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Figure 1: Example from application including a wire with adaptive resolution. The system has two boxes connected by a wire routed over two
cylindrical wheels that are free to rotate. Black dots showslumped wire masses and magenta dots show contact nodes. Numerical robustness
is secured by recognizing unstable states and simplifying the system to lower wire resolution for which the system is stable.

Abstract

We propose a systematic approach to adaptive resolution in physics
based virtual environments (VEs) that combines the conventional
requirements of realtime performance, visual appearance with im-
portant requirements on the physical simulation, such as accuracy
and numerical robustness. In particular, we argue that adaptive res-
olution is a key element to achieve robustness in fixed time-step
VEs. The idea is to adaptively substitute unstable subsystems with
more simplified and robust models. The method is demonstrated on
systems including stiff wires. The algorithm brings stability, real-
time performance and preservation of the important physical invari-
ants to the system. The application to general systems is discussed.

Keywords: adaptive resolution, virtual environment, physics
based animation, fixed time-step, numerical stability

1 Introduction

In physics based virtual environments (VEs), the state space of pos-
sible configurations is necessarily large and the trajectories depend
critically on both user interaction and the dynamics of simulated
objects. This is particularly true for training system where the
state space cannot be restricted, i.e., catastrophic situations result-
ing from operating errors must be reachable in the simulation to
avoid false training. This makes it difficult to construct VEs that
are guaranteed to be robust, numerically stable over the entire state
space, run in realtime, and offer optimal visual appearanceand ac-
curacy for the purposed use. The problem increases in complexity
when taking account of different hardware set-ups with different
performance, and view-dependent level-of-detail.

We propose a systematic approach to adaptive resolution in physics
based VEs that combines the conventional requirements of realtime
performance, visual appearance with important requirements on the
physical simulation, such as accuracy and numerical robustness.
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1.1 Related work

There is a vast litterature onadaptive resolutiontechniques, or
level-of-detail(LOD) algorithms, in the context of 3D computer
graphics and virtual environment since the early work by [Clark
1976]. The difficulties associated with applying LOD and culling
algorithms inphysics basedvirtual environments has attracted lit-
tle scientific attention, but was adressed at least partially by [Carl-
son and Hodgins 1997] and [Chenney and Forsyth 1997]. Previ-
ous approaches have focused on either adapting thespatial resolu-
tion for the sake of visual quality or accuracy, e.g., [Spillmann and
Teschner 2008] and [Redon et al. 2005], or on adapting thetime
step-sizeto avoid numerical instabilities in stiff systems [Debunne
et al. 2001]. The latter approach conflicts with the realtimeperfor-
mance requirement and fixed time-step designs common in VEs.
The former technique based on spatial refinement can introduce in-
stabilities. We have found no example in litterature that combines
the requirements of realtime performance, visual appearance with
the important requirements on the physical simulation, such as ac-
curacy and numerical robustness.

1.2 Our contribution

Our approach uses the fact thatthe tendency for instabilities de-
creases as a system is made more coarse-grained. For many sys-
tems these instability thresholds can be predicted in advance and in-
corporated in an adaptive resolution scheme. In particular, we apply
this idea successfully in interactive simulations including inexten-
sible but otherwise flexible wires—one of many stiff systemsthat
plague VEs with numerical instabilities [Servin and Lacoursière
2008]. We present an algorithm for finding the optimal spatial res-
olution for the discretized wire objects at each time-step.The opti-
mality is based on a line quality measure that includes weighted re-
quirements for numerical stability, limited computational time and
system granularity (linked to both visual appearance and solution
accuracy). The algorithm brings stability, realtime performance
and preservation of the important physical invariants to the system.
Available computational resources can also be used to increase the
resolution of specific parts of the VE, as prioritized by the user.
Adaptive resolution has also proved to be a key element in finding
robust contact methods for wires. We discuss how this works and
show application examples of the method in the context of a mar-
itime training simulator. Finally, we discuss the use of this method



to more general systems than wires.

