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Abstract

A method for simulation-based development of robotic rock loading systems is described and tested. The idea is to first formulate a
generic loading strategy as a function of the shape of the rock pile, the kinematics of the machine and a set of motion design variables
that will be used by the autonomous control system. The relation between the loading strategy and resulting performance is then
explored systematically using contacting multibody dynamics simulation, multiobjective optimisation and surrogate modelling.
With the surrogate model it is possible to find Pareto optimal loading strategies for dig plans that are adapted to the current shape
of the pile. The method is tested on a load-haul-dump machine loading from a large muck pile in an underground mine, with the
loading performance measured by productivity, machine wear and rock debris spill that cause interruptions.
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1. Introduction

Loading piles of fragmented rock is a challenging task, for
a machine operator and even more for an autonomous system.
For this reason mining vehicles for loading, hauling and dump-
ing (LHD) are still not fully automated but rely on a human5

operator controlling the loading task, by remote or from within
the machine. With fully autonomous control, productivity is
lower and maintenance needs are higher than with operators
[1]. The difficulty lies in perceiving the state of the pile, plan-
ning and controlling a movement that quickly fills the bucket,10

avoiding excessive wear on the machine, and leaving the pile
in a state well-suited for continued loading. Interruptions in the
loading occur when rock debris are left in front of the pile or if
an overhang is created. Improper handling, like ramming into a
large boulder or filling the bucket unevenly, causes damage to15

the machine.
This paper describes and tests a method for simulation-based

development of systems for robotic loading of fragmented rock
piles. The idea is to formulate a generic loading strategy as
a function of the observed shape of the pile and the kinemat-20

ics of the machine, and to use multiobjective optimisation and
contacting multibody dynamics to determine the strategy that
maximises performance from a large set of realistic simula-
tion experiments. Surrogate modelling is used to explore the
loading strategy design space and to identify the Pareto optimal25

strategies. The aim is to show that this is a feasible and useful
approach for developing and testing automation strategies for
robotic rock loading. The method is tested on a specific LHD
system for underground mining. Statistically significant rela-
tions between the loading strategy and performance are found,30

and the computational complexity of the method is analysed.
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Robotic loading can be divided into pile analysis, high-level
dig planning and low-level loading control. In this paper, we
apply the method to the dig planning task only. The bucket mo-
tion is given a generic representation depending on some design35

variables that parametrise the entry point in the pile, the dig
depth, bucket curl and target fill ratio. The dig motion planner
takes the vehicle kinematics, observed pile geometry and the
design variables as input and outputs a specific bucket trajec-
tory and corresponding motion plan for the machine. Objective40

functions are introduced for the productivity, joint damage and
amount of rock debris in front of the pile causing interruptions.
Together, the objective functions determine the loading perfor-
mance. The simulations are based on a detailed 3D multibody
dynamics model of the vehicle and the rock pile. The machine45

model includes actuator models and a control algorithm to ex-
ecute the motion plan. The actuators have limited force, and
the machine may lose ground traction if the pile resistance is
large enough to cause frictional slippage. Consequently, the
simulated bucket trajectory may deviate from the plan. This50

provides realism that is not available when using a kinematic
model of the vehicle or bucket. For each simulation, the forces
and moments in the joints of the machine are measured, as well
as the loading cycle time, final bucket fill ratio as well as the
resulting state of the pile. Both the actuating forces and the55

constraint forces keeping the joints in place are measured, and
may be analysed for power consumption and mechanical wear,
respectively.

A surrogate model is constructed for the relationships be-
tween the design variables and the objective functions, i.e., be-60

tween the loading strategy and loading performance. This en-
ables systematic exploration of the design space and the pos-
sibility to steer the computational resources to the most inter-
esting parts of the design space. Using the surrogate model,
it is easy to answer specific questions regarding loading strate-65
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gies, for instance, whether it is beneficial to dig deep or shal-
low, attempt to overfill the bucket or not, and whether to jerk
the bucket at pile breakout.

Recent literature overviews of robotic loading of piled and
fragmented rock material can be found in [1, 2, 3]. Hemami in-70

troduced kinematic modelling of an LHD as a robotic manipu-
lator and suggested an end-effector force model to study bucket
trajectories that minimise energy consumption [4]. Singh [5]
presented a planning algorithm that, through exhaustive search
in the action space, finds the best plan that maximises the swept75

volume and minimises the maximum and accumulated torque
for a given machine and pile geometry in 2D. Many methods
for automated loading are based on scripted bucket trajectories
generated from 3D pile shape measurements [6, 7]. In order
to adjust the motion to the actual and varying conditions in80

a pile, this is combined with a method for shifting between
scripted trajectories, based on the observed resistance force
[8]. An alternative approach, better suited for dense inhomo-
geneous material, such as fragmented rock, is compliance con-
trol, where the bucket motion is modified continuously based85

on the observed compliance of the pile. One instance of this
is impedance control [9], where the applied force depends on
the bucket velocity. Another instance is admittance control [1],
where the bucket target velocity depends on the sensed force
resistance.90

Computer simulation is an attractive complement to physi-
cal experiments. It allows for controlled and repeatable experi-
ments of many scenarios that can occur in rock excavation. The
net loading performance depend both on how the machine re-
acts to the pile and how the pile is affected by the machine.95

The resulting pile state should be suitable for continued load-
ing. Filla [10] used simulations based on the discrete element
method (DEM) to validate algorithms for parametric genera-
tion of trajectories for automated loading. Like previous DEM
based studies of the interaction between a bucket and granular100

material [11, 12, 13], it uses a kinematic model for the bucket
motion. Kinematics has the drawback of allowing bucket tra-
jectories that are not realisable with the vehicle’s limited power,
force transmission and ground traction. Several examples can
be found [14, 15] of multibody dynamics simulation of auto-105

matic loading with empirical models for the reaction force from
the excavated media, represented by its surface, and for esti-
mating the bucket filling and volumetric displacement of the
material. However efficient, this approach is limited to homoge-
neous and fine-grained materials, compared to the length-scale110

of the bucket, and the model does not capture the, often erratic,
flow behaviour of the material that lead to the new shape of the
pile and spillage and rock debris around the pile from the load-
ing motion. To capture this requires dynamic models of both the
vehicle and the rock pile. To the best of our knowledge, there115

are no previously published scientific papers on this. The rea-
son, presumably, is that few multibody simulation software sup-
ports both granular materials, articulated mechanisms and their
control and actuation. The alternative is to do co-simulation
with distinct software [16], but this is both demanding to con-120

struct and associated with computational overhead [17]. The
work in this paper is based on a nonsmooth multibody dynam-

ics formulation, which applies both to machinery and granu-
lar material [18, 19], time-integrator and hybrid direct-iterative
split-solver that enables fast and stable simulation of the full125

system [20, 21].

