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Figure1l: Example from application including a wire with adaptiveaskgion. The system has two boxes connected by a wire routrdwo
cylindrical wheels that are free to rotate. Black dots shduvsped wire masses and magenta dots show contact nodesrisalimebustness
is secured by recognizing unstable states and simplifyiagystem to lower wire resolution for which the system islsta

Abstract

We propose a systematic approach to adaptive resolutiomyisi¢s
based virtual environments (VESs) that combines the corveait
requirements of realtime performance, visual appearatrittein-
portant requirements on the physical simulation, such asracy
and numerical robustness. In particular, we argue thattaeaes-
olution is a key element to achieve robustness in fixed titap-s
VEs. The idea is to adaptively substitute unstable subsysteith
more simplified and robust models. The method is demonstate
systems including stiff wires. The algorithm brings stijilreal-
time performance and preservation of the important phi/sieari-
ants to the system. The application to general systemsdastied.

Keywords:  adaptive resolution, virtual environment, physics
based animation, fixed time-step, numerical stability

1 Introduction

In physics based virtual environments (VES), the stateespipos-
sible configurations is necessarily large and the trajextatepend
critically on both user interaction and the dynamics of dated
objects. This is particularly true for training system whehe
state space cannot be restricted, i.e., catastrophidisitsaesult-
ing from operating errors must be reachable in the simuiatiio
avoid false training. This makes it difficult to construct ¥ Ehat
are guaranteed to be robust, numerically stable over tlie ethte
space, run in realtime, and offer optimal visual appearamckac-
curacy for the purposed use. The problem increases in caityple
when taking account of different hardware set-ups withedéfit
performance, and view-dependent level-of-detail.

We propose a systematic approach to adaptive resolutiomyisi¢s
based VEs that combines the conventional requirementsbime
performance, visual appearance with important requirésn@mthe
physical simulation, such as accuracy and numerical robast
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1.1 Related work

There is a vast litterature oadaptive resolutiortechniques, or
level-of-detail(LOD) algorithms, in the context of 3D computer
graphics and virtual environment since the early work byaf&l
1976]. The difficulties associated with applying LOD andliogl
algorithms inphysics basedirtual environments has attracted lit-
tle scientific attention, but was adressed at least partisil[Carl-

son and Hodgins 1997] and [Chenney and Forsyth 1997]. Previ-
ous approaches have focused on either adaptingptal resolu-

tion for the sake of visual quality or accuracy, e.g., [$3pdhn and
Teschner 2008] and [Redon et al. 2005], or on adaptingithe
step-sizeo avoid numerical instabilities in stiff systems [Debunne
et al. 2001]. The latter approach conflicts with the realtpegor-
mance requirement and fixed time-step designs common in VEs.
The former technique based on spatial refinement can inteoitd
stabilities. We have found no example in litterature thahbmes

the requirements of realtime performance, visual appeararith

the important requirements on the physical simulationhsasac-
curacy and numerical robustness.

1.2 Our contribution

Our approach uses the fact ththe tendency for instabilities de-
creases as a system is made more coarse-graifred many sys-
tems these instability thresholds can be predicted in avand in-
corporated in an adaptive resolution scheme. In particwiaapply
this idea successfully in interactive simulations inchglinexten-
sible but otherwise flexible wires—one of many stiff systetmet
plague VEs with numerical instabilities [Servin and Laére
2008]. We present an algorithm for finding the optimal spata-
olution for the discretized wire objects at each time-sfge opti-
mality is based on a line quality measure that includes weitjre-
quirements for numerical stability, limited computatibtime and
system granularity (linked to both visual appearance amhaiea
accuracy). The algorithm brings stability, realtime perfance
and preservation of the important physical invariants esystem.
Available computational resources can also be used todeerthe
resolution of specific parts of the VE, as prioritized by theeu
Adaptive resolution has also proved to be a key element irnfind
robust contact methods for wires. We discuss how this wonks a
show application examples of the method in the context of & ma
itime training simulator. Finally, we discuss the use othiethod



to more general systems than wires.

2 Adaptive resolution

The basis of physics based VEs is now outlined and a geng@ al
rithm for adaptive resolution is constructed.