2 Adaptive resolution

The basis of physics based VEs is now outlined and a general algo-
rithm for adaptive resolution is constructed.

2.1 Multibody system dynamics

Physics based VEs are examples of multibody system simulations
(MBSS) which computes the motion of the system at discrete time-
steps from a set of equations of motion. The computed motion de-
pends on the initial conditions, the external and internal forces and
various types of constraints, e.g., for modeling of joints,motors
and dry frictional contacts. The computed motion also includes a
numerical error that depends on the time step size and on the nu-
merical solver being used. For practical reasons many VEs are run
with fixed time-step, say,h = 1/60 s. Dynamics on time scales
shorter thanh cannot be perceived visually by the user and is con-
sidered to be unimportant. Computational time should thus not be
spent on resolving the high frequency dynamics unless it is neces-
sary for the overall behavior. Using variable time-step or different
time-steps for the different subsystems is possible but generally not
practical in the realtime context, and thus finds little support in ex-
isting code libraries for rendering, collisions detection, or physics
engines. Only fixed-step simulation is considered in what follows.

We use the descriptor form of multibody system dynamics. The
variables for the system are generalized positionq, velocity q̇
and Lagrange multiplierλ for the kinematic constraint vector
g(q, q̇, t) = 0. For simplicity we assume the multibody system
to be a particle system. The extension of the theoretical framework
to include also rigid and deformable solid bodies is fairly straight
forward. Given that the system hasNp particles andNc scalar con-
straints the system variables have dimensiondim(q) = dim(q̇) =
3 × Np anddim(λ) = dim(g) = Nc.

The system Lagrangian is

L(q, q̇, λ, t) = 1
2
q̇T Mq̇ − V (q) − λT g (1)

whereM is the system mass matrix of dimension3Np × 3Np,
which is symmetric and positive definite andV is the potential en-
ergy of the system. The Euler-Lagrange equations derived from the
least action principle are then

Mq̈ = −∇qV + GT λ (2)

g(q, q̇, t) = 0, (3)

whereG ≡ ∇qg is the constraint Jacobian. We notate the system
state at timet by x(t) = (q, q̇, λ).

The equations of motion (2) can be integrated using a varietyof
techniques. In particular, there is considerable choice for constraint
satisfaction and stabilization, ranging from direct or iterative linear
algebra techniques, penalty formulations, and constraintprojection
strategies. Our choice is the combination of a discrete-time vari-
ational technique described in [Kharevych et al. 2006], andcon-
straint stabilization and regularization [Lacoursière 2007]. This
yields a computational procedure to producex(t + h) givenx(t).
The discrete-time variational integrators are derived from the least
action principle rather than from discretization of the equations of
motion. These steppers preserve many of the important physical
invariants of the system by construction. This makes them gener-
ally more robust. At fixed time-step for instance, linear andangular
momentum are preserved to machine precision, globally overthe
entire simulation. Examples of variational integrators are the Verlet
stepper and symplectic Euler.

2.2 A general algorithm for adaptive resolution

Besides the time evolution of positions and velocities we now also
consider the evolution of a variable number of bodies in the MBSS.
We assume a resolution variabler that represents the state of reso-
lution for the systems. This can be an integer, integer vector or more
complicated set of integers depending on how each subsystemmay
be described at different levels. For eachr the system has a specific
number of particles and connectivity. We further assume a set of
quality measuresQ(r)α > 0, α = 1, 2, . . ., that each measures a
specific quality of a specific subsystem. Good quality corresponds
to values close to unity and poor quality corresponds to values close
to zero. Next we list a number of qualities that can be included.
i) User perceived quality, Quser(r,view,inter). The subsystem
which the user is focusing on should have high geometric level of
detail and high functionality. User focus is determined through the
camera view (view) and level of interaction with the subsystem
(inter). ii) Accuracy, Qacc(r, x). This measures the accuracy
of the numerical solution for a subsystem. Flexible systems, such
as deformable solids or fluids, may require sub-division to main-
tain a specified accuracy when deformed.iii) Computational time,
Qtime(r, testtlim). During each time-step there is a fractiontlim < h
of the step-size that may be spent on computing the dynamics.The
actual time for computation for each subsystem for a given resolu-
tion r can be estimated to some numbertest. High quality is when
P