1.1. Main contribution of the paper

The main contribution of the paper is a methodology for ex-
ploring how the loading performance depend on a set of dig
plan variables, by generating and analysing a surrogate model130

from a large amount of simulated (or real) loading cycles. This
can be used to construct an automatic dig planner that take
measurements of the observed pile surface as input, through
the Pareto optimal design variables, compute and outputs a mo-
tion plan for highest loading performance. Having a systematic135

methodology become increasingly important as the size and di-
mensionality of the design space increase with the computa-
tional power. This may be considered a first step in developing
autonomous loading by applying machine learning on large sets
of synthetic training data.140

The rigid multibody simulation model is novel in including
both the dynamics of the machine and the rock pile, and is
therefore described in some detail. An important effect of in-
cluding a dynamic model of the pile and having granular level
of detail is that loading motions that results in poor pile states145

can be detected and penalized in the search of optimal loading
strategies. Furthermore, the presence of large boulders, poten-
tially damaging to the machine, is automatically included in the
simulation analysis. The precise dig plan variables and loading
performance functions used in this paper serves as examples.150

The method applies just as well for other choices.

2. System model

2.1. Nonsmooth multibody dynamics

The machine and the rock pile are modelled as a 3D con-
tacting rigid multibody system on descriptor form [22]. This155

means that all bodies are represented explicitly with their six
degrees of freedom. The bodies are coupled by kinematic con-
straints for modelling of mechanical joints and actuators. This
extends the Newton-Euler equations of rigid body motion to
a set of coupled differential algebraic equations (DAEs). An160

LHD interacting with a rock pile also involve impacts, resting
and sliding frictional contacts, limits on joints and motor torque
that cause sudden changes in the number of system variables,
their bound and connectivity. To enable fast simulations, with
large time-step implicit integration, one must treat the dynam-165

ics that occur on short timescales compared to the time-step, as
nonsmooth [23, 24, 18]. This means that velocities may change
discontinuously in accordance with some contact and impact
law, expressed in terms of inequality and complementarity con-
ditions, in addition to the equations of motion and DAEs. The170

alternative is to use fine enough temporal resolution for all the
dynamics to appear smooth and be modelled in terms of DAEs
or ordinary differential equations alone. In general, that is an in-
tractable approach for full-system simulations of mechatronics
system with any substantial complexity.175
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Following [20, 25], we assume the following equations for
modelling the machine and the granular material as a nons-
mooth multibody dynamics system

Mv̇ −GT
nλn −GT

t λt −GT
j λj = fext, (1)

0 ≤ εnλn + gn + τnGnv ⊥ λn ≥ 0, (2)
γtλt + Gtv = 0, |λ(α)

t | ≤ µt|λ
(α)
n |, (3)

εjλj + ηjgj + τjGjv = ωj, λ
−
j ≤ λj ≤ λ

+
j , (4)

where v = ẋ is the system velocity vector, M is the mass and
inertia tensor matrix and the position vector x(t) ∈ R6Np repre-180

sent both translational and rotational degrees of freedom of the
Np rigid bodies. The first equation is the Newton-Euler equa-
tion of motion for rigid bodies with external (smooth) forces
fext and constraint force GTλ with Lagrange multiplier λ and
Jacobian G, divided into normal (n), tangential (t) and artic-185

ulated, and possibly motorised, joints (j). Equations (2)-(3)
are the Signorini-Coulomb conditions with constraint regular-
isation and stabilisation terms εn, τn and γt. With εn = τn = 0,
Eq. (2) state that bodies should be separated or have zero over-
lap, gn(x) ≥ 0, and if so the normal force should be non-190

cohesive, λn ≥ 0. With γt = 0, Eq. (3) state that contacts
should have zero relative slide velocity, Gtv = 0, provided that
the friction force remains bounded by the Coulomb friction law
with friction coefficient µt. The constraint force, GT

j λj, arise for
articulated rigid bodies jointed with kinematic links and mo-195

tors represented with the generic constraint equation (4). With
εj, τj, ωj = 0 and ηj = 1, it become an ideal holonomic con-
straint g(x) = 0 that may represent a hinge. For ε, η = 0 and
τ = 1, it become an ideal Pfaffian constraint Gẋ = ωj that may
emulate a motor striving to achieve a target joint velocity ωj200

with limits λ±j on the motor constraint force. With ε, η, τ , 0 it
can represent a generic constraint with compliance and damp-
ing. An important feature of using descriptor form (no coordi-
nate reduction) and joint compliance is that the constraint reac-
tion forces and moments that keep the kinematic joints in place205

are computed and known explicitly. Details of the numerical
time-integration scheme, solver and the mapping from physical
parameters to simulation parameters are given in Appendix A.

2.2. Machine model
We choose to consider a load-haul-dump (LHD) machine,210

designed to operate in underground mines along narrow paths.
An LHD is a four-wheeled vehicle with an articulation steer-
ing joint that separate the rear driving unit from the front load-
ing unit that is equipped with a hydraulic actuated boom and
bucket. The machine is modelled as a rigid multibody system215

consisting of 18 bodies and 24 joints. For actuation, the wheel,
boom and bucket joints are equipped with hinge motor con-
straints that apply torque to achieve a target joint velocity set
manually or by an automatic control system. For the dimen-
sions, mass and powertrain characteristics we choose a specific220

LHD, namely, a Sandvik LH621 with specifications listed in
[26] and CAD model [27] illustrated in Fig. 1. The machine
has an operating weight of 56.4 tonne and is 12 m long and 3
m wide. The wheel radius is rw = 1.0 m. The standard bucket
volume capacity is Vb = 8.0 m3, weight capacity 21 tonne and225

Figure 1: The 3D model of the LHD machine.