2.1 Multibody system dynamics

Physics based VEs are examples of multibody system sironkati
(MBSS) which computes the motion of the system at discrate-ti
steps from a set of equations of motion. The computed motsn d
pends on the initial conditions, the external and internedds and
various types of constraints, e.g., for modeling of jointsytors
and dry frictional contacts. The computed motion also idekia
numerical error that depends on the time step size and onuthe n
merical solver being used. For practical reasons many VE&s.er
with fixed time-step, sayh = 1/60 s. Dynamics on time scales
shorter tharh cannot be perceived visually by the user and is con-
sidered to be unimportant. Computational time should thaisha
spent on resolving the high frequency dynamics unless ieces-
sary for the overall behavior. Using variable time-step iffecent
time-steps for the different subsystems is possible bugigdiy not
practical in the realtime context, and thus finds little sapin ex-
isting code libraries for rendering, collisions detection physics
engines. Only fixed-step simulation is considered in whidvics.

We use the descriptor form of multibody system dynamics. The
variables for the system are generalized positionvelocity ¢

and Lagrange multiplier\ for the kinematic constraint vector
9(g,4,t) = 0. For simplicity we assume the multibody system
to be a particle system. The extension of the theoreticaidvaork

to include also rigid and deformable solid bodies is faithaight
forward. Given that the system haj, particles andV. scalar con-
straints the system variables have dimension(g) = dim(q)
3 x Np anddim(\) = dim(g) = Ne.

The system Lagrangian is

L£(g,d,\t) =12¢"M¢—V(g) — g 1)

where M is the system mass matrix of dimensi8iV, x 3N,
which is symmetric and positive definite amdis the potential en-
ergy of the system. The Euler-Lagrange equations derived the
least action principle are then

Mj=—-V,V+G"\ (2)
9(g:4,t) =0, 3)

whereG = V,g is the constraint Jacobian. We notate the system
state at time by z(t) = (¢, 4, \).

The equations of motion (2) can be integrated using a vadéty
techniques. In particular, there is considerable choicedastraint
satisfaction and stabilization, ranging from direct oratéve linear
algebra techniques, penalty formulations, and constpagjection
strategies. Our choice is the combination of a discrete-tuari-
ational technique described in [Kharevych et al. 2006], eon-
straint stabilization and regularization [Lacoursi€@0?]. This
yields a computational procedure to produge + h) givenz(t).
The discrete-time variational integrators are derivednfitbe least
action principle rather than from discretization of the &tipns of
motion. These steppers preserve many of the important qdysi
invariants of the system by construction. This makes thenege
ally more robust. At fixed time-step for instance, linear andular
momentum are preserved to machine precision, globally thesr
entire simulation. Examples of variational integratoses the Verlet
stepper and symplectic Euler.

2.2 A general algorithm for adaptive resolution

Besides the time evolution of positions and velocities we& atso
consider the evolution of a variable number of bodies in tHRS8.
We assume a resolution variabi¢hat represents the state of reso-
lution for the systems. This can be an integer, integer vectmore
complicated set of integers depending on how each subsystam
be described at different levels. For eade system has a specific
number of particles and connectivity. We further assumet afse
quality measure€)(r)o > 0, o = 1,2, ..., that each measures a
specific quality of a specific subsystem. Good quality cqoess
to values close to unity and poor quality corresponds toestliose
to zero. Next we list a number of qualities that can be inallide
i) User perceived qualityQused{r, Vi ew,i nt er ). The subsystem
which the user is focusing on should have high geometrid lefve
detail and high functionality. User focus is determinedtiyh the
camera view \{(i ew) and level of interaction with the subsystem
(i nter). ii) Accuracy, Qacr, ). This measures the accuracy
of the numerical solution for a subsystem. Flexible systesnsh
as deformable solids or fluids, may require sub-division &rm
tain a specified accuracy when deformég.Computational time
Qiime(T, testtim ). During each time-step there is a fractigR < h

of the step-size that may be spent on computing the dynarfies.
actual time for computation for each subsystem for a giveolee
tion r can be estimated to some numbgt. High quality is when
> test < tim. iv) RobustnessQron(r, z, M, f). The risk of nu-
merical instabilities—diverging or erratic changes inogdies or
positions—can be estimated from the stat&f the subsystem, pos-
sibly in combination with a model for the numerical stalilitf the
subsystem at various levels of resolution. These modelstyuéy
cally also include system madg and the forces in the systef

In section 3 we give examples of robustness quality measores
specific class of system and we elaborate on the problemiofast
ing the numerical robustness in general systems furthegdtion
4. As a cost function for keeping the application qualitythige
introduce > waQ(r),?* with weight coefficientav, > 0 for
each quality.

