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Abstract

We investigate the use of reduced-order modelling to run discrete el-
ement simulations at higher speeds. Taking a data-driven approach, we
run many offline simulations in advance and train a model to predict
the velocity field from the mass distribution and system control signals.
Rapid model inference of particle velocities replaces the intense process
of computing contact forces and velocity updates. In coupled DEM and
multibody system simulation the predictor model can be trained to output
the interfacial reaction forces as well. An adaptive model order reduction
technique is investigated, decomposing the media in domains of solid, liq-
uid, and gaseous state. The model reduction is applied to solid and liquid
domains where the particle motion is strongly correlated with the mean
flow, while resolved DEM is used for gaseous domains. Using a ridge
regression predictor, the performance is tested on simulations of a pile
discharge and bulldozing. The measured accuracy is about 90% and 65%,
respectively, and the speed-up range between 10 and 60.

1 Introduction

Computational modelling of granular dynamics has important applications in
both science and engineering, but is challenging due to the complex nature of
granular media. The discrete (or distinct) element method (DEM) is perhaps the
most versatile numerical method for it. It supports the three granular phases,
solid, liquid, and gas. It can capture both discrete and collective phenomena,
that depend on contact parameters, particle shape and arrangements. DEM
simulations are, however, computationally intense, which limits the practical
applicability.

There are basically three methods of accelerating a DEM simulation. Firstly,
the computational speed can be increased by parallelization and use of special-
ized hardware [14, 21, 7, 22, 8, 16], but the monetary cost and energy con-
sumption grows rapidly with system size. Secondly, changing from explicit to
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implicit time-integration allows for much larger time-steps than the limit set by
the time-period of free vibrations for particles of given mass and contact stiff-
ness. The computational bottleneck is then shifted from collision detection to
solving the equations of motion and contact force computation. Depending on
the system properties and error tolerance this may be very advantageous [20].

The third way is to employ some form of model order reduction, where
the original system is substituted with an approximation that require fewer
variables and computational operations per simulated unit of time. Normally,
model order reduction is seen as a projection from a high-dimensional space to
a low-dimensional subspace, where the time-integration can be performed with
manageable computational intensity. Once advanced in time, the solution can be
projected back to the original high-dimensional space. The process introduces
a model reduction error, that may or may not be acceptable for the intended
purpose of the simulation.

In the present paper we explore the possibility of accelerating DEM sim-
ulation using data-driven model reduction. The idea is to perform numerous
detailed simulations of a system in advance, train a model to predict new system
states and use these to advance a running simulation faster in time than the
original simulations. The question is whether and how this is at all feasible, and
what speed-up and accuracy can be achieved.

The data-driven approach has the disadvantage that a certain amount of
resolved simulations must be performed in advance to generate training data
for building a model. In fact, a new model must be generated for each confining
geometry and set of material parameters. The question is whether the advan-
tages of the method can outweigh this drawback. Simulations that must run at
real-time speed is one type of application that may benefit from using this tech-
nique. Specific examples are simulators for operator training, system testing
with hardware-in-the-loop or embedded simulations serving a model-based con-
troller. Another class of applications is surrogate models [6] for simulation-based
planning and optimization in parameter spaces too large to be covered with full-
resolution simulation, but manageable with a reduced-order model trained on a
comparatively small set of resolved simulations.

To increase the knowledge about the challenges and opportunities of ac-
celerating DEM simulations using data-driven model order reduction, we have
developed and tested a realisation of this idea. First, a general method is de-
scribed, and error measures are introduced. Next, this is implemented, using
a ridge regression model for predicting the velocity field. The computationally
expensive process of computing contact forces is substituted by rapid inference
of the model to output the velocity field at the particle positions. This approach
can be expected to perform well in the solid and liquid regime but poorly in
the gaseous regime, where individual particle motion is not strongly correlated
with the mean flow. Therefore, we investigate an adaptive model order reduc-
tion technique, where the system is decomposed in solid/liquid, and gaseous
parts. Gaseous sub-domains are integrated using full resolution DEM while the
reduced-order model is applied to the solid/liquid sub-domains. The method is
tested on two different systems, a pile with controlled feed and gravity-driven
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discharge flow, and a blade cutting and pushing through a particle bed like a
bulldozer blade. In both cases a model is trained to predict the velocity field
from the given input signals and the current mass distribution. In the bulldozer
case, the force on the blade is also predicted. The accuracy and computational
speed-up are analysed on these systems.

We are motivated by, but do not explore, the opportunities with deep learn-
ing, that shows promising results for predicting the velocity field in fluid dy-
namics [10, 4]. The present work is a first step in that direction for granular
media. As such, it is natural to investigate the performance of a plain regression
model and building knowledge for employing more advanced machine learning
algorithms.

1.1 Previous work

In the DEM literature there are only a few examples of model order reduc-
tion. Boukouvala et al. [3] explored discrete element reduced-order modelling
for particle mixing in a blade blender. By principal component analysis (PCA)
of simulation snapshots, sampled in a regular grid covering the mixer interior,
models were built for predicting the particle velocity field and blade force as
function of the mixer control parameters (blade speed and geometry). In turn
this was used to develop a surrogate model for optimization of mixing per-
formance based on a relatively small set of time-consuming DEM simulations.
This work was later extended by Rogers et al. [17], considering also the effect of
dynamic response from changes in the control parameters. The reduced-order
model was not used to accelerate the DEM simulations themselves.

In [19], Servin and Wang developed an adaptive model order reduction tech-
nique which substitute particles that collectively move as a single rigid body,
with six degrees of freedom rigid aggregates of the corresponding mass, momen-
tum, and contact shape. Different strategies for predicting when the aggregate
should split in smaller constituents was investigated. The method is severely
limited by that the reduced model support only rigid body modes of motion.

Recently, Zhong and Sun [25], with inspiration from [24] and [11], inves-
tigated a reduced-order model for granular materials under small viscoelastic
deformations, with fix connectivity between the particles, using proper orthog-
onal decomposition (POD) of the displacement field.