test < tlim. iv) Robustness, Qrob(r, x,M, f). The risk of nu-
merical instabilities—diverging or erratic changes in velocities or
positions—can be estimated from the statex of the subsystem, pos-
sibly in combination with a model for the numerical stability of the
subsystem at various levels of resolution. These models maytypi-
cally also include system massM and the forces in the systemf .
In section 3 we give examples of robustness quality measuresfor a
specific class of system and we elaborate on the problem of estimat-
ing the numerical robustness in general systems further in section
4. As a cost function for keeping the application quality high we
introduce 1

2

P

α wαQ(r)−2
α with weight coefficientswα > 0 for

each quality.

The problem of evolving a VE with optimal quality can be treated
as a problem of evolving the extended system with variables(x, r)
and Lagrangian

L̃(x, r, t) = L̃(x, t) − 1
2

X

α

wαQ(r)−2
α (4)

The resolution variabler can be treated either as a continuous vari-
able and rounded to integer values or as an integer variable.The
extended time stepping algorithm involves solving a complicated
nonlinear equation, e.g., using Newton-iterations and taking into
account the dependence inQ(r) on (q, q̇) and any implicit depen-
dency in(q, q̇) on r. This self-consistent formulation has the ad-
vantage that it has a variational formulation and may thus beap-
proached with variational integrators like the rest of the system,
i.e., treat the resolution parameters as any other dynamic variable
and thus preserve the physical invariants of the system evenat
the events of change in resolution. It may however be too time
consuming to perform Newton-iterations and solve these equations
exactly. Instead, as a proof of concept, we assume a weak cou-
pling between the variablesx = (q, q̇, λ) and r and solve for
them separately. An algorithm for MBSS including adaptive res-
olution for optimal quality in this form is given in Algorithm 1.
Our approximation is to use the locally optimal solution forr′, i.e.,
r′ = arg minr(

1
2

P

α wαQ(r)−2
α ). It is critical that the system re-

configuration is constructed to preserve the important physical in-
variants of the system, most importantly the total momentum. Step
9 in the algorithm involves also reconfiguration of the system con-
nectivity, e.g., given by the constraintsg(x).



Algorithm 1 Adapt resolution for optimal quality

1: system initializationx andr
2: while VE runningdo
3: user interaction→ (view, inter)
4: accumulate explicit forces−∇qV (x)
5: update contact data and constraint datag(x)
6: step particlesxi−1 → xi

7: compute the quality function
Q(r) = (Quser, Qacc, Qtime, Qrob)

8: compute optimal system resolutionr′

9: reconfigure the system(qi, q̇i, r) → (q′i, q̇
′
i, r

′)
10: end while

Figure 2: The transversal force,f1 + f2, on the particles increases
with the wire tension. Numerical instabilities develops when the
wire tension and thus the oscillation frequencies become larger
than the frequency of the numerical integration.

3 Application to wires

In this section we describe physics based VEs containing wire sys-
tems with adaptive resolution for optimal quality. We modela
wire by a set of constraints0 = gwire = (gwire

1 gwire
2 , . . . , gwire

N−1)
on a collection ofN ≤ Np particles, such that the particles
are connected in line topology with pairwise distance constraints
0 = gwire

i = |qa − qb| − li for maintained segment lengthi. The
extension of this model to include stretch and bend elasticity and
contact nodes is delayed to Sec. 3.3

