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Abstract

We investigate the use of reduced-order modelling
to run discrete element simulations at higher speeds.
Taking a data-driven approach, we run many offline
simulations in advance and train a model to predict
the velocity field from the mass distribution and sys-
tem control signals. Rapid model inference of parti-
cle velocities replaces the intense process of comput-
ing contact forces and velocity updates. In coupled
DEM and multibody system simulation the predic-
tor model can be trained to output the interfacial
reaction forces as well. An adaptive model order re-
duction technique is investigated, decomposing the
media in domains of solid, liquid, and gaseous state.
The model reduction is applied to solid and liquid
domains where the particle motion is strongly corre-
lated with the mean flow, while resolved DEM is used
for gaseous domains. Using a ridge regression predic-
tor, the performance is tested on simulations of a pile
discharge and bulldozing. The measured precision is
about 90% and 65%, respectively, and the speed-up
range between 10 and 60.

1 Introduction

Computational modelling of granular dynamics has
important applications in both science and engineer-
ing, but is challenging due to the complex nature
of granular medias. The discrete (or distinct) ele-
ment method (DEM) is perhaps the most versatile
numerical method for it. It supports the three gran-

ular phases, solid, liquid, and gas. It can capture
both discrete and collective phenomena, that depend
on contact parameters, particle shape and arrange-
ments. DEM simulations are, however, computation-
ally intense, which limits the practical applicability.

There are basically three methods of accelerating
a DEM simulation. Firstly, the computational speed
can be increased by parallelization and use of special-
ized hardware [13, 20, 6, 21, 7, 15]. Secondly, chang-
ing from explicit to implicit time-integration allows
for much larger time-steps than the limit set by the
time-period of free vibrations for particles of given
mass and contact stiffness. The computational bot-
tleneck is then shifted from collision detection to solv-
ing the equations of motion and contact force com-
putation. Depending on the system properties and
error tolerance this may be very advantageous [19].

The third way is to employ some form of model
order reduction, where the original system is sub-
stituted with an approximation that require fewer
variables and computational operations per simu-
lated unit of time. Normally, model order reduc-
tion is seen as a projection from a high-dimensional
space to a low-dimensional subspace, where the time-
integration can be performed with manageable com-
putational intensity. Once advanced in time, the so-
lution can be projected back to the original high-
dimensional space. The process introduces a model
reduction error, that may or may not be acceptable
for the intended purpose of the simulation.

In the present paper we explore the possibility
of accelerating DEM simulation using data-driven
model reduction. The idea is to perform numerous
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detailed simulations of a system in advance, train a
model to predict new system states and use these to
advance a running simulation faster in time than the
original simulations. The question is whether and
how this is at all feasible, and what speed-up and
precision can be achieved.

The data-driven approach has the drawback that a
certain amount of resolved simulations must be per-
formed in advance to generate training data and build
a model. The question then arises what are the ad-
vantages of the method. Simulations that must run
at real-time speed is one type of application that may
benefit from using this technique. Specific examples
are simulators for operator training, system testing
with hardware-in-the-loop or embedded simulations
serving a model-based controller. Another class of
applications is surrogate models [5] for simulation-
based planning and optimization in parameter spaces
too large to be covered with full-resolution simulation
but manageable with a reduced-order model trained
on a comparatively small set of resolved simulations.

To increase the knowledge about the challenges and
opportunities of accelerating DEM simulations using
data-driven model order reduction, we have devel-
oped and tested a realisation of this idea. First,
a general method is described, and error measures
are introduced. Next, this is implemented, using
a ridge regression model for predicting the veloc-
ity field. The computationally expensive process of
computing contact forces is substituted by rapid in-
ference of the model to output the velocity field at
the particle positions. This approach can be ex-
pected to perform well in the solid and liquid regime
but poorly in the gaseous regime, where individ-
ual particle motion is not strongly correlated with
the mean flow. Therefore, we investigate an adap-
tive model order reduction technique, where the sys-
tem is decomposed in solid/liquid, and gaseous parts.
Gaseous sub-domains are integrated using full resolu-
tion DEM while the reduced-order model is applied to
the solid/liquid sub-domains. The method is tested
on two different systems, a pile with controlled feed
and gravity-driven discharge flow, and a blade cutting
and pushing through a particle bed like a bulldozer
blade. In both cases a model is trained to predict the
velocity field from the given input signals and the

current mass distribution. In the bulldozer case, the
force on the blade is also predicted. The precision
and computational speed-up are analysed on these
systems.

We do not explore the many alternatives that ma-
chine learning offer for the velocity predictor, e.g.
deep neural networks, that can be trained to pre-
dict complex fluid flows [9]. The present work is a
first step. As such it is natural to investigate the
performance of a plain regression model and build-
ing knowledge for employing more advanced machine
learning algorithms.

1.1 Previous work

In the DEM literature there are only a few exam-
ples of model order reduction. Boukouvala et al.
[3] explored discrete element reduced-order modelling
for particle mixing in a blade blender. By princi-
pal component analysis (PCA) of simulation snap-
shots, sampled in a regular grid covering the mixer
interior, models were built for predicting the parti-
cle velocity field and blade force as function of the
mixer control parameters (blade speed and geome-
try). In turn this was used to develop a surrogate
model for optimization of mixing performance based
on a relatively small set of time-consuming DEM sim-
ulations. This work was later extended by Rogers et
al. [16], considering also the effect of dynamic re-
sponse from changes in the control parameters. The
reduced-order model was not used to accelerate the
DEM simulations themselves.

In [18], Servin and Wang developed an adaptive
model order reduction technique which substitute
particles that collectively move as a single rigid body,
with six degrees of freedom rigid aggregates of the
corresponding mass, momentum, and contact shape.
Different strategies for predicting when the aggregate
should split in smaller constituents was investigated.
The method is severely limited by that the reduced
model support only rigid body modes of motion.