Pseudo-particle modelling [5] may be considered a form of model order re-
duction. Each pseudo-particle represents the collective effect of many small real
particles. The pseudo-particle shape and contact parameters are considered
model parameters that are calibrated to give the material the approximate bulk-
mechanical properties of the original system. We have not found any example
in the DEM literature where the state of a fine-resolution particle model is pro-
jected to a pseudo-particle subspace and projected back after time-integration.
Ideas of this type may be found in the literature of computer graphics [9] for
the purpose of visual appearance and with no analysis of the reduction error.
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2 Model order reduction

Let us first summarize the classical meaning of model order reduction [2]. Con-
sider a dynamical system

ẋ = f(x,u) (1)

y = g(x,u) (2)

with vectors of state x(t) ∈ Rn, input u(t) ∈ Rm and output y(t) ∈ Rq. The
problem of model order reduction can be stated as follows. Find a lower order
model

˙̂x = f̂(x̂,u) (3)

ŷ = ĝ(x̂,u) (4)

that produce approximately the same observations

‖y − ŷ‖ ≤ εr ‖u‖ (5)

to an accuracy εr for all input signals u ∈ U relevant to the particular ap-
plication. The idea is that the subspace where the reduced state vector lives,
x̂(t) ∈ Rr, is of much lower dimension than the original system space, i.e.,
r � n. Note that the observation vector, ŷ ∈ Rq, must have the same dimen-
sions as in the original system or there must exist a projection operator to that
space.

The standard methods for computing approximate low-order models are the
SVD-based and Krylov-based approximation methods [2]. The proper orthog-
onal decomposition (POD) method is a special case of SVD-based model order
reduction that is particularly popular in computational mechanics and fluid dy-
namics. However, granular media modelled using DEM differ from many other
dynamical and physical systems in that the connectivity of the variables changes
frequently and unpredictably. Therefore, a non-standard model order reduction
approach is necessary.

3 A reduced-order discrete element method

In this section we describe a reduced-order model for granular media simulation
using the discrete element method.

3.1 Resolved DEM

We first briefly describe the standard discrete element method. We will refer to
this as resolved DEM.

Each of the Np particles, indexed a ∈ N , has a position xa(t) ∈ R3, velocity
va(t) = ẋa, scalar mass ma and diameter da. For clarity of the exposition, we
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ignore the rotational degrees of freedom. The equations of motion are

ẋ = v (6)

Mv̇ = f(x,v, t) (7)

with system position vector x ∈ R3Np , velocity vector v ∈ R3Np , diagonal mass
matrix M ∈ R3Np×3Np . The force f is the sum of external forces and contact
forces. Each of the Nc particle-particle contacts, indexed by n ∈ Nc, have a
contact position xc,n and pairwise contact force fabn ∈ R3 on particle a from
particle b. Each contact force has one normal and two tangential (friction)
components. The computationally intense part is the numerical integration
of the velocity which involve contact detection and contact force computation.
Thus, we ascribe the system a computational dimensionality of Nd = 3Np+3Nc.
This is simply the number of equations of motion and contact force equations
to be solved during each simulation time-step. If rotational degrees of freedom
are included, as well as rolling resistance, this changes to Nd = 6Np + 6Nc. For
rough estimates it can be assumed that each particle have up to 10 contacts
with neighbouring particles, i.e Nc . 5Np.

In DEM, numerical integration is normally performed using an explicit method
with small time-steps, that resolve the natural oscillation frequency given the
particle mass and stiffness. The computational bottleneck is the collision de-
tection and force calculation from the contact overlap and relative velocity. For
some systems it is more beneficial to use the time-implicit method referred to
as nonsmooth contact dynamics, or nonsmooth DEM [15, 20]. This allows for
large time-step integration, moving the computational bottleneck to the process
of solving the nonlinear equations (variational inequalities) from the Signorini-
Coulomb and Newton contact laws. The computational complexity and speed,
stands in direct relation to the computational dimensionality, but the explicit
and implicit methods scales differently [20].

3.2 Reduced DEM

Let the particles be divided in two subsystems, A and B, such that x = [xA,xB ]
and v = [vA,vB ]. The force is divided as f = [fA+fAB ,fB +fBA], where fAB
is the interfacial forces on A from B, and fA and fB denote forces acting only
on particles within A and B, respectively. The computational dimensionality of
the system can be decomposed as Nd = 3(NA

p + NB
p ) + 3(NA

c + NB
c + NAB

c ).
Assume that the particles in subsystem B move according to a known velocity
field u(x, t). Each particle b ∈ NB thus has a known velocity vb = u(x, t)x=xb

at coordinate x and time t. We abbreviate this as ẋB = u(xB , t). Consequently,
the particle acceleration is v̇b = ∂tu(xb, t) + vb · ∇u(x, t)x=xb . This eliminates
the equation for v̇B and leave us with the following, reduced, set of equations
of motion [

ẋA
ẋB

]
=

[
vA

u(xB , t)

]
(8)

MAv̇A = fA + fAB . (9)
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Figure 1: Illustration of a granular system divided in a high-resolution part (A),
reduced-order part (B) and coupling with a multibody system (C).

If the velocity field u(x, t) can be computed with negligible effort, the computa-
tional intensity of the system is that of integrating Eq. (9). The dimensionality
of the reduced model is then N ′d = 3NA

p + 3(NA
c +NAB

c ). Assuming each par-
ticle is in contact with a handful of other particles the reduction factor become
R ≡ N ′d/Nd & NA

p /Np. In our implementation and tests, we include rotation
in resolved DEM but not in reduced DEM.

