Composer - A prototype multilingual model
composition tool

Erik Billing and Martin Servin
November 10, 2012

Abstract

Facing the task to design, simulate or optimize a complex system it
is common to find models and data for the system expressed in different
formats, implemented in different simulation software tools. When a new
model is developed, a target platform is chosen and existing components
implemented with different tools have to be converted. This results in
unnecessary work duplication and lead times. The Modelica language
initiative [2] partially solves this by allowing developers to move models
between different tools following the Modelica standard. Another possi-
bility is to exchange models using the Functional Mockup Interface (FMI)
standard that allows computer models to be used as components in other
simulations, possibly implemented using other programming languages
[1]. With the Modelica and FMI standards entering development, there is
need for an easy-to-use tool that supports design, editing and simulation
of such multilingual systems, as well as for retracting system information
for formulating and solving optimization problems.

A prototype solution for a graphical block diagram tool for design, edit-
ing, simulation and optimization of multilingual systems has been created
and evaluated for a specific system. The tool is named Composer [3].

The block diagram representation should be generic, independent of
model implementations, have a standardized format and yet support effi-
cient handling of complex data. It is natural to look for solutions among
modern web technologies, specifically HTML5. The format for represent-
ing two dimensional vector graphics in HTMLS5 is Scalable Vector Graphics
(SVG). We combine the SVG format with the FMI standard. In a first
stage, we take the XML-based model description of FMI as a form for de-
scribing the interface for each component, in a language independent way.
Simulation parameters can also be expressed on this form, and integrated
as metadata into the SVG image.

The prototype, using SVG in conjunction with FMI, is implemented
in JavaScript and allow creation and modification of block diagrams di-
rectly in the web browser. Generated SVG images are sent to the server
where they are translated to program code, allowing the simulation of
the dynamical system to be executed using selected implementations. An
alternative mode is to generate optimization problem from the system
definition and model parameters. The simulation/optimization result is



returned to the web browser where it is plotted or processed using other
standard libraries.

The fiber production process at SCA Packaging Obbola [4] is used as
an example system and modeled using Composer. The system consists of
two fiber production lines that produce fiber going to a storage tank [5].
The paper machine is taking fiber from the tank as needed for production.
A lot of power is required during fiber production and the purpose of the
model was to investigate weather electricity costs could be reduced by
rescheduling fiber production over the day, in accordance with the elec-
tricity spot price. Components are implemented for dynamical simulation
using OpenModelica and for discrete event using Python. The Python im-
plementation supports constraint propagation between components and
optimization over specified variables. Each component is interfaced as a
Functional Mock-up Unit (FMU), allowing components to be connected
and properties specified in language independent way. From the SVG
containing the high-level system information, both Modelica and Python
code is generated and executed on the web server, potentially hosted in
a high performance data center. More implementations could be added
without modifying the SVG system description.

We have shown that it is possible to separate system descriptions on
the block diagram level from implementations and interface between the
two levels using FMI. In a continuation of this project, we aim to integrate
the FMI standard also for co-simulation, such that components imple-
mented in different languages could be used together. One open question
is to what extent FMUs of the same component, but implemented with
different tools, will have the same model description. For the SVG-based
system description to be useful, the FMI model description must remain
the same, or at least contain a large overlap, for a single component imple-
mented in different languages. This will be further investigated in future
work.

References

[1] Modelica Association. Functional mock-up interface, http://www.fmi-
standard.org, November 2012.

[2] Modelica Association. Modelica and the modelica association,
http://www.modelica.org, November 2012.

[3] Erik Billing and Martin Servin. Composer,
http://imuit.cs.umu.se/composer, November 2012.

[4] SCA Packaging. Sca packaging obbola, http://www.scapackaging.com,
November 2012.

[6] Patrik Térménen and Hussein Jaffal. Reducing electricity cost - case study.

Technical report, UMIT Research Lab, Umea University, 2011.



