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Abstract

Modeling and simulation of granular matter has important applications in both na-
tural science and industry. One widely used method is the discrete element method
(DEM). It can be used for simulating granular matter in the gaseous, liquid as well
as solid regime whereas alternative methods are in general applicable to only one.
Discrete element analysis of large systems is, however, limited by long computatio-
nal time. A number of solutions to radically improve the computational efficiency of
DEM simulations are developed and analysed. These include treating the material
as a nonsmooth dynamical system and methods for reducing the computational ef-
fort for solving the complementarity problem that arise from implicit treatment of
the contact laws. This allow for large time-step integration and ultimately more and
faster simulation studies or analysis of more complex systems. Acceleration methods
that can reduce the computational complexity and degrees of freedom have been in-
vented. These solutions are investigated in numerical experiments, validated using
experimental data and applied for design exploration of iron ore pelletising systems.





Sammanfattning

Modellering och simulering av granulära material har viktiga tillämpningar inom
s̊aväl naturvetenskap som i industrin. En vanlig metod är den s̊a kallade diskre-
ta elementmetoden (DEM). Den kan användas för simulering av granulära mate-
rial i alla dess olika faser - gas, flytande och fast form - medan alternativa meto-
der i allmänt endast stöder en av faserna. Diskret elementanalys av stora system är
dessvärre begränsat av l̊anga beräkningstider. Ett antal lösningar för att dramatiskt
öka beräkningseffektiviteten i DEM-simuleringar har utvecklas och analyserats. Dessa
inkluderar att beskriva materialet som ett system med icke-slät dynamik och meto-
der för att öka effektiviteten i beräkningarna av de komplementaritetsproblem som
en implicit hantering kontaktlagarna medför. Detta möjliggör tidsintegration med
stora tidssteg vilket kan omsättas i fler och snabbare simuleringsstudier eller analys
av mer komplexa system. Lösningarna undersöks i numeriska experiment, valideras
mot experimentella mätningar och tillämpas för design-utforskning av system inom
järnmalmspelletisering.
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1 Background

Granular matter is collection of discrete macroscopic particles that interact locally by
interfacial contact forces that are highly dissipative [1]. Examples are natural grains
of corn and minerals and manufactured pharmaceuticals pills and pellets. It has been
estimated that more than 50 % of the sales in the world deal with products that
involve handling of granular materials at some stage. In most large-scale systems,
experiments and measurements are impossible for practical and economical reasons.
Modeling and computer simulation is indispensable for deeper understanding of the
nature of granular materials and for making radical improvements and innovating
entirely new solutions in processing and transportation systems. The nature of gran-
ular materials is very complex and rich in phenomena despite the simplicity of the
models at grain level. The materials are strongly dissipative and meta-stable with
critical phenomena like jamming transitions and avalanches. There is a strong rela-
tion between the macroscopic bulk properties and the microscopic properties, such
as grain size, shape, friction and elasticity. Granular materials can switch quickly
between solid, liquid and gas state [2]. Especially characteristic is the occurrence of
strong force chains - that reach through the material and cause arching phenomena
that give structural strength. This is fundamental for the design of storage silos, and
make grains in an hourglass either jam or flow at steady rate. Another fascinating
phenomena is size segregation. When granular materials are excited by periodic per-
turbation, such as vibration, larger grains move upwards and smaller ones downwards
despite having the same mass density. Popularly this is known as the Brazil nut effect
and explains why the largest nuts are found on the top in a container of mixed nuts.
This can be understood as a convection phenomena and make it extremely difficult
to produce homogeneous mixtures of granular materials. For many phenomena, it is
necessary to explicitly model the individual particles and their interactions. This is
most challenging task considering that one cubic meter of sand consists of roughly
one billion grains. Each sample can have big variations in the microscopic properties,
it can be loosely or densely packed and be influenced in numerous different ways:
shaken, rotated, compressed, sheared, suspended in fluid etc. This renders a tremen-
dous large space of possible behaviour to investigate. The goal of this thesis is to
provide new knowledge and methods to accelerate the modeling and exploration of
complex granular systems using computer simulation.