3.3 Model reduction errors

There can be two sources of errors in the described reduced-order model. Firstly,
the model velocity field u′(x, t) may deviate from the true mean velocity u(x, t).
Secondly, the particle velocities may deviate from the mean velocity field. One
quantity that captures the level of fluctuations is the so-called granular temper-

ature, T (x, t) =
〈

[va − u(x, t)]
2
〉

, where 〈. . .〉 denote averaging over particles

in a small volume, centred at x. For the mean squared deviation of the particle
velocities from the model velocity field we observe〈

‖va − u′‖2
〉
≤
〈
‖va − u‖2

〉
+
〈
‖u− u′‖2

〉
. (10)

We therefore introduce the granular temperature error

ET (t) ≡

 1

VB

∫
VB

w(x)

〈
‖va − u‖2

〉
v20

d
3
x

1/2

(11)

and the velocity error associated with the model reduction

Ev(t) ≡

 1

VB

∫
VB

w(x)

〈
‖u− u′‖2

〉
v20

d
3
x

1/2

(12)

where the integrals are over the volume VB enclosing the reduced subsystem B
and v0 is a characteristic velocity for the system that the model should be able
to resolve. The errors can be computed with no weight, w(x) = 1, or weighted
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by the local mass density, w(x) = ρ(x)/ρ0, relative to a nominal bulk density
ρ0 to suppress harmless errors in dilute region. If a surface height function
z = h(x, y) is tracked during a simulation, it can be interesting to analyse the
surface height error

Eh(t) ≡
[

1

V

∫
A

[h(x, y)− h′(x, y)]
2

dA

]1/2
(13)

where h′(x, y) is the surface height function using the reduced model, A is the
projected area of the system in the xy plane and V is the volume enclosed by
h(x, y) and some reference surface h0(x, y).

3.4 Extension to multibody systems

Consider the presence also of a rigid multibody system C with position xC ,
velocity vC and mass MC . The multibody system has articulation joints and
actuators that are represented by a constraint vector gC(xC ,vC , t) = 0 with
Jacobian GC = ∂gC/∂xC . The forces on the multibody system are the con-
straint force GCλC , external force fC and contact forces fCA and fCB from
the resolved system A and the reduced system B. The extended system has the
following equations of motionẋAẋB

ẋC

 =

 vA
u(xB , t)
vC

 (14)

[
MAv̇A
MC v̇C

]
=

[
fA + fAB + fAC

fC + fCA + fCB +GCλC

]
(15)

0 = gC(xC ,vC , t). (16)

The multibody system has some velocity vBC at the interface between system
B and C, which is a contributing cause of the velocity field u(x, t) in B. The
contact force fCB on system C from B is either computed from a contact model
or as an additional output of the reduced-order model.

3.5 Adaptively reduced DEM

The purpose of the model reduction is fast simulation with sufficient accuracy.
Fast simulation is achieved by minimizing the number of dynamic particles, NA

p ,
that are simulated with high computational intensity in system A. High accu-
racy requires that system B does not include large domains with high granular
temperature, where the individual particle motion deviate substantially from
the mean flow. The solution is to adaptively control which regions and what
particles are simulated with the reduced DEM and resolved DEM, keeping the
reduction factor R and the effect of the granular temperature error ET (t) at
minimum. This is carried out as follows, with reference to the illustration in
Fig. 1.

7



The reduced model velocity field, u′(x, t), is assumed to be known. Each
particle a has a speed ∆va = ‖va − u′‖ relative to the velocity field. Particles
are kept dynamic and part of system A as long as their relative speed exceeds
a threshold value ∆va > εv0 for some error tolerance ε, which is application
specific. Particles with relative speed below the threshold value, ∆va ≤ εv0,
are simulated with the reduced model in system B. Now, contacts in granular
media are strongly dissipative. Consequently, particles in A that repeatedly
collide with particles in B will have a velocity that quickly approach the velocity
field and become part of system B.

It is easy to conceive extensions to this basic scheme. Particles in B that are
impacted can be made dynamic and part of system A. If the received impulse
is large enough, and the particle lack contact support, it will no longer co-move
with the velocity field and remain dynamic. Otherwise, it will merge back. If it
is possible to predict regions of high granular temperature, the particles there
can be kept dynamic. This is useful at outlets, belt conveyor endpoints or when
releasing material from a digging tool, where the flow transitions quickly from
solid or dense liquid phase into gaseous phase and free fall. If the velocity field
has positive divergence, or if the mass density decrease well below a nominal bulk
density, that is a clear indication that the structural rigidity is lost. Particles
in such regions are subject to gravitational acceleration, which will eventually
cause energetic impacts and rapid increase in the granular temperature.

4 A velocity field predictor

Reduced-order DEM simulation, as outlined in Sec. 3, rely on a lower-order
model for predicting the velocity field in the granular media. In this section we
present a regression model for discrete velocity field prediction and the tech-
niques we use for sampling training and test data from resolved DEM simula-
tions.

4.1 Coarse-graining

Coarse-graining is a technique for sampling and averaging particle states to
obtain macroscopic fields. The field values at any coordinate x is a weighted
average of a discrete set of particle and contact variables in a neighbourhood con-
trolled by a coarse-graining function φ(x, R) with smoothing length R. For sam-
pling velocity fields when running the reduced-order model, we choose a Heav-
iside coarse-graining function. For particles near the coarse-graining bound-
ary, the mass is weighted by the volumetric overlap approximated using a
bounding box. In offline field analysis we use a Gaussian function φ(x, R) =
(
√

2πR)−3 exp(−|x|2/2R2). Here we apply a cut-off at |x| = 3R for practical
reasons, which cause a truncation error of 0.01. The mass density field is com-
puted as ρ(x, t) =

∑
am

aφ(x − xa(t), R). The velocity field is obtained by
u(x, t) = p(x, t)/ρ(x, t), where the momentum density field is first computed as
p(x, t) =

∑
am

avaφ(x− xa(t), R).
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4.2 Discretization

We use a regular grid with Nv cells, voxels, with side lengths L = (Lx, Ly, Lz),
where we denote the shortest of these Lmin. Each voxel, indexed i = (i, j, k),
has a centre point coordinate xi. The mass density and velocity fields are
represented in discrete form by their values in the voxel centres, ρi = ρ(xi)
and ui = u(xi). The grid size is limited by the particle diameters d according
to Lmin > dmax, where dmax is the largest particle. The smoothing length for
coarse-graining is equal (Heaviside) or somewhat larger (Gaussian) than the size
of the voxels.