Recently, Zhong and Sun [24] investigated a
reduced-order model for granular materials under
small viscoelastic deformations, with fix connectivity
between the particles, using proper orthogonal de-
composition (POD) of the displacement field. Inspi-
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ration for that work was found in [23] and [10].
Pseudo-particle modelling [4] may be considered a

form of model order reduction. Each pseudo-particle
represents the collective effect of many small real par-
ticles. The pseudo-particle shape and contact param-
eters are considered model parameters that are cal-
ibrated to give the material the approximate bulk-
mechanical properties of the original system.

We have not found any example in the DEM lit-
erature where the state of a fine-resolution particle
model is projected to a pseudo-particle subspace and
projected back after time-integration. Ideas of this
type may be found in the literature of computer
graphics [8] for the purpose of visual appearance and
with no analysis of the reduction error.

2 Model order reduction

Let us first summarize the classical meaning of model
order reduction [2]. Consider a dynamical system

ẋ = f(x,u) (1)

y = g(x,u) (2)

with vectors of state x(t) ∈ Rn, input u(t) ∈ Rm
and output y(t) ∈ Rq. The problem of model order
reduction can be stated as follows. Find a lower order
model

˙̂x = f̂(x̂,u) (3)

ŷ = ĝ(x̂,u) (4)

that produce approximately the same observations

‖y − ŷ‖ ≤ εr ‖u‖ (5)

to an accuracy εr for all input signals u ∈ U rele-
vant to the particular application. The idea is that
the subspace where the reduced state vector lives,
x̂(t) ∈ Rr, is of much lower dimension than the origi-
nal system space, i.e., r � n. Note that the observa-
tion vector, ŷ ∈ Rq, must have the same dimensions
as in the original system or there must exist a pro-
jection operator to that space.

The standard methods for computing approximate
low-order models are the SVD-based and Krylov-
based approximation methods [2]. The proper or-
thogonal decomposition (POD) method is a special

case of SVD-based model order reduction that is par-
ticularly popular in computational mechanics and
fluid dynamics. However, granular media modelled
using DEM differ from many other dynamical and
physical systems in that the connectivity of the vari-
ables changes frequently and unpredictably. There-
fore, a non-standard model order reduction approach
is necessary.

3 A reduced-order discrete ele-
ment method

In this section we describe a reduced-order model for
granular media simulation using the discrete element
method.

3.1 Resolved DEM

We first briefly describe the standard discrete element
method. We will refer to this as resolved DEM.

Each of the Np particles, indexed a ∈ N , has a
position xa(t) ∈ R3, velocity va(t) = ẋa, scalar mass
ma and diameter da. For clarity of the exposition, we
ignore the rotational degrees of freedom. The equa-
tions of motion are

ẋ = v (6)

Mv̇ = f(x,v, t) (7)

with system position vector x ∈ R3Np , velocity vec-
tor v ∈ R3Np , diagonal mass matrix M ∈ R3Np×3Np .
The force f is the sum of external forces and contact
forces. Each of the Nc particle-particle contacts, in-
dexed by n ∈ Nc, have a contact position xc,n and
pairwise contact force fabn ∈ R3 on particle a from
particle b. Each contact force has one normal and
two tangential (friction) components. The computa-
tionally intense part is the numerical integration of
the velocity which involve contact detection and con-
tact force computation. Thus, we ascribe the system
a computational dimensionality of Nd = 3Np + 3Nc.

Numerical integration is normally performed using
an explicit method with small time-steps, that re-
solve the natural oscillation frequency given the par-
ticle mass and stiffness. The computational bottle-
neck is the collision detection and force calculation
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from the contact overlap and relative velocity. For
some systems it is more beneficial to use the time-
implicit method referred to as nonsmooth contact
dynamics, or nonsmooth DEM [14, 19]. This allows
for large time-step integration, moving the computa-
tional bottleneck to the process of solving the non-
linear equations (variational inequalities) from the
Signorini-Coulomb and Newton contact laws.

3.2 Reduced DEM

Let the particles be divided in two subsystems, A
and B, such that x = [xA,xB ] and v = [vA,vB ].
The force is divided as f = [fA + fAB ,fB + fBA],
where fAB is the interfacial forces on A from B,
and fA and fB denote forces acting only on parti-
cles in A and B, respectively. The computational
dimensionality of the system can be decomposed as
Nd = 3(NA

p + NB
p ) + 3(NA

c + NB
c + NAB

c ). As-
sume that the particles in subsystem B move accord-
ing to a known velocity field u(x, t). Each particle
b ∈ NB thus has a known velocity vb = u(x, t)x=xb

at coordinate x and time t. We abbreviate this as
ẋB = u(xB , t). Consequently, the particle acceler-
ation is v̇b = ∂tu(xb, t) + vb · ∇u(x, t)x=xb . This
eliminates the equation for v̇B and leave us with the
following, reduced, set of equations of motion[

ẋA
ẋB

]
=

[
vA

u(xB , t)

]
(8)

MAv̇A = fA + fAB . (9)

If the velocity field u(x, t) can be computed with neg-
ligible effort, the computational intensity of the sys-
tem is that of integrating Eq. (9). The dimensionality
of the reduced model is then N ′d = 3NA

p + 3(NA
c +

NAB
c ). Assuming each particle is in contact with a

handful of other particles the reduction factor become
R ≡ N ′d/Nd & NA

p /Np.