2 Computational Granular Dynamics

There is a multitude of methods for simulating granular materials [4]. One widely
used method is the discrete element method (DEM). It can be used for simulating
granular matter in the gaseous, liquid as well as solid regime whereas alternative
methods are in general applicable to only one regime. With DEM, and other particle
based methods, the characteristic dynamics of granular materials emerges naturally
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through the collective behaviour of the interacting particles and with direct relation
to the microscopic properties. Resolving the systems at grain level come with con-
siderable computational cost, however. At large enough scales it becomes intractable
to use DEM. In the time of writing this thesis, the largest reported number of parti-
cles in a scaling experiment with a nonsmooth discrete element method is 2.8× 1010

non-spherical particles and 1.1× 1010 contacts using peta-scale supercomputers with
almost 500 thousands processor cores [3]. To increase the size further, reduce com-
putational time or the need for supercomputers, a more coarse model must be used.
Essentially there are two alternatives to DEM: cellular automata models and contin-
uum mechanics. Cellular automata models make use of a regular lattice where each
grid cell attain a certain state that represent the local state of the granular media.
The system evolves in time by a set of rules that determine the new state of each cell
in terms of the current state of the cell and the states of the neighbouring cells. Cellu-
lar automata models have been applied mostly to granular gases, described by kinetic
theory and with the automata rules derived from statistical collision models. This
has for instance helped explaining transport and pattern formation of sand dunes [5].
On large enough length scales it is reasonable to treat the granular material using
continuum mechanics, either as a solid, liquid or a multiphase model [1]. Simulations
based on these models involve solving partial differential equations discretised using
finite elements, finite differences or meshfree methods. Each discrete unit typically
represent many thousand or millions of particles. For natural reasons the continuum
models fail at phenomena that occur on the length scales approaching the particle
diameter. The main challenge is to find constitutive laws that relate the stress and
strain fields that are of general validity. Predicting and handling the transitions be-
tween elastic, plastic and viscous behaviour is particularly difficult. Discrete element
methods play a central role in this development as detailed analysis can be made of
the relationships between stress, strain and microscopic particle properties.

2.1 Discrete Element Method (DEM)

The discrete element method was developed in the late 1960s by Cundall and Stracks
[6] as an extension of molecular dynamics to model macroscopic slightly deformable
solid grains. Each particle is modeled as a rigid body. The bodies interact via
viscoelastic contact forces obeying the Coulomb friction law. For a rigid body, a,
the notations ~x[a], ~v[a], ~f[a] and m[a] are used for position, velocity, force and mass,
and ~e[a], ~ω[a], ~τ[a] and I[a], for orientation, angular velocity, torque and inertia ten-
sor. These are combined into generalised position, velocity, force and mass, denoted
x[a],v[a], f[a] and M[a], with v[a] = (~vT

[a], ~ω
T
[a])

T etc. and M[a] = diag(m[a]13×3, I[a]).

These are in turn collected in full system state vectors x = (x[1],x[2], . . .), v =
(v[1],v[2], . . .) etc. Contact forces and velocities may be decomposed in the directions

of contact normals, ~n and tangents, ~t, see Fig.1. The gap function g(x) measures the
magnitude of overlap between the contacting bodies. The equations of motion follows
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Figure 1: Illustration of the contact between two particles a and b.

Newton’s law
ẋ[a] = v[a]

v̇[a] = M−1
[a] f[a](x,v)

(1)

where the force on particle a is the sum of all contact forces acting on it plus external
forces, f[a] = fext +

∑

b∈Nc(a)
f[ab]. A common force model is the nonlinear Hertz

model that follows from the theory of linear viscoelastic materials. Friction is usually
modeled as a spring in the tangential direction. The tangential spring extension is
computed by integrating the slide velocity, and the force is projected onto the friction
cone to obey the Coulomb law. Similarly, rolling resistance is modeled as torque that
counteract relative rolling motion, also limited by a Coulomb-like law. For spherical
particles, the contact forces are:

~fn = kn
(

g3/2 + cg1/2ġ
)

~n
~ft = projµ|~fn|

(

−
∫

kt~utdt
)

~τr = projµr|~fn|

(

−
∫

kr ~wtdt
)

(2)

where ~ut and ~wt are the tangential relative velocity and relative angular velocity at
the contact point. The normal stiffness and damping coefficients are kn = E