4.3 Sampling

Data is sampled from resolved DEM simulations. The instantaneous velocity
field at a time t is stored in a vector U(t) = [ui(t)] ∈ R3Nv , the mass density
field in a vector P (t) = [ρi(t)] ∈ RNv , and the control signal that drive the
system, in a vector J(t) = [ji(t)] ∈ RNj . These time instances are referred to
as snapshots. A data sample is a time-average of Nτ snapshots between time tn
and tn+Nτ−1, i.e.,

Un =
1

Nτ

Nτ−1∑
k=0

U(tn+k). (17)

Any reaction force on a selected body or contact surface, b, may be sampled
as well. We denote this F (t) = [fb(t)] ∈ RNf , where Nf is the total number of
sampled force components.

4.4 Regression model

We are searching for a model that predict the discrete velocity field U ∈ R3Nv ,
and possibly also the reaction force F ∈ RNf , from a given mass density field
P ∈ RNv and control signal J ∈ RNj . This is approached as a regression
problem, y = φ(x), with predictor variable x = [P ,J ] ∈ RNv+Nj and response
variable y = U ∈ R3Nv or y = F ∈ RNf for the velocity and force prediction,
respectively. The natural start is to first consider a linear regression model

φ(x) = β0 + β1x+ ε (18)

with model parameters β0 ∈ R3Nv and β1 ∈ R3Nv×(Nv+Nj) and error term ε,
for the case of the velocity response variable. There is, however, good reason
to believe that a purely linear model cannot capture the behaviour and our
numerical experiments also confirmed this. The velocity field and reaction force
is expected to depend nonlinearly on the mass and the control signal. We assume
that the velocity is linear to the control signal. Furthermore, we assume that
the flow depends on the presence of material (voxel occupancy) rather than on
the precise mass density. This lead to the following ansatz

φ(x) = β0 + β1vec[H(P )JT ] + ε (19)
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ground-truth data data samples
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Simulation

resolved DEM
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y = φ(x)
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validation and hyperparameter calibration

initial states
control signal application

Figure 2: The different steps of developing a reduced-order model.

where H : RNv → BNv is the Heaviside function, component-wise returning an
occupancy value 0 or 1 depending on whether the mass density in the voxel is
nonvanishing. The vectorization operator vec( ) produce a regression variable
x ∈ RNvNj out of the matrix H(P )J with dimension Nv × Nj . The model
parameters is β1 ∈ R3Nv×NvNj . We make the same ansatz for the force response
variable.

It can be expected that this model suffers from multicollinearity, i.e., there
might be predictor variables that are strongly correlated in the measured data.
One way to handle this is to apply Ridge regression which adds a penalty term
λ ‖β‖22 to the regression loss function, where β0 and β1 have been combined in
β as is customary. The regression loss function becomes

L = ‖y − βx‖22 + λ ‖β‖22 (20)

with penalty parameter λ, that is a hyperparameter to be calibrated. Another
way to treat the multicollinearity would be to apply principal component regres-
sion. In this case one performs PCA on the predictor variables and omit the
low-order principal components. Ridge regression accomplish the same effect,
but without dimensional reduction.

5 Numerical experiments

To test the model order reduction technique, numerical experiments are per-
formed on two systems. We use a nonsmooth discrete element method as de-
scribed in [20] using the software AGX Dynamics [1]. The reduced-order model
is implemented in Python using NumPy and the model training is performed
using scikit-learn [13]. The experiment steps, summarized in Fig. 2, are as fol-
lows. First, numerous ground-truth simulations are run. System state snapshots
are recorded, and coarse-grained data samples are produced. Each data sample
with index n holds a discrete representation of the mass density field Pn, velocity
field Un, forces Fn and control signal Jn. The data samples are split in training
data and test data by the ratio 80/20. The model parameters, β, that minimize
the loss function, Eq. (20), are computed using sklearn.linear model.Ridge.
The regularization that give the best trade-off between training and test error
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Figure 3: A pile with a discharge flow.

is chosen manually. The trained models are exported and used in DEM simu-
lations for model order reduction. Validation is made by running fully resolved
ground-truth simulations and recording validation snapshots. These are com-
pared to snapshots recorded from reduced-order simulations starting from the
same initial state and running with identical control signals.

5.1 Pile with a discharge flow

A quasi 2D pile is confined by inclined sidewalls and vertical rear and front
walls, as shown in Fig. 3. This represents a thin slice of a 3D system. The
inflow of material is controlled by an emitter above the pile, feeding material at
variable flow rate. There is a 1.9 m wide outlet where the sidewalls meet. This
is also the distance between the front and rear walls. The sidewalls are inclined
48◦ up to a plateau, where the distance between the sidewalls is 19.9 m. The
discharge flow at the outlet is controlled with a control signal j(t). Particles
become kinematic at the outlet, moving with a velocity vout = [0, 0,−j(t)].

The particles are spherical with diameter 0.1 m, 0.16 m, 0.22 m, and 0.3 m,
distributed by the mass ratio of 0.3, 0.5, 0.15, and 0.05, respectively, relative to
the total mass. The specific mass density is 2500 kg/m3, elasticity 108 Pa, coef-
ficient of restitution 0.0, friction coefficient 0.5 and rolling resistance coefficient
0.2. The sidewalls share the same contact parameters as the particles. Fric-
tionless boundary condition is applied on the vertical (front/rear) walls. The
simulations are run with 200 projected Gauss-Seidel solver iterations and 0.017 s
time-step, set to avoid particles from tunneling through each other under the
(time-implicit) numerical integration. Grid dimensions are 24×1.9×15 m with
40×3×25 voxels. The predicted velocity field is a mean field, trained on coarse-
grained data that involve both spatial and temporal averaging. Consequently,
the particles in the reduced domain may be integrated with a different time-step
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than used in resolved DEM simulation. The Courant-Friedrichs–Lewy condition
imply a time-step around 1 s or smaller for the given voxel size and flow rates.
We use 0.17 s time-step for integrating the reduced-order model, which is a
factor 3.5 below the CLF condition. For the adaptive reduced DEM, velocities
are predicted with a timestep of 0.17 s, but particle positions are integrated at
the same frequency as the resolved DEM.