Body Mass [ton] Size [m]
wheel 1.9 rw = 1.0

rear unit 27 5.9 × 3.0 × 2.9
front unit 15 4.0 × 3.0 × 2.9

boom 3.7 rlb = 2.5
Z-bar 0.88 1.6

bucket 6.4 rbt = 2.0 m, Vb = 8.0 m3

Table 1: The machine’s main bodies and their key properties.

maximum breakout force 378 kN. The key body and joint data
are listed in Table 1 and 2. The front loading unit is depicted in
Fig. 2. To make the powertrain less ideal and match the maxi-
mum breakout force, the motor constraints in Eq. (4) are given
maximal torque limits listed in Table 2 and a compliance of230

10−8 m/N. These numbers were identified in numerical experi-
ments where the breakout force was measured. The Z-bar link-
age mechanism connecting the boom and bucket is modelled
explicitly with joint limits on the cylinder extension. Together
this hinders the simulated machine from performing a motion235

that is not physically viable.
The velocity at the tip of the bucket in world coordinates is

denoted ẋb(t) ∈ R6. It is related to the joint velocities, q̇(t), by
the relation ẋb = J q̇ with Jacobian J ≡ ∂ẋb/∂q̇. For a scooping
motion with no sideways movement the Jacobian becomes

J =



0 −rbt sin(ϕl + ϕb) + rlb sin(ϕl) −rbt sin(ϕl + ϕb)
0 0 0
1 rbt cos(ϕl + ϕb) + rlb cos(ϕl) −rbt cos(ϕl + ϕb)
0 0 0
0 −1 −1
0 0 0


(5)

where the joint velocity vector for the wheel, boom link and
bucket is q̇ = [ϕ̇w, ϕ̇l, ϕ̇b]T and the joint angles are defined as in
[2].

2.3. Rock pile and tunnel model240

We consider the loading of piled fragmented rock, known
as muck, at the end of a narrow tunnel, known as a drift. The
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Joint Type Velocity [rad/s] Torque limit [kNm]
wheel hinge ϕ̇w ∈ [−1, 1] |τw| ≤ 190
front hinge 0 ∞

boom hinge ϕ̇l ∈ [−1, 1] |τl| ≤ 2000
bucket hinge ϕ̇b ∈ [−1, 1] |τb| ≤ 800

Table 2: The machine’s main joints and their key properties.

Figure 2: The front unit, boom link, Z-bar and bucket.

muck pile is assumed to have been formed by blasting tall slices
of solid rock at the end of the tunnel roof, a technique called
sublevel caving [28]. The front of the pile is known as the draw245

point. As muck is extracted from the draw point, new muck will
flow from above. The tunnel is modelled as a static geometry,
shown in Fig. 3 and 4. It is 6.5 m wide and 5 m tall with a
slightly curved roof. At the drawpoint, the drift opens up in an
vertical cone-shaped void that is filled with blasted muck. The250

inclination of the void wall facing the tunnel, where the last
blasting occurred, is 10◦.

The muck model consists of rocks of six different convex
shapes, shown in Fig. 5, and size distribution ranging between
0.3 and 0.8 m. The assumed material properties are charac-255

teristic for rock material and are listed in Table 3. The rocks
are treated as rigid bodies with frictional, non-cohesive con-
tacts and uniform mass density obeying the multibody dynam-
ics equations of motion Eq. (1)-(4) with numerical integrator
described in Appendix A. The friction coefficient between the260

rock and tunnel, rock and bucket, as well as tire and tunnel is
set to 1.0. In reality the particle size ranges down to millime-
tre. Up to 20 − 50 % of the muck mass may consist of particles
smaller than 0.1 while the largest rocks can be wider than 0.8
m [29].265

The simulated muck pile is created by emitting rocks from
above into the vertical void above the draw point and simulating
until the system is fully relaxed. First, a rear boundary of rocks
is created in the back of the void using a confining plane. This
1 m thick wall is then made static and the confining plane is270

removed. Next, the remaining void is filled with rocks until the
level reaches up to the emitter that is placed at the height of 8
m, which is 3 m above the tunnel roof. This form a natural pile

Figure 3: The tunnel with rock pile seen from the front.

Figure 4: The tunnel with rock pile seen from the side. At the end of the tunnel
the drift opens up in a space filled with rock mass. A rock emitter (dark red)
add new material to maintain the rock level during simulation.

state with an angle of repose that is estimated to 35◦. During
loading with the LHD, the rock level drops and new material is275

emitted to maintain the level. This is illustrated in Fig. 4. In
average the simulations involve 5500 rocks, not including the
static rocks forming the rear boundary. In reality, the blasted
rock mass stretches many times the height of the tunnel.

3. Loading operation model280

The robotic loading problem can be divided into pile analy-
sis, high-level dig planning and low-level loading control. In
this article, we focus on the dig planning task. To execute the
dig plan, a velocity feedforward motion control is used for the

Figure 5: The six different convex rock shapes that are used for the rock pile.
The size of the rocks are scaled according to the given size distribution.

4



Property Value
number of rocks ∼ 5.500
size distribution [0.3, 0.4, 0.6, 0.8] m

[20, 30, 30, 20] % of the mass
mass density 2.500 kg/m3

elastic modulus 1.0 GPa
Poisson ratio 0.3

rock-rock restitution 0.0
machine-rock restitution 0.1

rock-rock friction coefficient 0.9
other friction coefficients 1.0

Table 3: Rock pile properties.

target joint velocities. The loading operation model is sum-285

marised as an algorithm in Sec. 3.4.
We use a Cartesian coordinate system with x axis in the tun-

nel direction, y in the perpendicular horizontal direction and z
for the vertical distance from the tunnel ground. The gravity is
antiparallel with the z axis.290

3.1. Pile analysis

Before making a dig plan and starting a loading cycle, the
pile is measured with a simulated sensor device that outputs a
height-field surface z = h(x, y) in a rectangular grid with grid
size of 0.26 m. The simulated sensor emulates the 3D point295

cloud that can be obtained using a LIDAR or time-of-flight 3D
camera directed at the pile surface. A pile front curve, xf(y),
is obtained from 0 ≈ h(xf, y). The pile volume bound by the
floor and the height field surface is discretized in vertical slices
, stretching from the front to to the rear end of the tunnel. The300

centre of mass position of each slice is computed assuming a
spatially uniform mass distribution under the height-field sur-
face. A centre of mass curve xm(y) is thus obtained, and will be
used to determine a suitable attack point. See Fig. 6 and 8 for
illustrations. The local slope angle of the pile is computed as305

ξ(y) = arctan[h(xf, xm(y))/(xm(y) − xf)], using the pile height at
the centre off mass point.