The problem of evolving a VE with optimal quality can be tesht
as a problem of evolving the extended system with variaptes)
and Lagrangian

E(:E,T’, t) = E(l’,t) - % ZwaQ(T);2 (4)

The resolution variable can be treated either as a continuous vari-
able and rounded to integer values or as an integer varidbie.
extended time stepping algorithm involves solving a coogtéd
nonlinear equation, e.g., using Newton-iterations andhtaknto
account the dependenced(r) on (g, ¢) and any implicit depen-
dency in(q, ¢) onr. This self-consistent formulation has the ad-
vantage that it has a variational formulation and may thusjpe
proached with variational integrators like the rest of thetem,
i.e., treat the resolution parameters as any other dynaamiahle
and thus preserve the physical invariants of the system aven
the events of change in resolution. It may however be too time
consuming to perform Newton-iterations and solve thesatous
exactly. Instead, as a proof of concept, we assume a weak cou-
pling between the variables = (g,¢,A\) andr and solve for
them separately. An algorithm for MBSS including adaptigs-r
olution for optimal quality in this form is given in Algorith 1.
Our approximation is to use the locally optimal solution #6yi.e.,

r' = argmin, (3 Y waQ(r)5?). Itis critical that the system re-
configuration is constructed to preserve the important iphl/-
variants of the system, most importantly the total moment8tep

9 in the algorithm involves also reconfiguration of the systm®n-
nectivity, e.g., given by the constrairgéz).



Algorithm 1 Adapt resolution for optimal quality

1: system initialization: andr

2: while VE runningdo
3:  user interaction— (vi ew,i nter)
accumulate explicit forces V,V (x)
update contact data and constraint dgta)
step particles;—1 — xz;

compute the quality function

Q(T) = (Qusen Qaca Qtime7 Qrob)

8: compute optimal system resolutioh

9:  reconfigure the systef@;, ¢;, ) — (qi,qi,r")
10: end while

Noahk

Figure2: The transversal forcef; + f2, on the particles increases
with the wire tension. Numerical instabilities developsewhhe
wire tension and thus the oscillation frequencies becomgela
than the frequency of the numerical integration.

3 Application to wires

In this section we describe physics based VEs containing syis-
tems with adaptive resolution for optimal quality. We model
wire by a set of constraint8 = g™ = (¢1"®¢5"%, ..., 9N 1)
on a collection of N < N, particles, such that the particles
are connected in line topology with pairwise distance awiitsts
0= ¢i"""® = |qa — g»| — l; for maintained segment length The
extension of this model to include stretch and bend elagtisid
contact nodes is delayed to Sec. 3.3

Inextensible wires is an example of stiff systems that ardé-we

Figure 3: lllustration of thecOARSEREFINE-transition for adap-
tive resolution of wires. In order to preserve total mass amo-
mentum these are redistributed over the neighboring paic

and has no modes of transversal oscillations. If the wirdavbave
been simulated with a time-explicit integrator and an expforce
model such as a spring forces the more restridieeirant condi-
tion for numerical stability should have been included as well.

3.1 Adaptive wire resolution

In order to realize an implementation of the adaptive regmiual-
gorithm, Algorithm 1, we must decide on quality measurestier
wire systems, define a wire resolution number and constraicsit
tion rules for wire refinement and coarsening.

Just for the clarity of the presentation here we assumeadlyati
homogeneous distribution of wire masses and let the number o
masses depend on rasolution numberr 0,1,2,3,..., as