Depending on the confinement geometry and material parameters, the gran-
ular media in a pile or silo is discharged either through funnel flow or mass flow.
In funnel flow, the material divides into stagnant zones with no motion, and flow
zones with shear flow stretching from the outlet to the surface of the pile. In
mass flow there are no stagnant zones and all particles are in motion during dis-
charge. The pile in Fig. 3 exhibits funnel flow during discharge. With a steep
enough angle on the foundation, or small enough friction, this would instead
have been mass flow. For modelling the velocity field, we assume that the bulk
flow is quasi-stationary and depend only on the current outflow control signal
j(t) and on the mass distribution ρ(x, t). Since the model converts the mass
density into binary occupancy, the model can generally take the surface height
function, h(x, y), as input and directly compute the occupancy underneath it.
This is useful when running the model coupled to a real system instrumented
with range sensors.

It is important that the training data cover the system state space, that is
spanned by the vector [v(x), ρ(x), j]. We generate data samples from 2500 full-
resolution simulations, with varying outlet velocity, starting from 150 different
initial states. The outlet velocity is varied in the range 0 m/s to 0.5 m/s. An
initial state is a certain material distribution, created by different combinations
of flow rates at the outlet and inlet. Also, the position of the inlet is varied.
The surface profiles for the 150 initial states can be seen in Fig. 4.

During each discharge simulation, the outlet velocity is kept constant at
values between 0 and 0.5 m/s and there is no inflow. The duration of each
simulation is 30 s. Data samples with 1 s time average are produced from
recorded snapshots. To avoid sampling any transient flow after engaging the
outlet, the initial part of simulation is discarded. The discharge simulations
result in . 50, 000 data samples, constructed with latin hypercube sampling
uniformly from the 150 initial states and 2500 outlet velocities.

A number of models for predicting the velocity field are generated with ridge
regression parameter in the range 10−1 to 103. The performance of these models
is evaluated in multiple ways. i) The prediction score on the training and test
data are compared to see how well the models can generalize to unseen states.
ii) The ability to predict velocity fields is examined by comparing coarse-grained
resolved DEM fields to corresponding predicted fields, in a complete discharge
of a chosen pile state. iii) The same pile discharge is used to compare when
each particle pass the outlet (exit time) in reduced-order DEM c.f. resolved
DEM. iv) The adaptive reduced-order DEM technique is evaluated by compari-
son to resolved DEM during more extensive filling and discharging with identical
inflow/outflow signals.

The prediction score on the training and test data can be seen in Fig. 5. The
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Figure 4: Distribution of surface profiles for the 150 initial states with highlighting
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Figure 5: The R2 score as a function of the regularization parameter λ for the pile
training- and test data (left), and the average model reduction velocity error for the
test data (right).

best performance on the unseen test data occurs for regularization parameter
values between 1 and 10. We chose λ = 10 as our preferred model and will focus
on the performance of this.

Fig. 6a shows snapshots from a ground truth resolved DEM simulation of the
discharge of a pile state with constant outflow velocity 0.5 m/s. The columns
are snapshots from 10, 20, 30 and 40 seconds into the simulation, with the fields
time-averaged over 1 s. In the third and fourth row the velocity field from the
ground truth simulation and the model prediction (λ = 10) are shown together
with the mass density. In the fifth row the difference between the ground truth
and predicted velocity field is shown, and we observe a good agreement. Fig. 6b
shows the model reduction velocity error, defined in Eq. (12), as a function of
time for the duration of the pile discharge. This evaluates the performance of
the velocity prediction for all the produced models. We can see that the model
reduction velocity error is around 10% for the λ = 10 model but increases to
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Figure 6: a) Sample results, comparing ground truth velocity fields from DEM sim-
ulations with predicted velocity fields from the reduced-order model. b) The model
reduction velocity error.

20% towards the end when the amount of remaining material is small. In the
second row we observe that the granular temperature error is elevated especially
near the outlet, indicating an irregular flow there. The time-evolution of the
granular temperature error is also included in Fig. 6b. It varies mostly between
0.5 and 1.

The ability to predict the velocity field is necessary for reduced-order DEM
simulation, but not sufficient. When the system is time-integrated using the
reduced-order model the errors may drift or cause instability. Therefore, we
examine also the performance of the model when used to propagate the system
forwards in time during a pile discharge. Starting from the same state as in
Fig. 6 and running with the same control signal, particle positions are integrated
using linear interpolation of the velocity field to the particle positions. We
compare the particles exit time in the two cases, the ground truth resolved
DEM simulation and the reduced-order DEM case. The results can be seen in
Fig. 7. The orange line indicates identical exit times for the two cases. Most
particles are concentrated on this line, with standard deviation 3.4 s and mean
absolute deviation 2.1 s, which is a relative error around 10%. The distributions
of number of outflow particles per time unit are also in fair agreement.
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Figure 7: Comparison of residence times from pile discharge using fully resolved DEM
simulations and the reduced-order model. a) Number of discharged particles per unit
time for the two cases, i.e. the marginal distributions of b) individual discharge times
for each particle in the two cases.