3.3 Model reduction errors

There can be two sources of errors in the described
reduced-order model. Firstly, the model velocity field
u′(x, t) may deviate from the true mean velocity

A

B

C

Figure 1: Illustration of a granular system divided in
a high-resolution part (A), reduced-order part (B) and
coupling with a multibody system (C).

u(x, t). Secondly, the particle velocities may devi-
ate from the mean velocity field. One quantity that
captures the level of fluctuations is the so-called gran-

ular temperature, T (x, t) =
〈

[va − u(x, t)]
2
〉

, where

〈. . .〉 denote averaging over particles in a small vol-
ume, centred at x. For the mean squared deviation
of the particle velocities from the model velocity field
we observe〈
‖va − u′‖2

〉
≤
〈
‖va − u‖2

〉
+
〈
‖u− u′‖2

〉
. (10)

We therefore introduce the granular temperature er-
ror

ET (t) ≡

 1

VB

∫
VB

w(x)

〈
‖va − u‖2

〉
v20

d
3
x

1/2

(11)

and the velocity error associated with the model re-
duction

Ev(t) ≡

 1

VB

∫
VB

w(x)

〈
‖u− u′‖2

〉
v20

d
3
x

1/2

(12)

where the integrals are over the volume enclosing the
reduced subsystem B and v0 is a characteristic veloc-
ity for the system that the model should be able to
resolve. The errors can be computed with no weight,
w(x) = 1, or weighted by the local mass density,
w(x) = ρ(x)/ρ0, relative to a nominal bulk density
ρ0 to suppress harmless errors in dilute region. If a
surface height function z = h(x, y) is tracked dur-
ing a simulation, it can be interesting to analyse the
surface height error

Eh(t) ≡
[

1

V

∫
A

[h(x, y)− h′(x, y)]
2

dA

]1/2
(13)
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where h′(x, y) is the surface height function using the
reduced model, A is the projected area of the system
in the xy plane and V is its volume enclosed by h(x, y)
and some reference surface h0(x, y).

3.4 Extension to multibody systems

Consider the presence also of a rigid multibody sys-
tem C with position xC , velocity vC and mass MC .
The multibody system has articulation joints and ac-
tuators that are represented by a constraint vector
gC(xC ,vC , t) = 0 with Jacobian GC = ∂gC/∂xC .
The forces on the multibody system are the con-
straint force GCλC , external force fC and contact
forces fCA and fCB from system A and B. The ex-
tended system has the following equations of motionẋAẋB

ẋC

 =

 vA
u(xB , t)
vC

 (14)

[
MAv̇A
MC v̇C

]
=

[
fA + fAB + fAC

fC + fCA + fCB +GCλC

]
(15)

0 = gC(xC ,vC , t). (16)

The multibody system has some velocity vBC at the
interface between system B and C, which is a con-
tributing cause of the velocity field u(x, t) in B. The
contact force fCB on system C from B is either com-
puted from a contact model or an additional output
of the reduced-order model.

3.5 Adaptively reduced DEM

The purpose of the model reduction is fast simulation
with sufficient precision. Fast simulation is achieved
by minimizing the number of dynamic particles, NA

p ,
that are simulated with high computational intensity
in system A. High precision requires that system B
does not include too large domains with high granu-
lar temperature, where the individual particle motion
deviate substantially from the mean flow. The solu-
tion is to adaptively control which regions and what
particles are simulated with the reduced DEM and
resolved DEM, keeping the reduction factor R and
the effect of the granular temperature error ET (t) at

minimum. This is carried out as follows, with refer-
ence to the illustration in Fig. 1.

The reduced model velocity field, u′(x, t), is as-
sumed to be known. Each particle a has a speed
∆va = ‖va − u′‖ relative to the velocity field. Par-
ticles are kept dynamic and part of system A as
long as their relative speed exceeds a threshold value
∆va > εv0 for some error tolerance ε. Particles with
relative speed below the threshold value, ∆va ≤ εv0,
are simulated with the reduced model in system B.
Now, contacts in granular media are strongly dissi-
pative. Consequently, particles in A that repeatedly
collide with particles in B will have a velocity that
quickly approach the velocity field and become part
of system B.

It is easy to conceive extensions to this basic
scheme. Particles in B that receive a large impulse
can be made dynamic and part of system A. If the
received impulse is large enough, and the particle lack
contact support, it will no longer co-move with the
velocity field and remain dynamic. Otherwise, it will
merge back. If it is possible to predict regions of high
granular temperature, the particles there can be kept
dynamic. This is useful at outlets, belt conveyor end-
points or when releasing material from a digging tool,
where the flow transitions quickly from solid or dense
liquid phase into gaseous phase and free fall. Deple-
tion in mass density is, for instance, a good indicator
that the granular temperature is about to increase.

4 A velocity field predictor

Reduced-order DEM simulation, as outlined in Sec. 3,
rely on a lower-order model for predicting the velocity
field in the granular media. In this section we present
a regression model for discrete velocity field predic-
tion and the techniques we use for sampling training
and test data from resolved DEM simulations.

4.1 Coarse-graining

Coarse-graining is a technique for sampling and av-
eraging particle states to obtain macroscopic fields.
The field values at any coordinate x is a weighted av-
erage of a discrete set of particle and contact variables
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in a neighbourhood controlled by a coarse-graining
function φ(x, R) with smoothing length R. For sam-
pling velocity fields when running the reduced-order
model, we choose a Heaviside coarse-graining func-
tion. For particles near the coarse-graining bound-
ary, the mass is weighted by the volumetric over-
lap approximated using a bounding box. In offline
field analysis we use a Gaussian function φ(x, R) =
(
√

2πR)−3 exp(−|x|2/2R2). Here we apply a cut-off
at |x| = 3R for practical reasons, which cause a trun-
cation error of 0.01. The mass density field is com-
puted as ρ(x, t) =

∑
am

aφ(x − xa(t), R). The ve-
locity field is obtained by u(x, t) = p(x, t)/ρ(x, t),
where the momentum density field is first computed
as p(x, t) =

∑
am

avaφ(x− xa(t), R).