√
2d/3(1−

ν2), where E is the Young’s modulus, ν is the Poisson ratio, d = (d−1
[a] + d−1

[b] )
−1 is

the effective diameter, the dissipation coefficient is c = 4(1 − ν2)(1 − 2ν)η/15Eν2,
and the material viscosity constant is η. For the friction spring coefficient, kt, and
rolling resistance coefficient, kr, there are no such relations to fundamental material
parameters and they must be determined from experiments. A DEM simulation
consists of numerical integration of Eq. (1), which are ordinary differential equations
(ODE). However, due to the occurrence of contact events and of the friction law in (2),
the force is in general not differentiable in time. High-order integration algorithms
are therefore not applicable [7]. Instead, the semi-implicit Euler or Verlet algorithm
is a common choice, although the ODEs are very stiff and the time-step ∆t become
limited by the time-scale given by the elastic interaction time

√

m/kn. The simulation
algorithm of DEM involve contact detection, force computation and velocity and
position update, (xi,vi) → (xi+1,vi+1) from time ti to ti+1 = ti +∆t.
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2.2 Nonsmooth Discrete Element Method (NDEM)

The nonsmooth contact dynamics method was introduced in the late 1980s by
J. J. Moreau [8,9] and further developed by Jean [10] and others. In the case of rigid
bodies this is also known as the nonsmooth discrete element method (NDEM) [7] and
can be understood as an implicit version of DEM using convex analysis to remedy
the fact that the contact laws cannot be written as simple mappings of position and
velocity to force. In the nonsmooth DEM, impacts and frictional stick-slip transitions
are considered as instantaneous events making the velocities discontinuous in time.
The contact forces and impulses are modeled in terms of kinematic constraints and
complementarity conditions between force and velocity, e.g., by the Signorini-Coulomb
law for unilateral non-penetration and dry friction. The contact network becomes
strongly coupled and any dynamic event may propagate through the entire system
instantaneously. The benefit of nonsmooth DEM is that it allows integration with
much larger simulation step-size than for smooth DEM and thus potentially faster.
There are several equivalent formulations of NDEM. The formulation in terms of
multibody dynamics in descriptor form will be used here [12] and with constraint
stabilization [13]. The explicit contact force in Eq. (1) is replaced by a constraint
forces GT

c λc with Lagrange multiplier λc and Jacobian matrix Gc. The constraint
force is implicitly given by the contact laws expressed as kinematic constraints in form
of algebraic equations, inequalities or complementarity conditions. One advantage of
this particular formulation is that it is automatically unified with the framework
of multibody system dynamics for articulated mechanisms and power transmission
systems. The constrained equations of motion can be written

Mv̇ = fext +GT
c λc +GT

j λj (3)

εjλj + ηjgj + τjGjv = 0 (4)

law[v,λc] = true (5)

where (4) is a generic constraint equation that may model kinematic joints and motors.
With εj, τj = 0 and ηj = 1, it becomes an ideal holonomic constraint g(x) = 0. For
εj, ηj = 0 and τj = 1, the constraint become an ideal Pfaffian constraint Gv = 0.
With εj, ηj, τj 6= 0 it represent a generic constraint with compliance and damping.
Eq. (5) represent the contact laws that are imposed on the system, for instance the
Signorini-Coulomb and rolling resistance law

0 ≤ εnλn + gn + τnGnv ⊥ λn ≥ 0 (6)

γtλt +Gtv = 0 , |λt| ≤ µt|GT
n λn| (7)

γrλr +Grv = 0 , |λr| ≤ rµr|GT
n λn| (8)

where the contact constraint (c) have been decomposed into normal (n), tangential
friction (t) and rolling constraint (r). Eq. (6)-(7) are the Signorini-Coulomb conditions
with constraint regularization and stabilization terms εn, τn and γt. With εn = 0 and
τn = 0, Eq. (6) state that bodies should be separated or have zero overlap, gn(x) ≥ 0,
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and if so the normal force should be non-cohesive, λn ≥ 0. With γt = 0, Eq. (7) state
that contacts should have zero relative slide velocity, Gtv = 0, provided that the
friction force remain bounded by the Coulomb friction law with friction coefficient µt.
Eq. (8) similarly constrains relative rotational motion of contacting bodies, provided
the constraint torque do not exceed the rolling resistance law with coefficient µr and
contact radius r. The Lagrange multiplier become an auxiliary variable to solve for,
in addition to position and velocity. The regularization and stabilization terms, ε and
γ, introduce compliance and dissipation when constraints are violated. Regularized
constraints may be viewed as Legendre transforms of a potential and Rayleigh dissi-
pation function of the form Uε(x) = 1

2εg
Tg and Rγ(x,v) = 1

2γ (Gv)T(Gv) [15, 16].
This is a key point to map the constraint parameters to conventional force models,
such as the Hertz contact law.