Inextensible wires is an example of stiff systems that are well-
known to be numerically unstable when the strain becomes too
high. For instance, a wire with segment length of the order of1 m,
particle mass1 kg integrated with the symplectic Euler algorithm at
step-sizeh = 1/60s cannot support loads much larger than100 kg
in normal gravity. This is a severe limitation in simulations where
the wires and cables should be used for heavy hoisting or anchor-
ing. The instability may also develop in the absence of heavyloads
by the wire inertia of its own, e.g., in a whip effect. The cause of
the numerical instability is that when the wire has normal modes of
transversal vibrations with frequenciesω ≥ h−1. These modes are
excited by the numerical noise in the system. The normal modefre-
quencies are proportional to the wave velocity of transversal vibra-
tionsc ≡ [fL/mtot]

1/2, wheref is the wire tension,mtot = Nm
is the total wire mass and wire lengthL. With increasing wire ten-
sion the transversal force component increases, see Fig. 2,and the
normal mode oscillation frequencies increases along with it. The
spectrum of normal modes for a wire of homogeneous distribution
of N particles is discrete and the normal mode frequencyωn ranges
[Fetter and Walecka 1980]

ωn =
2(N + 1)c

L
sin

»

nπ

2(N + 1)

–

, n = 1, 2, . . . , N (5)

The maximum frequency ismax (ωn) can be approximated to
2(N+1)c/L. A necessary condition on the number of point masses
for the wire to be numerically stable can thus be formulated as

N < Ncrit ≡
1

2h

r

Lmtot

f
(6)

Observe that the extreme case withN = 0 is unconditionally sta-
ble. This is themassless cablein [Servin and Lacoursière 2007]

Figure 3: Illustration of theCOARSE/REFINE-transition for adap-
tive resolution of wires. In order to preserve total mass andmo-
mentum these are redistributed over the neighboring particles.

and has no modes of transversal oscillations. If the wire would have
been simulated with a time-explicit integrator and an explicit force
model such as a spring forces the more restrictiveCourant condi-
tion for numerical stability should have been included as well.

3.1 Adaptive wire resolution

In order to realize an implementation of the adaptive resolution al-
gorithm, Algorithm 1, we must decide on quality measures forthe
wire systems, define a wire resolution number and construct transi-
tion rules for wire refinement and coarsening.

Just for the clarity of the presentation here we assume spatially
homogeneous distribution of wire masses and let the number of
masses depend on aresolution numberr = 0, 1, 2, 3, . . ., as
N = 2r + 1. Eachrefinement, r → r+ = r + 1, and coarsen-
ing, r → r− = r − 1, means the number of wire segments are
doubled or halved, respectively, as depicted in Figure. 3. The tran-
sition to another level of resolution should preserve totalwire mass,
local center of mass, local wire rest length and the linear momen-
tum. The following transition rules accomplishes that. Theparticle
mass depends on the resolution number asmtot/(2

r +1). New par-
ticlesb are added at half distance along the wire segments linking
existing particlesa andc. After eliminating a particleb the new
wire segment is the straight wire connecting the two neighboring
particlesa andc. A REFINE-transition transforms the velocities as
(q̇a, q̇c, q̇e, . . .) → (q̇a+, q̇b+, q̇c+, q̇e+, q̇f+, . . .), where

q̇a+ = q̇a (7)

q̇b+ =
“

2r+1+1
2r+1

− 1
” h

1
ηa

q̇a + 1
ηc

q̇c

i

(8)

q̇c+ = q̇c (9)

whereηa andηc are the number of neighbors (1 or 2) of particlea
andb, respectively. ACOARSE-transition transforms the velocities
as(q̇a, q̇b, q̇c, q̇d, q̇e, q̇f , . . . → (q̇a−, q̇c−, q̇e−, . . .), where

q̇c− = 2r−1+1
2r+1

ˆ

q̇c + 1
2

(q̇b + q̇d)
˜

(10)

with the exception for particles at the end points of the wires, in
which case the contribution from neighboring particles—theb-term
or thed-term in Eq. (10)—vanishes. Coarsening of a curved wire
may produce significant compression of wire segments and viola-
tion of preservation of the total wire length. Depending on how
these potentially large constraint violations are treatedthis may
cause large energy injections and give rise to jittery and instabil-
ities. We avoid this by allowing wire compression through modi-
fication of the constraint to an inequality constraintgwire ≥ 0. It
can be shown that these transitions preserve the total momentum of
the wire.