4.2 Discretization

We use a regular grid with Nv cells, voxels, with side
lengths L = (Lx, Ly, Lz), where we denote the short-
est of these Lmin. Each voxel, indexed i = (i, j, k),
has a centre point coordinate xi. The mass density
and velocity fields are represented in discrete form
by their values in the voxel centres, ρi = ρ(xi) and
ui = u(xi). The grid size is limited by the par-
ticle diameters d according to Lmin > dmax, where
dmax is the largest particle. The smoothing length
for coarse-graining is equal (Heaviside) or somewhat
larger (Gaussian) than the size of the voxels.

4.3 Sampling

Data is sampled from resolved DEM simulations.
The instantaneous velocity field at a time t is stored
in a vector U(t) = [ui(t)] ∈ R3Nv , the mass density
field in a vector P (t) = [ρi(t)] ∈ RNv , and the control
signal vector J(t) = [ji(t)] ∈ RNj that drive the sys-
tem. These system state time instances are referred
to as snapshots. A data sample is a time-average of
snapshots between time tn and tn+Nτ−1 ≤ τ , e.g.,

Un =
1

Nτ

Nτ−1∑
k=0

U(tn+k). (17)

Any reaction force on a selected body or contact
surface, b, may also be sampled, and we denote it

F (t) = [fb(t)] ∈ RNf , where Nf is the total number
of sampled force components.

4.4 Regression model

We are searching for a model that predict the dis-
crete velocity field U ∈ R3Nv , and possibly also the
reaction force F ∈ RNf , from a given mass density
field P ∈ RNv and control signal J ∈ RNj . This is
approached as a regression problem, y = φ(x), with
predictor variable x = [P ,J ] ∈ RNv+Nj and response
variable y = U ∈ R3Nv or y = F ∈ RNf for the ve-
locity and force prediction, respectively. The natural
start is to first consider a linear regression model

φ(x) = β0 + β1x+ ε (18)

with model parameters β0 ∈ R3Nv and β1 ∈
R3Nv×(Nv+Nj) and error term ε, for the case of the
velocity response variable. There is, however, good
reason to believe that a purely linear model cannot
capture the behaviour and our numerical experiments
also confirmed this. The velocity field and reaction
force is expected to depend nonlinearly on the mass
and control signal. Therefore, we make the following
nonlinear model ansatz

φ(x) = β0 + β1vec[H(P )JT ] + ε (19)

where H : RNv → BNv is the Heaviside function,
component-wise returning an occupancy value 0 or 1
depending on whether the mass density in the voxel
is nonvanishing. The vectorization operator vec( )
produce a regression variable x ∈ RNvNj out of the
matrix H(P )J with dimension Nv ×Nj . The model
parameters is β1 ∈ R3Nv×NvNj . We make the same
ansatz for the force response variable.

It can be expected that this model suffers from
multicollinearity, i.e., that the predictor variables are
correlated according to the measurement data. One
way to handle this is to apply Ridge regression which
adds a penalty term λ ‖β‖22 to the regression loss
function, where β0 and β1 have been combined in
β as is customary. The regression loss function be-
comes

L = ‖y − βx‖22 + λ ‖β‖22 (20)
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with penalty parameter λ, that is a hyperparameter
to be calibrated. Another way to treat the multi-
collinearity would be to apply principal component
regression. In this case one performs PCA on the
predictor variables and omit the low-order principal
components. Ridge regression accomplish the same
effect, but without dimensional reduction.

5 Numerical experiments

To test the model order reduction technique, nu-
merical experiments are performed on two systems.
We use a nonsmooth discrete element method as de-
scribed in [19] using the software AGX Dynamics [1].
The reduced-order model is implemented in Python
using NumPy and the model training is performed
using scikit-learn [12]. The experiment steps, sum-
marized in Fig. 2, are as follows. First, numerous
ground-truth simulations are run. System state snap-
shots are recorded, and coarse-grained data samples
are produced. Each data sample with index n holds
a discrete representation of the mass density field
Pn, velocity field Un, forces Fn and control signal
Jn. The data samples are split in training data and
test data by the ratio 80/20. The model parame-
ters, β, that minimize the loss function, Eq. (20),
are computed using sklearn.linear model.Ridge.
The regularization that give the best trade-off be-
tween training and test error is chosen manually. The
trained models are exported and used in DEM simu-
lations for model order reduction. Validation is made
by running fully resolved ground-truth simulations
and recording validation snapshots. These are com-
pared to snapshots recorded from reduced-order sim-
ulations starting from the same initial state and run-
ning with identical control signals.

5.1 Pile with a discharge flow

A quasi 2D pile is confined by inclined sidewalls and
vertical rear and front walls, as shown in Fig. 3. The
inflow of material is controlled by an emitter above
the pile, feeding material at variable flow rate. There
is a 1.9 m wide outlet where the sidewalls meet. This
is also the distance between the front and rear walls.

The discharge flow at the outlet is controlled with a
control signal j(t). Particles become kinematic at the
outlet, moving with a velocity vout = [0, 0,−j(t)].

The particles are spherical with diameter 0.1 m,
0.16 m, 0.22 m, and 0.3 m, distributed by the mass
ratio of 0.3, 0.5, 0.15, and 0.05, respectively, rela-
tive to the total mass. The specific mass density
is 2500 kg/m3, elasticity 108 Pa, coefficient of resti-
tution 0.0, friction coefficient 0.5 and rolling resis-
tance coefficient 0.2. The sidewalls have inclination
20◦ and share the same contact parameters as the
particles. Frictionless boundary condition is applied
on the vertical (front/rear) walls. The simulations
are run with 0.017 s time-step and 200 projected
Gauss-Seidel solver iterations. Grid dimensions are
24 × 1.9 × 15 m with 40 × 3 × 25 voxels. The pre-
dicted velocity field is a mean field, trained on coarse-
grained data that involve both spatial and temporal
averaging. Consequently, the particles in the reduced
domain may be integrated with a different time-step
than used in resolved DEM simulation. The Courant-
Friedrichs–Lewy condition imply a time-step around
1 s or smaller for the given voxel size and flow rates.
We use 0.17 s time-step for integrating the reduced-
order model.