2.2.1 Time integration of NDEM

The numerical time integration scheme used in this thesis is based on the SPOOK

stepper [16] derived from a discrete variational principle for the augmented system
(x,v,λ, λ̇) and applying a semi-implicit discretization. The stepper is linearly stable
and O(∆t2) accurate for constraint violations [16] and involve solving a mixed comple-
mentarity problem (MCP) or equivalent quadratic programming problem (QP) [17]

Hz+ b = wl −wu

0 ≤ z− l ⊥ wl ≥ 0

0 ≤ u− z ⊥ wu ≥ 0

(9)

where

H =









M −GT
n −GT

t −GT
r

Gn Σn 0 0
Gt 0 Σt 0
Gr 0 0 Σr









(10)

z =









vi+1

λn,i+1

λt,i+1

λr,i+1









, b =









−Mvi −∆tM−1fext
4
∆tΥngn −ΥnGnvi

0
0









(11)

The solution vector z contains the new velocities at time ti+1 and the Lagrange
multipliers λn, λt and λr. A factor ∆t has been absorbed in the multipliers such that
the constraint force reads GTλ/∆t. The upper and lower limits, u and l in Eq. (9),
follow from the Signorini-Coulomb and rolling resistance law with the friction and
rolling resistance coefficients µt and µr. Since the limits depend on the solution, this
is a partially nonlinear complementarity problem. wl and wu are temporary slack
variables. The diagonal matrices Σn, Σt , Σr and Υn are related to the constraint
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parameters are as follows

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1

Σt =
γt
∆t

1

Σr =
γr
∆t

1 (12)

Υn =
1

1 + 4 τn
∆t

1

Since the stepping scheme (9) is an implicit method the time-step is no longer re-
stricted to the viscoelastic time-scale of the normal force. Instead, it is limited by the
tolerance in acceptable constraint satisfaction. Typically, a time-step many orders in
magnitude larger than for smooth DEM can be used. The precise mapping of the
parameters in Eq. (12) to material parameters are addressed in Paper I and IV in
this thesis. Increasing the parameters ε, γ and τ make the contacts more compliant.
This improve the solvability of the MCP. The stiffness go to infinity in the limit of
ε, γ, τ → 0.

2.2.2 Projected Gauss-Seidel (PGS) Solver

The computational properties of the solution algorithms for NDEM simulations is
largely open questions. There are no general proofs of existence and uniqueness of
solutions and few theoretical results on convergence and numerical stability [14]. The
nonlinear projected Gauss-Seidel (PGS) algorithm is widely popular because of its low
computational cost per iteration, small memory footprint and smooth distribution of
truncation errors that favour stable simulation. The Schur complement form of Eq. (9)
is

(GM−1GT +Σ)λi+1 = q−GM−1p (13)

subject to law[vi+1,λi+1] = true, p = Mvi+ fext, and q = [(ΥGnvi− 4
∆tΥg)T, 0, 0]T

and the velocity update reads

vi+1 = vi +∆tM−1fext +M−1GTλi+1 (14)

The PGS algorithm can be considered as a fixed-point linear iteration scheme com-
puting the increments of λi+1 and vi+1 using Eq. (13) and (14) repeatedly while
projecting the solution to maintain the nonlinear contact law at each iteration step.
After integrating the velocities and positions an impact stage follows. It include solv-
ing a similar MCP with the Newton impact law Gnv+ = −eGnv−.
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3 Accelerated DEM Simulation