We define the wire system quality measure to beQ =



(Qacc, Qtime, Qrob) with

Qacc ≡

„

N

Np

«γacc

(11)

Qtime ≡ 1 −
1

1 + eγtime(tlim−test)
(12)

Qrob ≡ 1 −
1

1 + eγrob(Ncrit−N)
(13)

We do not claim that this measure of quality is unique nor canoni-
cal, but it has the functional dependency required for adaptive reso-
lution for optimal quality in fixed time-step realtime simulations.
The γ-exponents control the sensitivity to variations inN . For
simplicity we have left outQuser from the measure. The effect of
user view and interaction are instead incorporated by modifying the
weight factorwacc. In practice, you may need to regularize the qual-
ity measureQ by adding a small positive number to avoid division
by zero when the cost function is computed.

TheCOARSE-REFINE-algorithm for adaptive resolution for optimal
wire quality we use is given by Algorithm 2. The computation of

Algorithm 2 Adaptive wire resolution

1: system initialization(q, q̇, g, r)
2: while VE runningdo
3: user interaction→ (wacc, tlim)
4: accumulate explicit forces−∇qV
5: update contact data and constraint datag
6: step particles
7: compute quality measure(Qacc, Qtime, Qrob)
8: compute optimal wire resolution

r′ = arg minr
1
2

P

α wαQ(r)−2
α

9: if r′ < r then
10: while r′ < r do
11: COARSE→ (q−, q̇−, g−, r − 1)
12: end while
13: end if
14: if r′ > r then
15: while r′ > r do
16: REFINE→ (q+, q̇+, g+, r + 1)
17: end while
18: end if
19: Set new particle massm = mtot/(2

n + 1)
20: end while

the wire tension required for line 7 in the algorithm is computed
from the wire constraint forceGT λ.

3.2 Numerical experiments

The implementation of the adaptive wire model is made using the
SPOOK-stepper introduced in [Lacoursière 2007] implemented in
MATLAB. We describe the implementation in professional soft-
ware in Sec. 3.3

3.2.1 Accuracy, stability and realtime performance

In order to test and demonstrate the presented method we set
up a system consisting of a box of mass100 kg supported by
a wire of total mass1 kg and length10 m. Gravity is set to
9.8 m/s2 and the time steph = 1/60 s. This system is un-
stable at mass ratios1/1000 and above, i.e., for wire resolution
at & 10 particles under the weight of the box. The system is
unstable for even finer resolution when the wire tension peaks,

Figure 5: Snapshots from simulation of several boxes and wires
with view-dependent wire resolution. The view area is marked with
red dashed wire and focuses at different wires at different times
and thereby redistributes the available computational time to keep
this wire at higher resolution if this is permitted by the stability
requirement.

say, after a dropping the box from above. We let the resolu-
tion number and number of wire masses range between(r,N) ∈
(0, 2), (1, 3), (2, 5), (3, 9), (4, 17), (5, 33). The parameters of the
quality functions arewacc = wtime = wrob = 1, andγacc = 2,
wtime = 100/h, γtime = 10. The simulation is run for8 seconds
and the result is displayed in Fig. 4, showing a series of snap-
shots and the time evolution of the quality measures and the num-
ber of wire particles. It can be seen that the wire avoids instabil-
ity by decreasing the resolution at the high tension phase attimes
t = 0− 0.5 s, t = 3.5− 4.5 s andt = 7− 8 s, and maximizes the
resolution at the turn points at timest = 2 s andt = 6 s. Between
time t = 5–7 s we have inserted a dip in the available computa-
tional timetlim that makes the resolution algorithm to decrease the
resolution to maintain realtime performance.