Depending on the confinement geometry and ma-
terial parameters, the granular media in a pile or
silo is discharged either through funnel flow or mass
flow. In funnel flow, the material divides into stag-
nant zones with no motion, and flow zones with shear
flow stretching from the outlet to the surface of the
pile. In mass flow there are no stagnant zones and
all particles are in motion during discharge. The pile
in Fig. 3 exhibits funnel flow during discharge. For
modelling the velocity field, we assume that the bulk
flow is quasi-stationary and depend only on the cur-
rent outflow control signal j(t) and on the mass dis-
tribution ρ(x, t). Since the model converts the mass
density into binary occupancy, the model can gener-
ally take the surface height function, h(x, y), as input
and directly compute the occupancy underneath it.
This is useful when running the model coupled to a
real system instrumented with range sensors.

It is important that the training data cover the
system state space, that is spanned by the vector
[v(x), ρ(x), j]. We generate data samples from 2500
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resolved DEM
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y = φ(x)
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reduced model

validation and hyperparameter calibration
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control signal application

Figure 2: The different steps of developing a reduced-order model.

jin

v(x)

jout

h(x,y)

Figure 3: A pile with a discharge flow.

full-resolution simulations, with varying outlet veloc-
ity, starting from 150 different initial states. An ini-
tial state is a certain material distribution, created
by different combinations of mass flow at the outlet
and inlet. Also, the position of the inlet is varied.
The surface profiles for the 150 initial states can be
seen in Fig. 4.

During each discharge simulation, the outlet ve-
locity is kept constant at values between 0 and 0.5
m/s and there is no inflow. The duration of each
simulation is 30 s. Data samples with 1 s time aver-
age are produced from recorded snapshots. To avoid
sampling any transient flow after engaging the outlet,
the initial part of simulation is discarded. The dis-
charge simulations result in . 50, 000 data samples,
constructed with latin hypercube sampling uniformly
from the 150 initial states and 2500 outlet velocities.

A number of models for predicting the velocity field

−8 −6 −4 −2 0 2 4 6 8
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H
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m
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Figure 4: Distribution of surface profiles for the 150
initial states, with some highlighted samples.
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Figure 5: The R2 score as a function of the regular-
ization parameter λ for the pile training- and test data
(left), and the average model reduction velocity error for
the test data (right).
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are generated with ridge regression parameter in the
range 10−1 to 103. The performance of these models
is evaluated in multiple ways. i) The prediction score
on the training and test data are compared to see how
well the models can generalize to unseen states. ii)
The ability to predict velocity fields is examined by
comparing coarse-grained resolved DEM fields to cor-
responding predicted fields, in a complete discharge
of a chosen pile state. iii) The same pile discharge
is used to compare when each particle pass the out-
let (exit time) in reduced-order DEM c.f. resolved
DEM. iv) The adaptive reduced-order DEM tech-
nique is evaluated by comparison to resolved DEM
during more extensive filling and discharging with
identical inflow/outflow signals.

The prediction score on the training and test data
can be seen in Fig. 5. The best performance on the
unseen test data occurs for regularization parameter
values between 1 and 10. We chose λ = 10 as our
preferred model and will focus on the performance of
this.

Fig. 6 shows snapshots from a ground truth re-
solved DEM simulation of the discharge of a pile state
with constant outflow velocity 0.5 m/s. The columns
are snapshots from 10, 20, 30 and 40 seconds into
the simulation, with the fields time-averaged over
1 s. In the third and fourth row the velocity field
from the ground truth simulation and the model pre-
diction (λ = 10) are shown together with the mass
density. In the fifth row the difference between the
ground truth and predicted velocity field is shown,
and we observe a good agreement. The lower panel
shows the model reduction velocity error, defined in
Eq. (12), as a function of time for the duration of
the pile discharge. This evaluates the performance of
the velocity prediction for all the produced models.
We can see that the model reduction velocity error
is around 10% for the λ = 10 model but increases
to 20% towards the end when the amount of remain-
ing material is small. In the second row we observe
that the granular temperature error is elevated es-
pecially near the outlet, indicating an irregular flow
there. The time-evolution of the granular tempera-
ture error is also included in the lower panel. It varies
mostly between 0.5 and 1.

The ability to predict the velocity field is neces-
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Figure 6: Sample results, comparing ground truth veloc-
ity fields from DEM simulations with predicted velocity
fields from the reduced-order model.

sary for reduced-order DEM simulation, but not suf-
ficient. When the system is time-integrated using the
reduced-order model the errors may drift or cause
instability. Therefore, we examine also the perfor-
mance of the model when used to propagate the sys-
tem forwards in time during a pile discharge. Starting
from the same state as in Fig. 6 and running with
the same control signal, particle positions are inte-
grated using linear interpolation of the velocity field
to the particle positions. We compare the particles
exit time in the two cases, the ground truth resolved
DEM simulation and the reduced-order DEM case.
The results can be seen in Fig. 7. The orange line
indicates identical exit times for the two cases. Most
particles are concentrated on this line, with standard
deviation 3.4 s and mean absolute deviation 2.1 s,
which is a relative error around 10%. The distribu-
tions of number of outflow particles per time unit are
also in fair agreement.