3.2. Dig plan

A dig plan is a bucket path, xb(s) : R → R6, that we
parametrise by the path-length, s ∈ [s0, send]. The bucket path310

defines a swept volume that intersects the undisturbed pile ge-
ometry to form a nominal dig volume, Vd. The relation between
the bucket velocity, ẋb = [vT

b ,ω
T
b ]T , and the actuator joint ve-

locity, q̇(s) = [ϕ̇w(s), ϕ̇l(s), ϕ̇b(s)] is ẋb = J q̇ with the Jacobian
given in Eq. (5). This assumes zero slip, in which case the mo-315

tion is kinematically nonredundant. It is furthermore assumed
that the LHD runs parallel to tunnel direction and have access
to sensor data about the muck pile surface facing the vehicle,
at least the front curve, xf(y), local angle of repose, ξ(y), and
centre of mass curve, xm(y). A generic dig path that mimics320

the planning of human operators on flat ground is adopted from
[10]. It is illustrated in Fig. 7, with waypoints s0, ..., s4. It starts
by entering the pile (s0) with the bucket lowered and aligned
with the ground while moving horizontally into the pile to a
given depth (s1). The bucket tip then moves diagonally, carving325

center of mass curve xm(y)
front-most center of mass
rear-most center of mass
pile front curve xf(y)
pile slope
dig plan
grid

x

y

Figure 6: Top view illustration of the bucket approaching the pile that is anal-
ysed in a discrete grid and segmented vertical slices. The slices with the front-
most and rear-most center of mass are indicated with pink.

s0 s1

s2

s3s4

ξ

s′1 = s′2

s′3s′4

Figure 7: Sideview illustration of the pile with the bucket approaching. A
generic dig plan with waypoints s0, . . . , s4 is illustrated by the dashed purple
line. The pile slope is illustrated by the blue line. A maximally deep dig plan
(β = 0) is also shown with the dashed-dotted green line, in which case the
waypoints s1 and s2 coincide. The bucket is curled between s1 and s3.

a slice of constant depth by lifting, curling and running for-
ward simultaneously. This occurs until breakout initiation (s2),
where the vehicle is halted and the bucket is rotated any re-
maining angle to the maximally tilted state ϕb−m and waypoint
s3. Finally, the bucket moves horizontally backwards from the330

pile to the endpoint s4. The bucket curling between segment s1
and s2 is defined by the initial and final bucket rotation angles,
ϕb(s1) ≡ ϕb-0 and ϕb(s2) = ϕb-0 + (ϕb-m − ϕb-0)κ, respectively.

We use the bucket curl, κ ∈ [0, 1], between s1 and s2 as one
of the dig strategy design variables. The remaining freedom335

for the dig plan is used to introduce additional design variables,
α, β and γ, explained below. We use γ ∈ [0, 1] to control the
entry point that we denote yγ. The centre of mass positions
xm(y) are ordered by size and mapped to γ such that γ = 1
corresponds to the front-most centre of mass point and γ = 0 to340

the rear-most point. The target dig volume is chosen as some
factor α ∈ [0.2, 2] of the maximum capacity, and we denote it
by Vα

d = αVb. A bucket path can be shallow or deep relative
to the pile surface. We use β ∈ [0, 1] to distinguish between
deep (β ' 0) and shallow (β / 1) digging. The bucket lift height345
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s0 s1

s2

s3s4

ξ

Figure 8: Sideview illustration of the pile during excavation along a dig plan
illustrated by the dashed purple line. The bucket tip move parallel to the esti-
mated slope of the pile between the waypoints s1 to s2.

Variable Range Comment
α [0.2, 2] bucket fill ratio Vd/Vb
β [0, 1] dig height hs2/hp
γ [0, 1] entry point mass proximity
κ [0, 1] bucket curl in segment s1 − s2

Table 4: Dig plan design variables

hs2 = zb(s2) at waypoint s2 is then set to hs2 = βhp, with the
pile height hp = rft sin(ξ) at a distance rft = 4.24 m from the
pile front, which is the furthest point on the pile surface that the
bucket tip can reach before the front wheels touch the pile front.
The dig depth, xs1 − xs0 , then follows from a geometric analysis350

of the swept volume that integrates to Vα
d . The full set of design

variables, x = [α, β, γ, κ], their ranges and meaning are listed in
Table 4.

The bucket velocities in world coordinates, vx(s), vz(s) and
ωb(s), along the dig plan are chosen as in Fig. 9 with vmax

x = 1.3
m/s, vz(s) = tan(ξ) · vx(s) for s ∈ [s1, s2], and ωmax

b = ϕb(s2) ·
tan(ξ) · vmax

x /hs2 . The actuator joint velocities, q̇ = J−1ẋb, thus
become

ϕ̇w(s) = r−1
w vx(s) + fwl(s) ϕ̇l(s) + fwb(s) ϕ̇b(s), (6)

ϕ̇l(s) = min
[
flω(s) ωy(s) + flv(s) vz(s), 0

]
, (7)

ϕ̇b(s) = −ϕ̇l(s) − ωy(s), (8)

with

fwl(s) = − 1
rw

[
rbt cos(ϕl + ϕb) + rlb cos(ϕl)

]
, (9)

fwb(s) = −
rbt
rw

cos(ϕl + ϕb), (10)

flω(s) =
rbt
rlb

sin(ϕl + ϕb)/ sin(ϕl), (11)

flv(s) = − 1
rlb

sin(ϕl), (12)

and ϕl/b(s) = ϕl/b - 0 +
∫ s

s0
ϕ̇l/b dt. Clamping of ϕ̇l(s) ≥ 0 prevents

pushing the bucket downwards into the ground.355

3.3. Loading control
A velocity feedforward motion controller is used to execute

the dig plan. The bucket tip position, xb(t), is tracked to obtain

s0 s1 s2 s3 s4
0

1 vx
vmax
x

s0 s1 s2 s3 s4
0

1 vz
vmax
z

s0 s1 s2 s3 s4
0

1 ωb
ωmax
b

Figure 9: Planned bucket velocity as function of path-length of the trajectory.

