simulator and samples 
from simulation involving a mix of rigid particles and SPH fluid.  

The implementation has room for further optimization and acceleration. It is pos-
sible for instance to use graphical processing units (GPGPU) to perform some of 

the iterative computations, part of work in progress. A detailed analysis of 
GPGPU for these systems and different combinations of direct and iterative 

solvers will be presented elsewhere. A two-dimensional example of coupling be-
tween our SPH based nearly incompressible fluid and immersed pebbles is shown 

in Fig. 3. For a 3D configuration, not shown here, our GS based implementation 
on the laptop described above can handle 1000 particles in real-time [1]. Prelimi-

nary results show roughly a factor 100 speedup when applying a parallel conju-

gate gradient solver on GPGPU, i.e., 100.000 particles in realtime. The particular 

2D example in Fig. 3 has 222 rigid particles, 861 non penetration contacts and 
1235 fluid elements was run with time step 10 ms and with computational time 

100 ms per time step, still on the same laptop. With iterative solvers and paralleli-
zation on streaming processors the computational speeds for constraint based 
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methods are steadily improving. For instance, Tasora and Negrut [9] report 1000 

bodies at 0.43 s per 0.01 s time step in the serial version and a speed-up by a fac-
tor seven to 0.06 s per time step when running on GPGPU. 
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