Finally, we evaluate the performance of the adap-
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Figure 7: Comparison of residence times from pile dis-
charge using fully resolved DEM simulations and the
reduced-order model. The upper panel show the num-
ber of discharged particles per second for the two cases.

tive reduced-order DEM technique, where reduced
DEM is used below the surface of the pile, while re-
solved DEM is used for particles that are in free fall,
impacting and flowing rapidly on the surface. The
idea is to run one resolved DEM simulation and one
adaptive reduced-order DEM simulation using iden-
tical control signals. The tests start from an empty
container, building up a pile with variable inlet and
outlet signals. The control signals can be seen in the
lower panel of Fig. 8, with the outflow velocity con-
verted to an estimated mass outflow per unit time.
The outflow velocity is initially kept within the do-
main of the training data (0 to 0.5 m/s), but is in the
end set well outside this domain, at 1 m/s. A com-
parison of the two cases can be seen in Fig. 8, with
snapshots at every 10 seconds after building up the
pile. The fully resolved DEM simulations (ground
truth) can be seen above the corresponding adaptive
reduced-order model case. The particles are colour
coded according to time of emission, with the dy-
namic particles in the adaptive reduced-order model
case displayed in black. We track the surface of the
pile and let particles down to a depth of 0.5 m be dy-
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Figure 8: Comparing ground truth simulations and
model reduction simulations with identical emitter/outlet
signals.

namic. One can see that the adaptive reduced-order
model performs well, with the surface profiles being
similar between the two cases for essentially all times.
The surface height error can be seen, as a function of
time, in the lower panel of Fig. 8. It is well below 10%
during most of the simulations but increase towards
the end when there is less remaining material.

It is interesting to study the granular temperature
error, defined in Eq. (11), to gain insight in the devi-
ation of particle motion simulated with the full res-
olution model and the reduced-order model. Two
snapshots, from time 53 s and 95 s, are presented in
Fig. 9. As expected, the granular temperature error
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Figure 9: The temperature error (bottom row) from
a full resolution simulation of a pile during filling (left
column) and discharging (right column). The velocity
vector field and mass density field (top row) are included
for reference.

is elevated on the surface of the pile when there is
an incoming flow, thus motivating the use of resolved
DEM there. During discharge, the granular tempera-
ture error is elevated around the outlet, not surprising
given that the largest particle diameter is 1/6 of the
outlet width. There is also signs of correlated velocity
fluctuations on a longer length and time scale than
that of individual particle rearrangements. This lim-
its the possibility for the reduced models to achieve
a low velocity error Ev, even if the model accurately
predicts the mean fields. Since this occurs near the
outlet, it has marginal effect on the material above.

Sample videos are available at http://umit.cs.

umu.se/ddgranular/.

5.2 Bulldozing blade

As a second test we simulate a blade driven hori-
zontally, cutting the surface of a granular bed like
a bulldozer blade, see Fig. 10. The simulated flow
is consistent with the theory of soil mechanics, that
predict the formation of a wedge-shaped failure zone

in front of the blade [11]. When pushed forward, the
soil fails along a localized shear band that stretch
from the cutting edge of the blade up to the free
surface. Outside the failure zone the material is at
rest. Inside the failure zone the material moves for-
ward and upward and may form a circulating flow.
The granular temperature is elevated at the front
and at the cutting edge where impacts are frequent.
A model is trained to predict the velocity field and
the reaction force on the blade from the horizontal
velocity and the mass distribution in front of the
blade. The blade is 1.6 m wide and is attached with
a 6-degree-of-freedom constraint to a kinematic body
having velocity v = [j(t), 0, vz(t)]. The constraint
force holding the blade relative to the kinematic body
f = [fx, fy, fz] is measured during the simulation.
The shape of the blade is that of two rectangular
plates joined along their long edge at an angle of 35◦.
To avoid sampling of an unnecessarily large domain a
coarse-graining grid is co-moving with the blade (ve-
locities are in the world frame and the voxel field is
moved to the position of the blade at each iteration).
The dimensions of the grid is 1.0× 2.5× 1.0 m with
8×5×8 voxels. Data samples are time-averaged over
1/6 s. In this numerical experiment the ground truth
simulations are run with a time-step of 0.005 s and
250 projected Gauss-Seidel solver iterations, and the
particle contact parameters are identical to the pile
experiment.

During simulations using the adaptive model order
reduction, the particles inside the co-moving grid are
assigned the velocity predicted by the velocity field
using linear interpolation between the voxel centres.
Outside the grid, the velocity field is assumed to be
zero. Particles exiting the co-moving grid become
dynamic, simulated using resolved DEM, until they
are at relative rest to the particle bed.

To generate data samples, 250 simulations are run
where the blade is pushed with different constant ve-
locities, between 0 and 1.5 m/s, and with different
cutting depth, ranging between 0 and 0.2 m. The
model is trained using exclusively horizontal motion.
As for the pile, a number of models are generated
with different ridge regression parameter values, here
ranging from 10−3 to 103. The prediction score on
the training and test data can be seen in Fig. 11 and
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Figure 10: A blade pushing a granular bed simulated
with fully resolved DEM. A time instance is shown in
3D overview (a) and cross-section view (b). The predic-
tor model for the velocity field and reaction force from
the control signal and mass distribution is illustrated in
(c). Also shown is the mass density (d) and granular
temperature error (e), with the mean velocity vector field
superimposed.

we again pick λ = 10 as our preferred model, with
the best generalization to the test data.

The models are evaluated with regard to i) the abil-
ity to predict velocity fields, ii) the ability to predict
the force holding the blade, and iii) the ability to
propagate the system forwards in time. This is all
considered for a standardized blade trajectory, which
can be seen in the upper panel of Fig. 13.