the corresponding closest point, s, on the dig path. The cor-
responding target joint velocities are obtained and fed as input360

signal to the joint motors that deliver a torque computed by the
numerical solver. Due to the vehicle inertia and pile resistance,
the torque required to reach the target velocity may exceed the
maximum torque of the actuator model. The vehicle may also
lose traction and start slipping. Consequently, the dig trajectory365

will deviate somewhat from the plan. The deviation may be
large if the swept volume largely exceeds the maximum capac-
ity or if the bucket encounters large resistance. We do not apply
a feedback control to return the bucket to the dig plan. One
measure that is taken to reduce the effect of a potential devia-370

tion is to split the dig path parameter into translational and ro-
tational parameters, s → (sx, sy, sϕb ) for the parametrization of
the bucket velocities profiles vx(sx), vz(sz) and ωb(sϕb ) in Fig. 9.
Also, the controller automatically jumps to the next segment in
the dig plan if the time-duration in the current segment exceeds375

what is expected by more than 5 s.

3.4. Loading algorithm

The loading operation model can be summarised with the
following algorithm.

1. Analyse the current state of the pile.380

(a) Detect the pile surface height field h(x, y).
(b) Compute the front xf(y), centre of mass xm(y) and slope ξ(y).

2. Compute a dig plan given x = [α, β, γ, κ].

(a) Determine the entry point yγ from xm(y) and γ.
(b) Compute slope average ξγ around yγ.385

(c) Generate the bucket path xb(s) from ξγ and α, β, κ.
(d) Compute the bucket velocity ẋ(s) along the path.
(e) Compute the actuator joint velocities q̇(s).

3. Perform loading.

(a) Enter the pile at given position and velocity.390

(b) Track the bucket and set target joint velocity to q̇(s).
(c) Control the actuator torque τj ∈ [τ−j , τ

+
j ] for target joint velocity.
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3.5. Loading performance

The loading performance is defined by three objective func-
tions: the production, φ1; the structural damage, φ2; and the
amount of rock debris, φ3, in front of the excavated pile. The
objective functions are defined

φ1 = −
mbucket

t0−4
, (13)

φ2 =
1

tchar
0−4

∫ t4

t0

max[|τ(t)| − τc, 0]
τc

dt, (14)

φ3 = mdebris. (15)

The production is the excavated rock mass carried in the bucket,
mbucket, divided by the measured loading time, t0−4 = t4−t0. The395

damage model assumes that damage occur if the magnitude of
the bending or twisting joint moment, τ, exceed a critical value,
τc. Observe that we distinguish between bending moment, that
acts to maintain a mechanical joint in place, and actuator torque,
that acts to drive a joint motor at a target velocity. The net dam-400

age is assumed proportional to how much the critical bending
moment is exceeded and for how long time. We normalise this
with the characteristic loading time tchar

0−4 = 12 s. For simplic-
ity, we only compute the damage in the hinge joint connecting
the bucket to the boom link. As a critical bending or twisting405

moment we choose τc = 145 kNm. This value was measured
in a simulation where the bucket was pushed towards a static
obstacle at the corner of the bucket by the driving the vehicle
forward with maximum engine torque. The damage model em-
ulates an unevenly loaded bucket or ramming a heavy object.410

The amount of rock debris is the total mass of the rocks, mdebris,
that is left on the ground but no longer in contact with the pile
after loading.

4. Simulation

For each choice of design variable, x = [α, β, γ, κ], the cor-415

responding loading performance, φ(x) = [φ1, φ2, φ3], is com-
puted from a sequence of 20 rock loading simulations. At the
end of each simulation the rock mass in the bucket, mbucket, is
measured and any rock debris, mdebris, from the previous exca-
vation is removed. New rocks are emitted from atop the void420

until the nominal material height is restored, see Fig. 4. The
pile is then left to relax into a resting state. The next simula-
tion begins with analysis of the new pile state and generation
of a dig plan, as described in Sec. 3.1 and 3.2. The LHD is
placed in a position aligned with tunnel and heading straight425

towards the entry point, yγ. Each sequence of 20 loading sim-
ulations start from the same original pile, but it evolves differ-
ently depending on the motion design variable. This way any
loading strategy that systematically results in poor pile states
will automatically lead to a poor loading performance. An im-430

age sequence from simulations is shown in Fig. 10 and 11.
Videos from simulations is available as supplementary material
at http://umit.cs.umu.se/loading/.

The system and loading operation models, described in
Sec. 2 and 3, are implemented in the simulation engine AGX435

time-step 0.01 s
impact threshold 0.1 m/s
solver hybrid direct-iterative split
friction model iterative projected cone friction
model reduction threshold 0.01 m/s
PGS resting iterations 150
PGS impact iterations 10
warmstarting PGS level 0.75
paralell PGS true

Table 5: The AGX Dynamics simulation settings that were used in the simula-
tions.

Dynamics [30] and run with the settings listed in Table 5. The
adaptive model reduction technique [25] merges regions of co-
moving or stationary rocks into rigid aggregates to reduce the
computational time considerably. To avoid the reduced rock
pile from being artificially rigid at first impact with the ma-440

chine, a model-refinement-sensor of length rb is attached in
front of the bucket. It was verified that this did not affect the
dynamics of the rock pile and vehicle by any significance. The
average time for a loading cycle was 12 s. The computational
time for one simulation was approximately 500 s while running445

four threads in parallel on a desktop computer with Intel(R)
Core(TM) Xeon X5690, 3.46 GHz, 48 GB RAM on a Windows
64 bit system.