The gain of the method can be understood from the following data
from the numerical experiments. To have stable simulation at full
wire resolution of the system and scenario described here would
require a time step20 times smaller thanh = 1/60 s and consume
increased computational power ofat least the same factor. The
alternative would be to keep the resolution at a level guaranteed to
be stable at all times – in this case this would be at zero resolution
(r = 0) – which would give poor accuracy and visual appearance.
The computational overhead of the adaptive resolution algorithm
for wires is small, roughly 1% of the total computational time spent
on computing the dynamics

3.2.2 View-dependent adaptivity

We now extend the system of Sec. 3.2.1 to a system with four wires
each of total mass1 kg connecting three rigid boxes with masses
m1 = 10 kg andm2 = m3 = 1 kg. The estimated computational
time istest =

P

i=1,2,3,4 test,i. The view-dependency is introduced
by increasing the accuracy weight factorwacc,i of the wire “in view”
by a factor103. The adaptive wire resolution algorithm responds by
giving the system “in view” higher resolution and more computa-
tional time, as long as this does not threaten the stability or realtime
performance requirements. Snapshots from a simulation with view-
dependent resolution are displayed in Fig. 5. The wire “in view” is
the one marked by the red dashed box.

3.3 Implementation of adaptive wires in simulator soft-
ware

Next we describe the implementation of adaptive wire resolution in
a 3D physics simulation library called AgX [AgX ] and list some
important conclusions from this development. The AgX library was



Figure 4: The time evolution of a rigid box supported by a wire with adaptive resolution. The upper sequence of figures shows the system
at different times – with the wire resolution varying with the stability criterion at high wire tension. The lower figure shows the wire quality
measures and the number of wire masses (normalized byNp) as functions of time. About the timet = 6 s there is a dip in the available
computational time which forces the system to be coarsened.

crafted for the realisation of professional simulators, e.g., training
simulators for operation of heavy vehicles and ships. The imple-
mentation differs in several ways from the method presentedin the
present paper. Most importantly, it shares the strategy of securing
numerical robustness by recognizing unstable states and simplify-
ing the system to higher resolution for which the system is stable.
One of the differences is that that it uses local resolution and inho-
mogeneous mass distribution instead of homogeneous and global
wire resolution. The features of this wire model, which willbe
covered in more detail in a separate publication (in preparation),
includes: i) Slide nodes.Besides attachment nodes at the ends of
the wires, we includemassless slide nodesas described in [Servin
and Lacoursière 2007]. A rigid body attached to a wire with aslide
node can slide along the wire like a “bead on a wire”.ii) Fric-
tional contact nodes.Contact nodes are a natural extension of slide
nodes. Instead of having body fixed position the contact nodes are
continuously updated to be at the position on the body surface that
minimizes the wire segment length. If the force at the contact node
is directed “outwards” from the body the node is eliminated and
the wire contact is thus detached. Stick friction in the wiredirec-
tion is modeled by treating the contact node as an attachmentnode
if the node force is within the friction cone. Sliding friction over
the body surface is introduced with a friction parameter between
zero and unity that diminishes the movement of the contact node
by this factor.iii) Wire elasticity. Elasticity with respect to stretch-
ing and bending deformations of the wire is simulated following the
method presented in [Servin and Lacoursière 2008] wherebyestab-
lished material models, e.g., for steel wire ropes and chains, can be
used within the framework of constrained multibody systems.

In the development and implementation of this wire model we have
found that adaptive resolution is a key element to make the wires
numerically robust. The passage of wire masses over slide nodes
and contact nodes is automatically handled by the resolution al-
gorithm which eliminates the particles as they approach thenode.
Without this feature the local oscillation mode frequency would
peak as the node and particle comes close together and the wire
would become unstable. As a bonus, no special method to handle
the passage of particles over nodes without risk of reflections needs
to be implemented. Furthermore, handling the contacts by massless
contact nodes rather than by light wire masses makes it possible
to change resolution without introducing fluctuating contact forces
and jittery particle behavior. The title figure, Fig. 1, shows an image
from one of the test scenes. This system includes two boxes con-