The ability to predict the velocity fields is evalu-
ated by comparing coarse-grained ground truth ve-
locity fields to that predicted from the corresponding
mass densities, as seen in Fig. 12. The first row show
states at 1 s intervals from a resolved DEM simula-
tion with the blade cutting soil at 1 m/s and 0.15 m
depth. The second row show the corresponding mass
density and velocity field obtained by coarse-graining.
The velocity field predicted by the trained model is
shown in the third row, and the fourth row show the
difference between the simulated and predicted ve-
locity fields. The predicted velocity fields are gener-
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Figure 11: The R2 score as a function of the regulariza-
tion parameter λ for the blade training- and test data.

ally close to the measured ones inside the active zone
but can differ considerably on the surface. This is
consistent with the observation, in Fig. 10 (e), that
the granular temperature is elevated there. There are
also large differences at 1s, during the build up phase.
The evolution of the model reduction velocity error,
Ev, over time and for the different regularization pa-
rameters is shown in the bottom of the figure. For
the λ = 10 model the error is at 0.35.

The capability of predicting the force required to
push the blade through the particle bed is also exam-
ined. A fully resolved DEM simulation is performed
using the described trajectory to produce ground
truth data of the blade force. From the same simu-
lation, mass density field and control signal are used
as input to the model for predicting the blade force.
Both forces, time-averaged over 1/6 s, are plotted
in Fig. 13. The path of the blade (top figure) is il-
lustrated with 1 s intervals. The predicted force is
overall in good agreement with the ground truth but
has some problems when the blade is lowered into
and raised from the bed, which was not represented
in the training data. Also, it was found that training
data with the blade moving above the bed, without
any mass in sampling region, was necessary for the
model to predict the weight of the blade, i.e., the ver-
tical force when the blade is reversed at the end of
the bulldozing cycle.

Predicting the velocity field is a necessary but not
sufficient functionality. It does not imply that the
reduced-order model can propagate the system for-
ward in time with similar precision. Velocity errors
in the build up phase may lead to unphysical ma-
terial distributions, in which case it is of little value
that the model is good at predicting stationary flows.
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Figure 12: Sample results, comparing ground truth
velocity fields with the velocity fields predicted by the
reduced-order model.
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Figure 13: Sample data of the horizontal (red) and ver-
tical (blue) components of the force to push the blade,
simulated using resolved DEM (solid lines) and the re-
duced model (dashed lines).

Also, there are regions of elevated granular tempera-
ture, lower right in Fig. 10, at the blade’s cutting edge
and the front surface of the pile. Since the particle
velocities deviate from the mean flow in those regions,
the model should not be able to predict them accu-
rately. Therefore, we compare reduced-order DEM
and resolved DEM simulations with identical blade
trajectories, to evaluate the performance in propa-
gating the system forwards in time. The reduced-
order DEM is simulated with the same blade tra-
jectory as previously, depicted in Fig. 13, but with
the larger time-step 0.017 s. Fig. 14 shows the two
surfaces after a completed bulldozing cycle, and the
difference between them. The surfaces has slots and
side windrows of similar depth, height and width. In
the reduced DEM simulation, the resulting pile is not
pushed as far to the end of the slot as in the resolved
DEM simulation. This can be understood by that the
particles have no inertia in the reduced-order model,
and the predictor do not consider the vertical motion
when the blade is lifted. Instead, the material sim-
ply stays still when the blade is stopped and lifted,
and subsequently fall down in a pile when exiting the
voxel field.

The reduced-order model captures the force on the
blade well, the displacement of material fairly well
but the particle velocities only to partial extent. Un-
fortunately, it is also found that the model is sensitive
to the training data. The problem is that the flow
during the build up phase is rather different from the
stationary flow, and it turns out it is hard to find a
balance in representing them both with the model.
Depending on which temporal parts of the training
data are included, more or less emphasis can be put
on these parts. This imbalance typically results in
either particles not building up properly in front of
the blade, or particles not able to comove with the
blade, leaking out through the back. This suggests
the need for a different model ansatz than Eq. (19).

Sample videos are available at http://umit.cs.

umu.se/ddgranular/.

5.3 Performance measurements

In Table 1 we summarize the performance measure-
ments from the numerical experiments. The compu-
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Figure 14: The surface of the material bed after one
bulldozing cycle with ground truth simulation (top),
granular reduced-order model (middle) and the difference
between them (bottom).

tational time for the fully resolved and reduced DEM
simulations, tres and tred, are normalized by the real
time duration of the experiments, treal. The speed-
up factor is the ratio of the resolved computational
time to the reduced one. The reduction factor is the
ratio of the average number of dynamic particles in
the reduced and the resolved DEM simulations. The
precision is the inverse of the numerical errors in the
tests.

The numerical experiments are performed on a
prototype implementation, combining Python and
NumPy operations for the reduced-order DEM and
AGX Dynamics for resolved DEM and multibody dy-
namics. We expect there is room for optimization of
the computational speed. One opportunity that has
not been utilized is that the number of iterations in
the projected Gauss-Seidel solver can be decreased
with the number of resolved particles (size of the con-
tact network) [19]. In the performed tests the number
of solver iterations was kept constant at 200 and 250
in the pile and the blade experiments, respectively. If
the reduced DEM simulations instead are run with 20
iterations, appropriate for an error tolerance of 10%

on these systems, the speed-up would roughly dou-
ble from 10 to 20 (Experiment Pile Fig. 8) and from
50 to 100 (Experiment Blade Fig. 12), respectively,
and reach the real-time requirement tred/treal < 1.
Disabling the collision detection between particles in
the reduced-order model is another optimization that
has not been applied here. The measurements of the
computational time were made using a single thread
on an Intel R© Core

TM

i7-4770 CPU @ 3.40GHz.

6 Discussion

The purpose of the model order reduction is to en-
able simulation at a higher speed or with increased
number of particles while remaining withing given
computational bounds. The price for the speed-up
is reduced precision and the effort of the simulations
that must be carried out in advance to produce train-
ing data.