5. Surrogate modelling

A surrogate model [31], also known as a response surface450

model, is an approximation of an original unknown function.
The original function, y = φ(x) with x ∈ Rnd , is usually very
expensive to evaluate, restricting the maximum number of eval-
uations, N, while the surrogate model, φ̂(x), is cheap to evaluate
but adds some error to the result, φ(x) = φ̂(x) + ε. When build-455

ing a surrogate model, the N sample points are chosen cleverly
and included in a sample plan, X = [x(1), · · · , x(N)]T . The surro-
gate model, φ̂(x), is fitted to the response, Y = [y(1), · · · , y(N)]T ,
from evaluating φ(x) on the sample plan. The surrogate model
is then used in algorithms that require many function evalua-460

tions, e.g., for optimisation or design space exploration.
We use the regression Kriging method. The surrogate model

is represented as

φ̂(x) = wTψ =

N∑
i=1

w(i) ψ(i)(|x − x(i)|), (16)

with one Kriging basis function for each sample point (i)

ψ(i)(|x − x(i)|) = exp
(
−

nd∑
j=1

θ j |x j − x(i)
j |

p j

)
. (17)

The model parameters are the weight function w, radial width
θ and exponent p. To construct the model is to compute the
model parameters that best fit the sample data according to

[Ψ + λI] w = Y (18)
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Figure 10: Side view image sequence from a loading simulation with design
variables x = [1.3, 0.85, 1.0, 0.6].

Figure 11: Top view image sequence from a loading simulation with design
variables x = [1.3, 0.85, 1.0, 0.6].
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where the Gram matrix is Ψ(i j) = ψ(|x( j) − x(i)|) and a regular-
isation parameter λ has been added to avoid overtraining the
surrogate model to noisy sample data. The basis parameters
θ are identified using Maximum Likelihood Estimation (MLE)465

while p is held fix, and the weights w are computed as the least
squares solution to Eq. (18).

To test how well the model approximates the data, a portion
of the observation data is left out from the sample points and
form a validation set φ(k). The model accuracy is then computed
as the normalized root mean square error (NRMSE)

ε j ≡
1

yrange
j

√√√
1

Nv

Nv∑
k

(φ(k)
j − φ̂

(k)
j )2, (19)

where yrange
j = max(Y j)−min(Y j) and Nv is the number of sam-

ple points in the validation set. In the present work, we use
Nv/N = 0.2, chosen randomly in the design space. No results470

from the validation set are used to fit the surrogate model.
We use the Matlab toolbox SUrrogate MOdeling

(SUMO)[32, 33] to build the surrogate model. It sup-
ports many different models and provides useful features,
e.g., methods for initial and sequential sampling of the design475

space, plotting, profiling and validation of the surrogate model.
Finding Pareto optimal solutions are done using the genetic
multiobjective optimisation algorithm NSGA-II, implemented
in Matlab’s optimisation algorithm gamultiobj, with population
size 300 and every other setting default. Table 6 lists the480

SUMO features and settings that are used.

6. Computational exploration

Designing a well-performing robotic rock loading system
involves meeting multiple competing objectives φk, k =

1, . . . , 3 ≡ No introduced in Sec. 3.5. Therefore it is suitable
to approach this as a multiobjective optimisation problem

minimise
x

[
φ1(x), . . . , φNo (x)

]
(20)

subject to {x−j ≤ x j ≤ x+
j , j = 1, . . . , nd}︸                               ︷︷                               ︸
≡S

(21)

and systematically explore the behaviour of φk over the design
space, S , to identify and visualize the trade-off surfaces, known
as the Pareto front, P ⊂ S . A Pareto optimal solution, x∗ ∈ P,485

is a solution that cannot be improved in any objective without
worsening it in at least one of the other objectives, i.e., there
is no x ∈ S such that φk(x) < φk(x∗) for all k = 1, . . . ,No.
The set P of Pareto points form the Pareto front φ(x∗). This
form the basis for deciding on a loading strategy that is optimal490

for a given trade-off between the objectives. Computing the
Pareto front require many evaluations of the objective functions
and building accurate surrogate models from a limited set of
simulations is essential.

We propose the following procedure for computational ex-495

ploration of robotic rock loading system:
1. Construct a system model and a loading operation model that depends on

a number of design variables, x ∈ S .

Model type Regression Kriging
Initial design Latin hypercube

with corner points
Sequential design Lola-Voronoi and error
Target N = 200 sample points
Number of validation points 20%

Table 6: SUMO features that are used.

(a) Rigid multibody vehicle with actuator models.
(b) Rigid multibody rock pile.500

(c) Dig plan and loading control as a function of the machine and pile.
(d) Choose loading design variables and their range.

2. Introduce objective functions, φ, that define the loading performance.
(a) Production.
(b) Damaging forces causing machine wear.505

(c) Poor pile state that cause interruption.
3. Build surrogate models, φ̂, from simulations.

(a) Add sample points to sample plan X covering the design space S .
(b) Simulate Nl loadings for each new sample point x(i) and receive

the response y(i) = φ(x(i)).510

(c) Update w, θ and φ̂, leaving out sample points for validation.
(d) Compute the error ε to validate the surrogate model.
(e) If target is reached, continue, otherwise go to 3.(a).

4. Exploration and optimisation using the surrogate model.
(a) Visualise the objective functions φ̂(x), x ∈ S .515

(b) Compute the Pareto fronts φ̂(x), x ∈ P.
(c) Identify optimal loading strategy for given performance trade-off.

Since we use a fixed number of sample points instead of a
given target error we only need to evaluate the model error once,
i.e., we switch order between 3.(d) and 3.(e).520

7. Results and discussion

A surrogate model of the loading performance is constructed
from a set of N = 204 sample points covering the design space.
This mean 4080 simulations of the loading operation. Another
40 sample points are gathered for validation of the surrogate525

model and used for computing the model accuracy. The design
space coverage of the training and validation sets can be found
in Appendix B. The found model parameters, θk

j , are presented
in Table 7 with the corresponding regularization and model ac-
curacy. The loading performance dependency on the design530

variables can be understood from the contour plots of the objec-
tive functions in Fig. 12-Fig. 14. The Pareto front is visualized
in Fig. 15-17.