Figure 6: Snapshot from a test-scene of the implementation of wire
with adaptive resolution in a physics library used for training sim-
ulators. Wires occurs in ship handling oil rig anchoring. The wire
routing can be complicated, connecting ship parts with oil rig, an-
chors and seabed. The wire length may vary up to several kilome-
ters and sometimes be at very large tension.

nected by a wire running over two rigid cylindrical wheels. Black
dots shows lumped wire masses and magenta dots show massless
contact nodes and their neigbouring wire mass nodes also involved
in the friction model. Pulling a box makes the wheel turn by the
wire-wheel friction force. Running the wheels with a motor makes
them pull the wire and the boxes along with them. If the friction
force is too small the wire will slide over the surface of the wheels.
If the tension becomes large the system is simplified and withhigh
enough tension no wire masses remains, only contact nodes and end
attachment nodes. In Fig. 6 we show an image from a test-scenein
the development of training simulators for anchor handlingship.
These training scenarios involve multiple wires of length ranging
from a few meters to several kilometers, complicated wire rout-
ings connecting various ship parts, other ships, oil rig andheavy
anchors. The wire is connected to a drum and motor and has fric-
tional contacts with the ship, in particular with guide pinsand the
stern roller at back of the ship.



4 Summary and discussion

We have presented a systematic approach to adaptive resolution in
physics based virtual environments. The resolution adaptsto main-
tain optimal quality with respect to a number of quality require-
ments imposed on the application, e.g., realtime performance, vi-
sual appearance, accuracy and numerical robustness. The latter two
requirements are specific for physics based applications and are not
included in conventional level-of-detail algorithms. We have pre-
sented a specific realization of this idea to multibody simulation
involving wire systems and demonstrated how this improves the ro-
bustness, visual quality and time efficiency. Numerical experiments
(Sec. 3.2.1) confirm that the overall computational performance can
be improved by several orders in magnitude, as compared to resolv-
ing the instabilities by smaller integration time steps. Webriefly
described the implementation of this model in a software library
used in commercial off-shore training simulators. An important
conclusion from this development is adaptive resolution isa key
element also to obtain robust simulation of wires with frictional
contact nodes and slide nodes.

The computational power of personal computers is steadily increas-
ing and seems to continue to do so with the emergingmassive multi-
core CPU architecture. Adaptive resolution techniques is one im-
portant ingredient in order to gain the full potential of theincreased
computing power in VEs. Adaptive resolution ofphysical systems
is particularly difficult. The most critical part is adaption into more
coarse grained models in order to improve numerical robustness and
diminish computational time. The general algorithm requires that
the sub-systems of the VE are provided with graphical and physical
models in a spectrum of granularity ranging from high to low.At
lowest granularity the models should be simple model primitives,
such as single rigid bodies or particles, that can be simulated ex-
tremely stable and fast. Complex objects important to the applica-
tion, like a vehicle, can then be given a hierarchy of models ranging
from a single primitive, to multiple connected rigid bodiesand up
to highly fine-grained models including deformable parts (tires, an-
tenna, steel body, etc) and mechanical details (doors, suspension
system, mechanical parts of the drive line, etc). This hierarchy of
models should be assigned with unique resolution numbers, transi-
tion rules for refinement or coarse graining during simulation and
quality measures with respect to numerical stability, computational
time, accuracy and visual appearance. The adaptivity resolution
algorithm will then automatically adapt the system to optimal reso-
lution. If a subsystem approaches numerical instability orhas its
computational time decreased it will be substituted by a simpli-
fied system and more robust system. Much work remains to be
done in this area, e.g., supply methods for predicting the numerical
stability of complex systems at different resolution. Eventhough
the more complex models are not as easily analyzed as wire sys-
tems they have normal modes of oscillations with some frequency
spectrum depending on the resolution and occurrence of light el-
ements and high tension. More coarse grained system has lower
frequency spectrum and is more stable. Stability predictors can be
constructed from known instability mechanisms. An alternative is
to do precomputation of systems at different resolution levels and
build prediction models in form of tables.
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