N = 2" + 1. Eachrefinementr — r4 = r + 1, and coarsen-
ing, r — r— = r — 1, means the number of wire segments are
doubled or halved, respectively, as depicted in Figure.l# ffan-
sition to another level of resolution should preserve toied mass,
local center of mass, local wire rest length and the lineamemo
tum. The following transition rules accomplishes that. Phaeticle
mass depends on the resolution numbenag/ (2" + 1). New par-

known to be numerically unstable when the strain becomes 100 jicles ) are added at half distance along the wire segments linking

high. For instance, a wire with segment length of the orderaf,
particle mass kg integrated with the symplectic Euler algorithm at
step-sizeh = 1/60s cannot support loads much larger thaxd kg

in normal gravity. This is a severe limitation in simulatiowhere
the wires and cables should be used for heavy hoisting oroench
ing. The instability may also develop in the absence of héaagis
by the wire inertia of its own, e.g., in a whip effect. The caus
the numerical instability is that when the wire has normatiesof
transversal vibrations with frequencies> h~!. These modes are
excited by the numerical noise in the system. The normal nfrede
quencies are proportional to the wave velocity of translerbra-
tionsc = [fL/mw]"/?, wheref is the wire tensiony = Nm

is the total wire mass and wire length With increasing wire ten-
sion the transversal force component increases, see Fagdzhe
normal mode oscillation frequencies increases along witffhe
spectrum of normal modes for a wire of homogeneous distabut
of N particles is discrete and the normal mode frequengyanges
[Fetter and Walecka 1980]

nm

2N+ 1) .
- st {Q(N—f— 1)

Wn 7

} ,n=12....N (5

The maximum frequency isnax (w,) can be approximated to
2(N+1)c/L. Anecessary condition on the number of point masses
for the wire to be numerically stable can thus be formulated a

L Lmiot
2h f

Observe that the extreme case with= 0 is unconditionally sta-
ble. This is themassless cablen [Servin and Lacoursiere 2007]

N < Ngit = (6)

existing particlesz andc. After eliminating a particle) the new
wire segment is the straight wire connecting the two neighigo
particlesa andc. A REFINE-transition transforms the velocities as

(QG7 Qw Qey .. ) - (qa+7 Qb+7 QC-H qe+7 Qme .. ~), where
(ja+ = (ja (7)
. _ (2rt1l _1 1. 1 - g
v+ = (77 ola + 5o de ®)
q‘:+ = (jc (9)

wheren, andn. are the number of neighbors ¢r 2) of particlea
andb, respectively. AcOARSEtransition transforms the velocities

as(qﬂd qb7 qC7 Qd: (je; qf7 e T (qa*7 qC*7 qe*: .. -)y where

or—141

2T+ 1 (10)

e = lde + 5 (46 + a)]
with the exception for particles at the end points of the wjiri@
which case the contribution from neighboring particleseitterm

or thed-term in Eqg. (10)—vanishes. Coarsening of a curved wire
may produce significant compression of wire segments and-vio
tion of preservation of the total wire length. Depending awh
these potentially large constraint violations are tredted may
cause large energy injections and give rise to jittery asthainil-
ities. We avoid this by allowing wire compression throughdino
fication of the constraint to an inequality constragit™ > 0. It

can be shown that these transitions preserve the total ntameof

the wire.

We define the wire system quality measure to e =



(Qace, Qtime, Qrob) With

N “Yacc
Qacc = <F) (11)
P
_ 1
Qlime =1- 1+ eVtime(tlim —test) (12)
1
me =1- (13)

1+ eYrob(Nerit—N)

We do not claim that this measure of quality is unique nor cé&no
cal, but it has the functional dependency required for adapéso-
lution for optimal quality in fixed time-step realtime sinatibns.
The v-exponents control the sensitivity to variations M For
simplicity we have left outQuser from the measure. The effect of
user view and interaction are instead incorporated by mjiodjfthe
weight factorwace. In practice, you may need to regularize the qual-
ity measure) by adding a small positive number to avoid division
by zero when the cost function is computed.

The coARSEREFINE-algorithm for adaptive resolution for optimal
wire quality we use is given by Algorithm 2. The computatidn o

Algorithm 2 Adaptive wire resolution

1: system initialization(q, ¢, g, )

2: while VE runningdo

3:  user interaction— (wacc, tim)

accumulate explicit forces V,V/

update contact data and constraint data
step particles

compute quality measur&acc, Qtime, Qrob)
compute optimal wire resolution

r' =argmin, 3 3 waQ(r);>

9: ifr’ <rthen

oNa R

10: whiler’ < r do

11: COARSE— (¢—,G—,g9—,7 — 1)
12: end while

13:  endif

14: if v’ > rthen

15: whiler’ > r do

16: REFINE— (q+7Q+7g+7T+1)
17: end while

18:  endif

19:  Set new particle mass = mut/(2" + 1)
20: end while

the wire tension required for line 7 in the algorithm is cortgal
from the wire constraint forc&™ \.