From the values of the surrogate model parameters in Table
7 we observe that α, the bucket fill ratio target, is the design535

variable that most strongly influence the loading performance,
i.e., θk

α > θk
j for j = β, γ, κ. The second most important design

variable is β, that controls the target dig depth. The entry point
variable, γ, affect only the rock debris objective, φ̂3, by any
significance. The bucket curl variable, κ, has a small effect on540

the production, φ̂1, and lesser so on the other objectives.
The three objective functions are visualized as nested con-

tour plots in Fig. 12-14. From Fig. 12 we conclude that high
production is promoted by dig plan with a slight bucket over-
filling, α ≈ 1.3, shallow digging and maximal entry point mass545

proximity and large bucket curl. According to Fig. 13, struc-
tural damage is avoided by deep digging and small bucket fill

9



θα θβ θγ θκ λ ε

φ̂1 0.677 0.040 0.003 0.019 0.0002 0.05
φ̂2 0.726 0.404 0.003 0.001 0.002 0.17
φ̂3 1.552 0.353 0.194 0.001 0.008 0.18

Table 7: The found surrogate model parameters θ, regularization λ and model
accuracy ε for the three objective functions.
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Figure 12: Contour plot of the production objective function, φ̂1, in units [kg/s].

ratio. The entry point and curl has no significant influence. It
is surprising that the biggest damage occur at bucket fill ratio
around α ≈ 1.3 and not the maximal fill ratio. Presumably, the550

machine does not have sufficient strength or traction to accom-
plish the motion required for maximum fill ratio. The general
trend for the amount of rock debris, shown in Fig. 14, is that it
increase with the bucket fill ratio and entry point mass proxim-
ity. To minimize the rock debris it helps to either dig very shal-555

low or very deep, possibly because the rocks that are dropped
in the latter case are likely to fall back onto the pile.

Three sample points are selected to exemplify how to inter-
pret the plots. The example points have the following design
variables

xN = [1.3, 0.85, 1.0, 0.6],
x• = [0.3, 0.6, 0.6, 0.2],
x� = [1.8, 0.1, 0.2, 1.0].

The points represent contrasting trajectories with different load-
ing performance φ(x) that are indicated in Fig. 12-14. The first
sample point, xN, is a high and shallow trajectory that attempts560

to overfill the bucket by 30%. It attacks the pile at the front most
centre of mass point and curls the bucket moderately between
waypoint s1 and s2. The second point, x•, is a medium high
trajectory that is satisfied with filling the bucket only to 30%
of the capacity. It attacks the pile at a middle centre of mass565

point and curls the bucket very little. The third sample point,
x�, is a low and deep trajectory that tries to overfill the bucket a
lot. It attacks the pile at a rear centre of mass point and applies
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Figure 13: Contour plot of the structural damage objective function, φ̂2.
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Figure 14: Contour plot of the debris objective function, φ̂3, in units [kg].
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maximum curl of the bucket. Of the tree points, xN achieves
the largest production, see Fig. 12. It is a good combination570

of bucket filling and short time to execute the trajectory. The
sample point x� has the second highest production. The extra
time spent on trying to overfill the bucket is affecting the pro-
duction negatively. The sample point x• has by far the lowest
production. There is no gain in production by under-filling the575

bucket although it results in faster loading time. For the struc-
tural damage, φ̂2(x), and the debris, φ̂3(x), objective functions,
the relationship is the reverse. The sample point x• has the low-
est structural damage and the lowest amount of debris. In the
middle lies the sample point x� and the worst is xN.580

The loading performance measures are also objective func-
tions to the multiobjective optimisation problem stated in
Eq. (20). The Pareto front is visualized in Fig. 15-17 by pro-
jection to a two-dimensional space and color coded in the re-
maining dimension. The three example points are also included585

for reference, but they are not Pareto optimal solutions. It is
clear, and expected, that φ̂1 competes with φ̂2 and φ̂3. A higher
production is associated with more debris in front of the pile
and larger bending moments in the joints. The design variables
for the Pareto solutions with the highest production are approx-590

imately, x = [1.3, 0.8, 0.9, 0.8]. That is when the vehicle attack
the pile at a point with center of mass closer to the front, with
a high and shallow trajectory that tries to slightly overfill the
bucket and applies large bucket curl. The objectives φ̂2 and φ̂3
do not compete as seen in Fig. 17. It is possible to achieve a low595

structural damage and low amount of debris at the same time.
The accuracy of the surrogate model is measured with the

NRMSE in Eq. 19 and is listed in Table 7. The error varies
between 5% (for production) and 17 - 18% (for damage and
debris). This is deemed acceptable for practical application. It600

should be noted that NRMSE is a global error since all points
are weighted equal. Once a region of particular interest have
been identified in the design space the local error can be inves-
tigated and improved by adding weight to the sample points in
that region or adding additional points. A test was done with605

500 sample points and a slightly different control strategy. The
accuracy of that model was the same. This indicate that the re-
sponse surface has a noise level that is not meaningful to resolve
any further.

A number of assumptions and simplifications have been610

made that limit the model validity for a real LHD. The most
severe simplification is probably that the particle size distribu-
tion of the muck pile is truncated at 0.3 m. The contact model
parameters are representative but have not been validated in ex-
periments. It is likely that cohesion should also be included615

as a contact parameter when considering materials with large
fraction of fine particles and presence of moisture. It should
be pointed out that including the effect fine particles can be
achieved by mapping the contact parameters to measured bulk
behavior [34] and do not necessarily rely on representing the620

true particle size distribution. The maximum forces of the ac-
tuators have been estimated from the maximal breakout force
specified in data sheets from the manufacturer. There is a risk
that the machine is too weak in certain configurations and too
strong in others. This would be resolved by replacing the actu-625

ator models with a more faithful powertrain model. The dam-
age model only considers the bending moment in one selected
joint and one mode of deformation. This is easily remedied
by extending the damage objective function. The current load-
ing operation model does not apply any gradual raising of the630

boom arm to increase the ground grip and avoid losing trac-
tion while digging into the pile. The next step, before applying
the proposed technique to a specific machine and rock material,
is to validate the dynamic models, investigate the sensitivity
to the model parameters and remedy any severe short-comings635

that are found. The machine dynamics model parameters, and
the rock material model should be identified and calibrated us-
ing independent experiments, e.g., tracking the loading motion
with given payloads and performing triaxial test [34]. Finally,
the combined model is validated by executing a sample of dig640

plans on measured piles and comparing with simulations of the
same.

In this paper, the method for computational exploration is
tested on the dig planning problem rather than on the loading
control. The method is just as applicable to the control prob-645

lem, e.g., for exploring the promising admittance control [1]
and finding the control parameters maximize the performance
for a given vehicle design and rock material properties.