Let us first consider what computational speed-up
can be expected. In the extreme case when the whole
system can be represented with the reduced model,
the main computational steps are: i) do inference on
the regression model in Eq. (19) with given known
parameters β; ii) determine the particle velocities by
interpolation and update their new position; iii) and,
possibly, generate output for the purpose of analy-
sis. The computational complexity of doing infer-
ence is that of matrix-vector multiplication of size
dim(β) = 3Nv×NvNj, which require 6N2

vNj floating-
point operations. At the present time a powerful
desktop CPU delivers about 100 gigaFLOPS and a
high-end GPU up to 100 teraFLOPS. It is thus con-
ceivable to evaluate models of size Nv = 103 (CPU)
and Nv = 104 (GPU) within one millisecond. Hence,
it should be possible to simulate fully reduced DEM
systems at 60 Hz with up to Np = 105 (CPU) and
Np = 106 (GPU) particles, assuming 10 particles per
voxel. Also, the reduced-order DEM is limited by
Courant-Friedrichs–Lewy (CFL) condition rather by
the time-step used in simulation of the resolved DEM.
In the pile and blade experiments the CFL time-step
limits are estimated to 1 s and 0.1 s, respectively.
That adds another factor 10 to 100 in speed or size
of systems that may be simulated in real-time with
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Experiment tres/treal tred/treal Speed-up Reduction Precision

Pile Fig. 6 271/70 13/70 21 0/1700 90%
Pile Fig. 8 1496/120 149/120 10 440/3600 90%
Blade Fig. 12 630/8 11/8 57 250/16000 65%

Table 1: Performance number measured in the numerical experiments using resolved and reduced DEM simulations.

the reduced model.

When the system has regions with granular tem-
perature domains that require resolved DEM, this
part of the simulation easily becomes the computa-
tional bottleneck. The number of particles that can
be simulated in real-time with resolved DEM is up to
104, the precise number depending on particle size,
velocity, contact parameters and numerical integra-
tion technique [19]. With a reduction factor of 1/10,
we expect that the pile system can be simulated in
real-time with Np = 105 particles. Compared to this
theoretical performance estimate, the prototype im-
plementation is underperforming in the Pile test in
Fig. 8 by a factor of 10 and can potentially be opti-
mised to reach a speed-up factor of 100.

The precision in the pile experiments is about
10%. This is not a high precision but acceptable
for many applications, especially when there are no
other alternatives that deliver real-time performance.
Also, the uncertainties behind the ground truth (re-
solved) model are in many practical situations also
of this magnitude. There are several ways the re-
duced model can be improved, besides providing it
with more or better training data. The velocity
field in the real system has fluctuations and tran-
sients that cannot be captured by a model assuming
quasi-stationary flow. To achieve higher precision,
the missing flow dynamics must be included either
at the level of the velocity field predictor or at the
particle level, like in the spot-model by Rycroft et al.
[17]. The error due to elevated granular temperature
in shear flow can possibly be reduced by adding diffu-
sion terms in the calculation of new particle velocities
from the mean field. Models for diffusion in granular
flows, as function of the local strain rate, can be found
in the literature [22] and can be calibrated using the
resolved DEM simulation data. It may also be a good
idea to adjust the particle velocities or positions to
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Figure 15: R2 scores for the pile models on test data,
trained on fractions of the training dataset.

resolve unphysical contact overlaps that result from
the errors in the velocity predictor or from applying
a diffusion model. In the prototype implementation
used for the numerical experiments, the regions of el-
evated granular temperature are detected manually.
Creating a model for predicting the local granular
temperature and how it can be expected to develop
would enable more automatic and perhaps more pre-
cise adaptive reduced-order DEM simulation.

Another important question is how much training
data is needed to create the reduced-order model.
Fig. 15 shows the prediction score on the test data
for the pile models, as a function of being trained on
increasing fractions of the training set of 50,000 data
samples. The most significant increase in the test
score occurred when using up to 50% of the train-
ing set, with generally a small further increase when
using all data. However, the scaling depends on the
regularization and none of the cases has really sat-
urated, thus there could still be some improvements
by increasing the amount of training data.

In the present study a plain regression model is
tested. There is good reason to believe that deep
neural networks (DNN) can perform well and train to
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generalize much better to nonlinear flows and changes
in the geometric boundaries. Typically, a DNN has
many more parameters and requires larger amounts
of training data. That does not necessarily mean
many more simulations, but instead using more of
the unprocessed data from the full resolution simula-
tions, e.g., the particle motions relative to the mean
field, density and the contact force network, to better
resolve the fluctuations in the velocity field and reac-
tion forces on objects interacting with the granular
media.

7 Conclusion

We introduce a novel technique for model order re-
duction of DEM simulations of granular media. Us-
ing many offline simulations, we train a regression
model to predict the velocity field. This model is
then used to assign particle velocities, in place of
the time-consuming process of collision detection and
force computation. An adaptive domain technique
is used to apply the reduced-order model in regions
with low granular temperature error where individ-
ual particle motion coincide well the mean flow, and
use resolved DEM simulation in regions with more
irregular particle motion. This allows for minimiz-
ing the number of particles in the computationally
intense process, while still simulating particle motion
with realistic mean velocity. The adaptive reduced-
order model is applied in two test systems, a gravi-
tational discharge pile and a bulldozer blade cutting
and pushing through a particle bed. We measure a
computational speed-up of 10 to 20 and 90% precision
for the discharge pile. We estimate that it is possi-
ble to reach real-time performance with 105 particles
at 60 Hz and a reduction factor 1/10, corresponding
to a speed-up of 100. For the bulldozing blade the
speed-up reaches 60 but with a precision of around
65%. Plans for future research includes extending the
predictor model beyond plain regression.
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