Finally, we evaluate the performance of the adaptive reduced-order DEM
technique. Here, reduced DEM is used to simulate the motion below the sur-
face of the pile, where we expect the media to be in the liquid or solid phase.
Resolved DEM is used for the particles in free fall, impacting and flowing rapidly
on the surface, i.e., in the gaseous phase. The idea is to run one resolved DEM
simulation and one adaptive reduced-order DEM simulation using identical con-
trol signals. The tests start from an empty container, building up a pile with
variable inlet and outlet signals. The control signals can be seen in Fig. 8b, with
the outflow velocity converted to an estimated mass outflow per unit time. The
outflow velocity is initially kept within the domain of the training data (0 to
0.5 m/s), but is in the end set well outside this domain, at 1 m/s. A comparison
of the two cases can be seen in Fig. 8a, with snapshots at every 10 seconds after
building up the pile. The fully resolved DEM simulations (ground truth) can be
seen above the corresponding adaptive reduced-order model case. The particles
are colour coded according to the time they enter through the inlet, with the
dynamic particles in the adaptive reduced-order model case displayed in black.
We track the surface of the pile and let particles down to a depth of 0.5 m be
dynamic. The relative speed threshold value, for turning particles kinematic, is
set to 0.01 m/s. One can see that the surface profiles are similar between the
two cases for essentially all times. The surface height error can be seen, as a
function of time, in Fig. 8b. It is well below 10% during most of the simulations
but increase towards the end when there is less remaining material. Since it is
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Figure 8: a) Comparing ground truth simulations and model reduction simulations
with identical inflow-, and outflow signals. b) Rate of inflow and outflow, as well as
the surface height error. Note that the reason particles can be seen passing through
the outlet wall in the reduced DEM case is that the boundaries of the voxels are not
matching the outlet geometry.

a relative error, this increase has limited practical implication.
It is interesting to study the granular temperature error, defined in Eq. (11),

to gain insight in the deviation of particle motion simulated with the full res-
olution model and the reduced-order model. Two snapshots, from time 53 s
and 95 s, are presented in Fig. 9. As expected, the granular temperature er-
ror is elevated on the surface of the pile when there is an incoming flow. This
confirms our assumption that the material is in the gaseous phase, motivating
the use of resolved DEM there. During discharge, the granular temperature
error is elevated around the outlet, not surprising given that the largest particle
diameter is 1/6 of the outlet width. There are also signs of correlated velocity
fluctuations on a longer length and timescale than that of individual particle
rearrangements. This limits the possibility for the reduced models to achieve
a low velocity error Ev, even if the model accurately predicts the mean fields.

16



0

200

400

600

800

1000

1200

1400

1600

1800

De
ns

ity
 (k

g/
m

3 )

0

200

400

600

800

1000

1200

1400

1600

1800

De
ns

ity
 (k

g/
m

3 )

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Gr
an

ul
ar

 te
m

pe
ra

tu
re

 e
rro

r

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Gr
an

ul
ar

 te
m

pe
ra

tu
re

 e
rro

r

-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 6
0

2

4

6

8

10

0

2

4

6

8

10

12

x (m)

y
(m

)

53 s: Filling 95 s: Discharging

0

500

1000

1500

D
en

si
ty

(k
g/

m
3 )

0

0.5

1

1.5

E
T

w
ith

v 0
=1

m
/s

Figure 9: The temperature error (bottom row) from a full resolution simulation of a
pile during filling (at 53 s, left column) and discharging (at 95 s, right column). The
velocity vector field and mass density field (top row) are included for reference.

Since this occurs near the outlet, it has marginal effect on the material above.
Sample videos are available at http://umit.cs.umu.se/ddgranular/.

5.2 Bulldozing blade

As a second test we simulate a blade driven horizontally, cutting the surface
of a granular bed like a bulldozer blade, see Fig. 10. The simulated flow is
consistent with the theory of soil mechanics, that predict the formation of a
wedge-shaped failure zone in front of the blade [12]. When pushed forward, the
soil fail along a localized shear band that stretch from the cutting edge of the
blade up to the free surface. Outside the failure zone the material is at rest.
Inside the failure zone the material moves forward and upward, and may form
a pile with a circulating flow. The granular temperature is elevated at the front
surface of the pile and at the cutting edge where impacts are frequent. A model
is trained to predict the velocity field and the reaction force on the blade from
the horizontal velocity and the mass distribution in front of the blade. The
blade is 1.6 m wide and is attached with a 6-degree-of-freedom constraint to a
kinematic body having velocity v = [j(t), 0, vz(t)]. The constraint force holding
the blade relative to the kinematic body f = [fx, fy, fz] is measured during the
simulation. The shape of the blade is that of two rectangular plates joined along
their long edge at an angle of 35◦. To avoid sampling of an unnecessarily large
domain a coarse-graining grid is co-moving with the blade as in Fig. 10c, with
sampled quantities in the world frame coordinates. The dimensions of the grid
is 1.0× 2.5× 1.0 m with 8× 5× 8 voxels. Data samples are time-averaged over
1/6 s, chosen to remove velocity fluctuations while still resolving the motion of
the blade. In this numerical experiment the ground truth simulations are run
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Figure 10: A blade pushing a granular bed simulated with fully resolved DEM. A time
instance is shown in 3D overview (a) and cross-section view (b). The predictor model
for the velocity field and reaction force from the control signal and mass distribution is
illustrated in (c). Also shown is the mass density (d) and granular temperature error
(e), with the mean velocity vector field superimposed.

with a time-step of 0.005 s and 250 projected Gauss-Seidel solver iterations.
The particle contact parameters are identical to the pile experiment, but the
particle diameter is set to 10 cm.

During simulations using the adaptive model order reduction, the particles
inside the co-moving grid are assigned the velocity predicted by the velocity
field using linear interpolation between the voxel centres. Outside the grid, the
velocity field is assumed to be zero. Particles exiting the co-moving grid become
dynamic, simulated using resolved DEM, until they are at relative rest to the
particle bed.

To generate data samples, 250 simulations are run where the blade is pushed
with different constant velocities, between 0 and 1.5 m/s, and with different cut-
ting depth, ranging between 0 and 0.2 m. The model is trained using exclusively
horizontal motion. As for the pile, a number of models are generated with dif-
ferent ridge regression parameter values, here ranging from 10−3 to 103. The
prediction score on the training and test data can be seen in Fig. 11 and we
again pick λ = 10 as our preferred model, with the best generalization to the
test data.

The models are evaluated with regard to i) the ability to predict velocity
fields, ii) the ability to predict the force holding the blade, and iii) the ability to
propagate the system forward in time. This is all considered for a standardized
blade trajectory, which can be seen in Fig. 13a.