3.2 Numerical experiments

The implementation of the adaptive wire model is made udieg t
SPOOK-stepper introduced in [Lacoursiere 2007] implet@ein
MATLAB. We describe the implementation in professionaltsof
ware in Sec. 3.3

3.2.1 Accuracy, stability and realtime performance

1201 N

Figure 5: Snapshots from simulation of several boxes and wires
with view-dependent wire resolution. The view area is makigh

red dashed wire and focuses at different wires at differenes
and thereby redistributes the available computationalktitm keep
this wire at higher resolution if this is permitted by the kitay
requirement.

say, after a dropping the box from above. We let the resolu-
tion number and number of wire masses range betweeN) €
(0,2),(1,3),(2,5),(3,9), (4,17), (5,33). The parameters of the
quality functions ar@uacc = wime = wWrob = 1, aNdyacc = 2,
Wiime = 100/h, vime = 10. The simulation is run foB seconds

and the result is displayed in Fig. 4, showing a series of snap
shots and the time evolution of the quality measures anduhe n
ber of wire particles. It can be seen that the wire avoidsalikt

ity by decreasing the resolution at the high tension phasienas
t=0-0.5st=35—4.5sandt = 7 — 8 s, and maximizes the
resolution at the turn points at timés= 2 s andt = 6 s. Between
time¢ = 57 s we have inserted a dip in the available computa-
tional timetim that makes the resolution algorithm to decrease the
resolution to maintain realtime performance.

The gain of the method can be understood from the following da
from the numerical experiments. To have stable simulatidnlh
wire resolution of the system and scenario described herddwo
require a time step0 times smaller thah = 1/60 s and consume
increased computational power af leastthe same factor. The
alternative would be to keep the resolution at a level guasghto
be stable at all times — in this case this would be at zero uésal

(r = 0) — which would give poor accuracy and visual appearance.
The computational overhead of the adaptive resolutionrilgo
for wires is small, roughly 1% of the total computational éispent
on computing the dynamics

3.2.2 View-dependent adaptivity

We now extend the system of Sec. 3.2.1 to a system with fo@swir
each of total mas$ kg connecting three rigid boxes with masses
my1 = 10 kg andmz = ms = 1 kg. The estimated computational
time istest=}_,_, 5 5 4 testi- The view-dependency is introduced
by increasing the accuracy weight factay.; of the wire “in view”

by afactorl0®. The adaptive wire resolution algorithm responds by
giving the system “in view” higher resolution and more congu
tional time, as long as this does not threaten the stabilitgatime
performance requirements. Snapshots from a simulatidnvigtv-
dependent resolution are displayed in Fig. 5. The wire “@wiis
the one marked by the red dashed box.

In order to test and demonstrate the presented method we set

up a system consisting of a box of mas30 kg supported by
a wire of total massl kg and length1l0 m. Gravity is set to
9.8 m/s> and the time steh = 1/60 s. This system is un-
stable at mass ratios/1000 and above, i.e., for wire resolution

3.3 Implementation of adaptive wires in simulator soft-

ware

Next we describe the implementation of adaptive wire regmiun

at > 10 particles under the weight of the box. The system is a 3D physics simulation library called AgX [AgX ] and list sem

unstable for even finer resolution when the wire tension geak

important conclusions from this development. The AgX lipraas



Figure 4: The time evolution of a rigid box supported by a wire with atlapresolution. The upper sequence of figures shows thersyst
at different times — with the wire resolution varying wittetstability criterion at high wire tension. The lower figuteosvs the wire quality
measures and the number of wire masses (normalizel, fyas functions of time. About the time= 6 s there is a dip in the available

computational time which forces the system to be coarsened.