It is also interesting to reflect on the computational complex-
ity of the proposed method. The presented methodology for650

computational exploration involve three objective functions for
measuring the performance and four design variables that deter-
mine the loading strategy. A total of 4880 multibody dynamics
simulations of rock loading were performed, covering the four-
dimensional design space with 244 sample points and 20 load-655

ings in each point. The computational cost of simulating one
loading cycle is 500 CPU seconds with the specified hardware.
This amount to almost 3 CPU hours per sample point and 700
CPU hours in total. The computational time can be assumed to
grow at least linearly with the number of bodies in the rock pile,660

depending on the required time-step, PGS iterations and on the
parallel scalability on the given hardware. The computational
time for obtaining the surrogate model from the response data
and Eq. (18) is about 60 s. A single evaluation of the surrogate
model takes only 0.1 ms. The Pareto set was determined using665

a genetic optimization algorithm (gamultiobj in MATLAB) that
required approximately 40 · 103 evaluations. The net computa-
tional time for this was also close to 60 s. Both these steps are
clearly negligible compared to the simulation time. To be pre-
cise, the surrogate model is roughly a factor 105 more efficient670

thant the original simulations on which it is based. Comput-
ing the Pareto front using the multibody simulation would take
about 105 CPU hours, or 300 years with a single CPU. There is
no cost in adding additional objective functions unless the re-
sponse is sensitive and need to be resolved using many more675

sample points. Introducing additional design variables, on the
other hand, is more costly since the required number of sam-
ple points grows exponentially to maintain a constant sampling
density in the design space. Hence, an increase in computa-
tional performance by a factor 10 can at best be converted into680

10 times more particles in the rock pile or 10 times more sam-
ple points, which would allow one more design variable in the
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Figure 15: The Pareto set projected onto production φ1 and damage φ2, and
color coded by debris φ3.
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Figure 16: The Pareto set projected onto production φ1 and debris φ3, and color
coded by damage φ2.

application example.

8. Conclusions

A method for simulation-based development of robotic rock685

loading is described and tested. It is shown feasible to use non-
smooth multibody dynamics simulation to explore the depen-
dency between different dig planning strategies and the result-
ing loading performance, measured by productivity, structural
damage to the machine and rock debris that cause interruptions.690

A total of 4880 loading cycles are simulated and a surrogate
model for the relation between the motion design variables and
the loading performance is built. The surrogate model is a fac-
tor 105 more efficient than the simulation. This enables system-
atic analysis, visualization and identification of Pareto optimal695

strategies for generating dig motion plans. That analysis would
take years to compute (with current hardware) using only multi-
body simulation instead of seconds with the surrogate model.
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Figure 17: The Pareto set projected onto damage φ2 and debris φ3, and color
coded by production φ1.

The accuracy of the surrogate model was found to be between
5 - 18 % for the different performance measures. By exploring700

the surrogate model it is found that the highest productivity is
achieved with a high and shallow trajectory, attempting to over-
fill the bucket by 30 %, applying a large bucket curl and entering
the pile at a point with center of mass closer to the front. The
proposed simulation-based methodology should apply equally705

well to determine optimal loading control parameters as well.
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9. Appendix

A. Numerical method

The regularisation and stabilisation terms, ε and γ, introduce
compliance and dissipation in motion orthogonal to the con-715

straint manifold. In the absence of the inequality and comple-
mentarity conditions, the regularised constraints may be viewed
as Legendre transforms of a potential and Rayleigh dissipa-
tion function of the form Uε(x) = 1

2εgT g and Rγ(x, v) =
1

2γ (Gv)T (Gv) [20]. This enables modelling of arbitrarily stiff720

elastic and viscous interactions in terms of constraint forces
with a direct mapping between the regularisation and stabili-
sation terms to material parameters such as the elasticity modu-
lus. The diagonal matricesΣn, Σt , Σj andΥn contain the contact
material parameters and can be found in [25]. d725

The numerical time integration scheme is based on the
SPOOK stepper [20] derived from discrete variational principle
for the augmented system (x, v, λ, λ̇) in Eq. (1)-(4) and applying
a semi-implicit discretization. This generates a time-stepping
scheme for the position and velocity, (xn, vn) → (xn+1, vn+1),
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from time tn to tn+1 = tn + ∆t that is linearly stable and O(∆t2)
accurate for constraint violations [20] and involve solving the
following mixed complementarity problem (MCP) [35]

Hz + b = wl − wu

0 ≤ z − l ⊥ wl ≥ 0

0 ≤ u − z ⊥ wu ≥ 0

(22)

where

H =


M −GT

n −GT
t −GT

j
Gn Σn 0 0
Gt 0 Σt 0
Gj 0 0 Σj

 , (23)

z =


vn+1
λn,n+1
λt,n+1
λj,n+1

 , b =


−Mvn − ∆tM−1fext

4
∆tΥngn − ΥnGnvn

0
−ωj + 4

∆tΥjgj − ΥjGjvn

 . (24)

The solution vector z contains the new velocities and the La-
grange multipliers λn, λt and λj. The position update is simply
xn+1 = xn + ∆tvn+1. For notational convenience, a factor ∆t has
been absorbed in the multipliers such that the constraint force
reads GTλ/∆t. The upper and lower limits, u and l, in Eq. (22),730

follow from the contact law and joint and motor limits. Since
the limits depend on the solution, this is a partially nonlinear
complementarity problem. wl and wu are temporary slack vari-
ables used internally by the MCP solver only. In the present
paper the full MCP is solved with a hybrid direct-iterative split735

solver using the simulation engine AGX Dynamics [30]. The
articulated machine and the contact normal forces between the
machine and rocks are thus solved using a sparse direct block-
pivot LDLT solver [21]. The rock pile contact network and the
friction forces between the machine and the rocks are solved740

to lower precision using a projected Gauss-Seidel (PGS) solver
[18]. To accelerate the PGS solver computations, we employ
domain decomposition for parallel processing, warmstarting
[36] and model reduction [25].

The contacts are divided into impacts and continuous con-745

tacts, depending on the magnitude of the incoming relative nor-
mal velocities Gnv−. The impulse transfer through the sys-
tem is assumed to satisfy the Newton impact law, G(i)

n v+ =

−eG(i)
n v−, with coefficient of restitution e for the impacts (i), as

well as preserve all remaining constraints ( j) on velocity level,750

G( j)v+ = 0.

B. Design space coverage

It is important that the sample points cover the design space
well. The distribution of sample points and validation points in
this study is shown in Fig. 18 and 19.755
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(SIMS 2007), Göteborg, 30–31 (2007) 40–48.815
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