The ability to predict the velocity fields is evaluated by comparing coarse-
grained ground truth velocity fields to that predicted from the corresponding
mass densities, as seen in Fig. 12. The first row show states at 1 s intervals from
a resolved DEM simulation with the blade cutting soil at 1 m/s and 0.15 m
depth. The second row show the corresponding mass density and velocity field

18



10−3 10−2 10−1 100 101 102 103

0.6

0.8

1

Regularisation parameter λ

R
2

sc
or

e

Train
Test

Figure 11: The R2 score as a function of the regularization parameter λ for the blade
training- and test data.

1s 2s 3s 4s 5s 6s

Simulation

Simulation

Prediction

Difference

0.0

0.5

1.0

−0.4 0.0 0.4

H
ei

gh
t(

m
)

Width (m)

0

500

1000

1500

D
en

si
ty

(k
g/

m
3 )

0

0.5

1

Sp
ee

d
(m

/s
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2
0.4
0.6
0.8

1

t (s)

E
v

α = 0.1 α = 1 α = 10
α = 102 α = 103

0

0.5

1

Sp
ee

d
(m

/s
)

a)

b)

Figure 12: a) Sample results, comparing ground truth velocity fields with the velocity
fields predicted by the reduced-order model. b) The model reduction velocity error.

obtained by coarse-graining. The velocity field predicted by the trained model
is shown in the third row, and the fourth row show the difference between the
simulated and predicted velocity fields. The predicted velocity fields are gener-
ally close to the measured ones inside the active zone but can differ considerably
on the surface. This is consistent with the observation, in Fig. 10e, that the
granular temperature is elevated there, indicating material in the gaseous phase.
This suggests using resolved DEM for the particles on the surface to minimize
the reduction error, which however, was not employed in this test. The evolu-
tion of the model reduction velocity error, Ev, over time and for the different
regularization parameters is shown in the bottom of the figure. For the λ = 10
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(orange) components of the force to push the blade, simulated using resolved DEM
(dashed lines) and the reduced model (solid lines).

model the error is at 0.35. The errors are the largest around 1s and at the end,
when the blade is raised. This is not surprising as this was not included in the
training data.

The capability of predicting the force required to push the blade through the
particle bed is also examined. A fully resolved DEM simulation is performed
using the described trajectory to produce ground truth data of the blade force.
From the same simulation, mass density field and control signal are used as input
to the model for predicting the blade force. Both forces, time-averaged over
1/6 s, are plotted in Fig. 13b. The path of the blade (top figure) is illustrated
with 1 s intervals. The predicted force is overall in good agreement with the
ground truth but has some problems when the blade is lowered into and raised
from the bed, which was not represented in the training data. Also, it was found
that training data with the blade moving above the bed, without any mass in
sampling region, was necessary for the model to predict the weight of the blade,
i.e., the vertical force when the blade is reversed at the end of the bulldozing
cycle.

Predicting the velocity field is a necessary but not sufficient functionality. It
does not imply that the reduced-order model can propagate the system forward
in time with similar accuracy. Velocity errors in the build up phase may lead
to unphysical material distributions, in which case it is of little value that the
model can predict stationary flows. Also, there are regions of elevated granular
temperature in Fig. 10e, at the blade’s cutting edge and the front surface of the
pile. Since the particle velocities deviate from the mean flow in those regions,
the model should not be able to predict them accurately. Therefore, we com-
pare reduced-order DEM and resolved DEM simulations with identical blade
trajectories, to evaluate the performance in propagating the system forwards in
time. The reduced-order DEM is simulated with the same blade trajectory as
previously, depicted in Fig. 13a, but with the larger time-step 0.017 s. Fig. 14
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Figure 14: The surface of the material bed after completion of one bulldozing cycle
(at 9 s) with ground truth simulation (top), granular reduced-order model (middle)
and the difference between them (bottom).

shows the two surfaces after a completed bulldozing cycle, and the difference be-
tween them. The surfaces have slots and side windrows of similar depth, height
and width. In the reduced DEM simulation, the resulting pile is not pushed
as far to the end of the slot as in the resolved DEM simulation. This can be
understood by that the particles have no inertia in the reduced-order model,
and the predictor do not consider the vertical motion when the blade is lifted.
Instead, the material simply stays still when the blade is stopped and lifted,
and subsequently fall down in a pile when exiting the voxel field.

The reduced-order model captures the force and the material displacement
fairly well but the particle velocities only to partial extent. It is also found
that the model is sensitive to the training data. The problem is that the flow
during the build up phase is rather different from the stationary flow, and it
turns out it is hard to find a balance in representing them both with the model.
Depending on which temporal parts of the training data are included, more or
less emphasis can be put on these parts. This imbalance typically results either
in particles not building up properly in front of the blade, or particles not able
to comove with the blade, leaking out through the back. The velocity error
shown in Fig. 12 at time 1 s illustrate the former.

Sample videos are available at http://umit.cs.umu.se/ddgranular/.

5.3 Performance measurements

In Table 1 we summarize the performance measurements from the numerical
experiments. The computational time for the fully resolved and reduced DEM
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simulations, tres and tred, are normalized by the real time duration of the ex-
periments, treal. The speed-up factor is the ratio of the resolved computational
time to the reduced one. The reduction factor is the ratio of the average num-
ber of dynamic particles in the reduced and the resolved DEM simulations. The
accuracy is the errors subtracted from unity.

The numerical experiments are performed on a prototype implementation,
combining Python and NumPy operations for the reduced-order DEM and AGX
Dynamics for resolved DEM and multibody dynamics. We expect there is room
for optimization of the computational speed. One opportunity that has not been
utilized is that the number of iterations in the projected Gauss-Seidel solver can
be decreased with the number of resolved particles (size of the contact network)
[20]. In the performed tests the number of solver iterations was kept constant
at 200 and 250 in the pile and the blade experiments, respectively. If the
reduced DEM simulations instead are run with 20 solver iterations, appropriate
for an error tolerance of 10% on these systems, the speed-up would roughly
double from 10 to 20 (Experiment Pile Fig. 8) and from 50 to 100 (Experiment
Blade Fig. 12), respectively, and reach the real-time requirement tred/treal < 1.
Disabling the collision detection between particles in the reduced-order model
is another optimization that has not been applied here. The measurements of
the computational time were made using a single thread on an Intel R© Core

TM

i7-4770 CPU @ 3.40GHz.