crafted for the realisation of professional simulatorg, eraining
simulators for operation of heavy vehicles and ships. Thalém
mentation differs in several ways from the method preseimi¢e
present paper. Most importantly, it shares the strategyadiring
numerical robustness by recognizing unstable states amulifi-
ing the system to higher resolution for which the systemaslst
One of the differences is that that it uses local resolutiwhiaho-
mogeneous mass distribution instead of homogeneous abdlglo
wire resolution. The features of this wire model, which v
covered in more detail in a separate publication (in prejmargp
includes:i) Slide nodes.Besides attachment nodes at the ends of
the wires, we includenassless slide nodes described in [Servin
and Lacoursiére 2007]. A rigid body attached to a wire wittide
node can slide along the wire like a “bead on a wird). Fric-
tional contact nodesContact nodes are a natural extension of slide
nodes. Instead of having body fixed position the contact s\ade
continuously updated to be at the position on the body serfaat
minimizes the wire segment length. If the force at the cdmade

is directed “outwards” from the body the node is eliminated a
the wire contact is thus detached. Stick friction in the vdiec-
tion is modeled by treating the contact node as an attachnoslg

if the node force is within the friction cone. Sliding frioti over
the body surface is introduced with a friction parametemieen
zero and unity that diminishes the movement of the contadeno
by this factor.iii) Wire elasticity. Elasticity with respect to stretch-
ing and bending deformations of the wire is simulated follaythe
method presented in [Servin and Lacoursiere 2008] wheestab-
lished material models, e.g., for steel wire ropes and chaen be
used within the framework of constrained multibody systems

In the development and implementation of this wire model axeh
found that adaptive resolution is a key element to make theswi
numerically robust. The passage of wire masses over slidesno
and contact nodes is automatically handled by the resolwle
gorithm which eliminates the particles as they approachtide.
Without this feature the local oscillation mode frequencyud

Figure6: Snapshot from a test-scene of the implementation of wire
with adaptive resolution in a physics library used for tramig sim-
ulators. Wires occurs in ship handling oil rig anchoring. etvire
routing can be complicated, connecting ship parts with igj] an-
chors and seabed. The wire length may vary up to several &lom
ters and sometimes be at very large tension.

nected by a wire running over two rigid cylindrical wheelda&k

dots shows lumped wire masses and magenta dots show massless

contact nodes and their neigbouring wire mass nodes alstvat/
in the friction model. Pulling a box makes the wheel turn by th
wire-wheel friction force. Running the wheels with a motaakas
them pull the wire and the boxes along with them. If the fdnti
force is too small the wire will slide over the surface of thieegls.

If the tension becomes large the system is simplified and kigth
enough tension no wire masses remains, only contact nodesnan

peak as the node and particle comes close together and the wir attachment nodes. In Fig. 6 we show an image from a test-sgene
would become unstable. As a bonus, no special method todand| the development of training simulators for anchor handihdp.

the passage of particles over nodes without risk of reflestieeeds

to be implemented. Furthermore, handling the contacts sslass
contact nodes rather than by light wire masses makes itlpessi
to change resolution without introducing fluctuating cahfarces
and jittery particle behavior. The title figure, Fig. 1, slsoan image
from one of the test scenes. This system includes two boxes co

These training scenarios involve multiple wires of lengihging
from a few meters to several kilometers, complicated wingt-ro
ings connecting various ship parts, other ships, oil rig hedvy
anchors. The wire is connected to a drum and motor and has fric
tional contacts with the ship, in particular with guide parsd the
stern roller at back of the ship.



4 Summary and discussion

We have presented a systematic approach to adaptive iesdlut
physics based virtual environments. The resolution adaptgin-

tain optimal quality with respect to a number of quality riegu
ments imposed on the application, e.g., realtime perfoomani-

sual appearance, accuracy and numerical robustness. tidraa

requirements are specific for physics based applicatiodsennot
included in conventional level-of-detail algorithms. Wavk pre-
sented a specific realization of this idea to multibody satiah

involving wire systems and demonstrated how this improkieso-

bustness, visual quality and time efficiency. Numericalegipents
(Sec. 3.2.1) confirm that the overall computational perfomoe can
be improved by several orders in magnitude, as compareddivre
ing the instabilities by smaller integration time steps. bviefly

described the implementation of this model in a softwarealip
used in commercial off-shore training simulators. An intpot

conclusion from this development is adaptive resolutioa iy

element also to obtain robust simulation of wires with fdogl

contact nodes and slide nodes.