Experiment tres/treal tred/treal Speed-up Reduction Accuracy

Pile Fig. 6 271/70 13/70 21 0/1700 90%
Pile Fig. 8 1496/120 149/120 10 440/3600 90%
Blade Fig. 12 630/8 11/8 57 250/16000 65%

Table 1: Performance number measured in the numerical experiments using resolved
and reduced DEM simulations.

6 Discussion

The purpose of the model order reduction is to enable simulation at a higher
speed or with increased number of particles while remaining within given com-
putational bounds. The price for the speed-up is reduced accuracy and the effort
of the simulations that must be carried out in advance to produce training data.

Let us first consider what computational speed-up can be expected. In the
extreme case when the whole system can be represented with the reduced model,
the main computational steps are: i) do inference on the regression model in
Eq. (19) with given known parameters β; ii) determine the particle velocities by
interpolation and update their new position; iii) and, possibly, generate output
for the purpose of analysis. The computational complexity of doing inference is
that of matrix-vector multiplication of size dim(β) = 3Nv×NvNj, which require
6N2

vNj floating-point operations. At the present time a powerful desktop CPU
delivers about 100 gigaFLOPS and a high-end GPU up to 100 teraFLOPS. It
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is thus conceivable to evaluate models of size Nv = 103 (CPU) and Nv = 104

(GPU) within one millisecond. Hence, it should be possible to simulate fully
reduced DEM systems at 60 Hz with up to Np = 105 (CPU) and Np = 106

(GPU) particles, assuming 10 particles per voxel. Also, the reduced-order DEM
is limited by Courant-Friedrichs–Lewy (CFL) condition rather by the time-step
used in simulation of the resolved DEM. In the pile and blade experiments the
CFL time-step limits are estimated to 1 s and 0.1 s, respectively. That adds
another factor 10 to 100 in speed or size of systems that may be simulated in
real-time with the reduced model.

When the system has regions with granular temperature domains that re-
quire resolved DEM, this part of the simulation easily becomes the computa-
tional bottleneck. The number of particles that can be simulated in real-time
with resolved DEM is up to 104, the precise number depending on particle size,
velocity, contact parameters and numerical integration technique [20]. With a
reduction factor of 1/10, we expect that the pile system can be simulated in
real-time with Np = 105 particles. Compared to this theoretical performance
estimate, the prototype implementation is underperforming in the Pile test in
Fig. 8 by a factor of 10 and can potentially be optimised to reach a speed-up
factor of 100.

The accuracy in the pile experiments is about 10%. Whether this is ac-
ceptable depend highly on the application and if there are any alternatives for
achieving the required simulation speed. There are several ways the reduced
model can be improved, besides providing it with more or better training data.
The velocity field in the real system has fluctuations and transients that can-
not be captured by a model assuming quasi-stationary flow. To achieve higher
accuracy, the missing flow dynamics must be included either at the level of the
velocity field predictor or at the particle level, like in the spot-model by Rycroft
et al. [18]. The error due to elevated granular temperature in shear flow can
possibly be reduced by adding diffusion terms in the calculation of new particle
velocities from the mean field. Models for diffusion in granular flows, as function
of the local strain rate, can be found in the literature [23] and can be calibrated
using the resolved DEM simulation data. It may also be a good idea to adjust
the particle velocities or positions to resolve unphysical contact overlaps that
result from the errors in the velocity predictor. In the prototype implementation
used for the numerical experiments, the regions of elevated granular temperature
are detected manually. Creating a model for predicting the local granular tem-
perature, and how it can be expected to develop, would enable more automatic
and accurate adaptive reduced-order DEM simulation. The current paper focus
on using a quasistationary velocity field for the reduced DEM. It is a compelling
idea, seemingly feasible, to extend this to viscoelastic deformations using the
method of Zhong and Sun [25] for predicting the velocity field.

Another important question is how much training data is needed to create
the reduced-order model. Fig. 15 shows the prediction score on the test data
for the pile models, as a function of being trained on increasing fractions of
the training set of 50,000 data samples. The most significant increase in the
test score occurred when using up to 50% of the training set, with generally a
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Figure 15: R2 scores for the pile models on test data, trained on fractions of the
training dataset.

small further increase when using all data. However, the scaling depends on the
regularization and none of the cases has really saturated, thus there could still
be some improvements by increasing the amount of training data.

In the current paper we have not made any tests involving particle cohesion
or adhesion. As long as there is a relationship between velocity field and con-
trol signal in the training data, we expect that reduced order models can be
developed for this case as well.

7 Conclusion

We introduce a novel technique for model order reduction of DEM simulations
of granular media. Using many offline simulations, we train a regression model
to predict the velocity field. This model is then used to assign particle velocities,
in place of the time-consuming process of collision detection and force computa-
tion. An adaptive domain technique is used to apply the reduced-order model
in regions with low granular temperature error where individual particle mo-
tion coincide well the mean flow, and use resolved DEM simulation in regions
with more irregular particle motion. This allows for minimizing the number
of particles in the computationally intense process, while still simulating par-
ticle motion with realistic mean velocity. The adaptive reduced-order model
is applied in two test systems, a gravitational discharge pile and a bulldozer
blade cutting and pushing through a particle bed. We measure a computational
speed-up of 10 to 20 and 90% accuracy for the discharge pile. We estimate that
it is possible to reach real-time performance with 105 particles at 60 Hz and a
reduction factor 1/10, corresponding to a speed-up of 100. For the bulldozing
blade the speed-up reaches 60 but with an accuracy of around 65%. Plans for
future research includes extending the predictor model beyond plain regression.
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