The computational power of personal computers is steaulifyens-
ing and seems to continue to do so with the emergiagsive multi-
core CPU architecture. Adaptive resolution techniques is one im
portant ingredient in order to gain the full potential of thereased
computing power in VEs. Adaptive resolution pifiysical systems
is particularly difficult. The most critical part is adaptiinto more
coarse grained models in order to improve numerical rolesstand
diminish computational time. The general algorithm regsiithat
the sub-systems of the VE are provided with graphical angiphl
models in a spectrum of granularity ranging from high to Icit.
lowest granularity the models should be simple model piuest,
such as single rigid bodies or particles, that can be sirdlek-
tremely stable and fast. Complex objects important to thxicg
tion, like a vehicle, can then be given a hierarchy of modafiging
from a single primitive, to multiple connected rigid bodesd up

to highly fine-grained models including deformable paite$; an-
tenna, steel body, etc) and mechanical details (doors.esggm
system, mechanical parts of the drive line, etc). This nana of
models should be assigned with unique resolution numbarssit
tion rules for refinement or coarse graining during simolatnd
quality measures with respect to numerical stability, cotaponal
time, accuracy and visual appearance. The adaptivity utsol
algorithm will then automatically adapt the system to otimeso-
lution. If a subsystem approaches numerical instabilithas its
computational time decreased it will be substituted by apsim
fied system and more robust system. Much work remains to be
done in this area, e.g., supply methods for predicting tmerical
stability of complex systems at different resolution. Evbaugh
the more complex models are not as easily analyzed as wire sys
tems they have normal modes of oscillations with some freque
spectrum depending on the resolution and occurrence df digh
ements and high tension. More coarse grained system has lowe
frequency spectrum and is more stable. Stability prediotan be
constructed from known instability mechanisms. An altéveais

to do precomputation of systems at different resolutiorleand
build prediction models in form of tables.

References

AGX. Agx multiphysics toolkit.ht t p: / / ww. al gor yx. se/ .

CARLSON, D. A., AND HODGINS, J. K. 1997. Simulation levels
of detail for real-time animation. IRroceedings of the confer-
ence on Graphics interface '9Tanadian Information Process-
ing Society, Toronto, Ont., Canada, Canada, 1-8.

CHENNEY, S.,AND FORSYTH, D. 1997. View-dependent culling
of dynamic systems in virtual environments. Sit8D '97: Pro-
ceedings of the 1997 symposium on Interactive 3D graphics
ACM, New York, NY, USA, 55-58.

CLARK, J. H. 1976. Hierarchical geometric models for visible
surface algorithmsCommun. ACM 1910, 547-554.

DEBUNNE, G., DESBRUN, M., CANI, M.-P.,AND BARR, A. H.
2001. Dynamic real-time deformations using space & timgada
tive sampling. InSIGGRAPH '01: Proceedings of the 28th
annual conference on Computer graphics and interactivh-tec
nigues ACM, New York, NY, USA, E. Fiume, Ed., ACM SIG-
GRAPH, 31-36.

FETTER, A., AND WALECKA, J. D. 1980.Theoretical Mechanics
of Particles and ContinuaMcGraw-Hill, 108—-119.

GILLILAN , R. E.,AND WILSON, K. R. 1992. Shadowing, rare
events, and rubber bands - a variational Verlet algorithm fo
molecular-dynamicsJ. Chem. Phys. 98, 1757-1772.

KHAREVYCH, L., YANG, W., TONG, Y., KANSO, E., MARS-
DEN, J. E., SHRODER, P.,AND DESBRUN, M. 2006. Geo-
metric, variational integrators for computer animation. SICA
'06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animatjorEurographics Associ-
ation, Aire-la-Ville, Switzerland, Switzerland, ACM SIG-
GRAPH/Eurographics, 43-51.

LACOURSERE, C. 2007.Ghosts and Machines: Regularized Vari-
ational Methods for Interactive Simulations of Multibosli@ith
Dry Frictional Contacts PhD thesis, Department of Computing
Science, Umea University, Sweden, SE-901 87, Umeda, Swede

REDON, S., GALOPPO, N., AND LIN, M. C. 2005. Adaptive
dynamics of articulated bodies. ACM, New York, NY, USA,
vol. 24, 936-945.

SERVIN, M., AND LACOURSIERE, C. 2007. Massless cable for
real-time simulationComputer Graphics Forum 2@, 172—-184.

SERVIN, M., AND LACOURSERE, C. 2008. Rigid body cable for
virtual environmentsIEEE Transactions on Visualization 14,
783-796.

SPILLMANN, J.,AND TESCHNER M. 2008. An adaptive contact
model for the robust simulation of knot€Computer Graphics
Forum 27 2, 497-506.