The time required for simulating treal seconds of evolution using DEM is the product
of the number of time-steps and the computational time for each step

tcomp =
treal
∆t

· [tcol + tsolve + taux] (15)

with time serially separated in collision detection (tcol), solver (tsolve) and auxiliary
processing time (taux). In conventional smooth DEM the computations of force,
velocity and position update are very cheap and parallelises well. Collision detec-
tion is therefore the main computational bottleneck such that tDEM

comp ∝ Np/S
DEM

‖ ,

where SDEM

‖ is the parallel speedup. In NDEM, the solver is the main compu-
tational bottleneck. When using a PGS solver, the computational time scale as
tNDEM

comp ∝ N1+γǫ

p /ǫSNDEM

‖ depending on error tolerance ǫ. The scaling exponent, γǫ > 0,
reflect that the number of PGS iterations depend on the system size, connectivity and
error tolerance as Nit ∝ Nγ

p /ǫ [25]. The auxiliary process time include overheads for
communication, memory management and processing of the DEM data structures
that is necessary for post-processing or for optimisation of the other computational
steps. It is interesting to study the relative computational time of the smooth and
nonsmooth DEM

tDEM

comp

tNDEM

comp

∝ ǫN−γǫ

p

∆tNDEM

∆tDEM

(16)

The following general observations can be made from this expression. The conven-
tional smooth DEM is increasingly favourable in the limit of large systems (Np → ∞)
and high accuracy (ǫ → 0). The relative efficiency of nonsmooth DEM increase with
material stiffness and with slow dynamics, since ∆tDEM .

√

m/k → 0 when k → ∞
and ∆tNDEM . ǫd/un. To accelerate DEM simulations is to diminish the terms in
Eq. (15). The following approaches have been identified:

Adaptive time-step and number of iterations

Depending on the requirements of the simulation and on the material parameters,
a considerable speedup can be achieved by simply making the best choice between
smooth and nonsmooth DEM.When NDEM is used, additional speedup can be gained
by adjusting time-step size and number of iterations to the desired error tolerance and
dynamic state of the granular material.

Parallelisation

The parallelisation of DEM subsystems that are weakly or not at all connected to
each other is easy to implement, and has almost ideal scaling. Parallelisation of
collision detection and PGS solver is more difficult but a well developed area [3, 18]
and implemented in the software used in the thesis.
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Convergence

There are several ways to improve the convergence of the PGS solver, either mod-
ify it or replace it entirely by alternative solvers, such as the accelerated projected
gradient descent method [19] or the proximal point method [20]. With increased con-
vergence less number of iterations can be used to reach the same level of accuracy
and a speedup is gained if the computational cost of the modification is not too large.
This is highly experimental work since there are few theoretical results on existence,
uniqueness, stability and convergence of MCP and QP solvers for nonsmooth dynam-
ics [14]. Modifications of the PGS algorithm include successive over-relaxation (SOR)
and warm-starting based on some expectation of the solution.

Model reduction

Another way to accelerate the computations is to reduce the model complexity by
somehow lowering the number of degrees of freedom in the system. This is known as
model reduction and is widely used in solid and fluid mechanics, dynamical systems
and control theory [21, 22]. Replacing a DEM model with a finite element model
based on a continuum approximation of the same system is an example of this but is
in general not applied to accelerate DEM simulations.

4 The Iron Ore Pelletising Process

The work presented in this thesis was inspired and motivated by the need for deeper
understanding and specialised simulation tools for the processing of iron ore into
pellets at the company LKAB. The pelletising process produces spherical pellets 9-
− 16 mm in diameter from ore material. The process consists of the following main
stages [24], illustrated in Fig. 2. Comminuted fine size ore, fines, is first mixed with
binder material. Agglomeration into soft ore balls, green ore pellets, occur in balling
circuits, where fines, water and undersized pellets are circulated through rotating
drums. The main agglomeration mechanisms are nucleation, layering, coalescence and
breakage. The green pellets leave the drum through an outlet and are size distributed
through a roller sieve, see Fig. 3. Under-sized particles are fed back to the drum.
Over-sized pellets are crushed and mixed with the fines. The balling process can
be controlled by regulating the drum velocity and feed rate of fine material, binding
agencies and moisture. On-size pellets are conveyed to the induration furnace where
they form hard pellets by oxidation and sintering. After being cooled, the pellets
are ready for further transportation by train and ship. A typical iron ore balling
circuit have drum diameter ranging between 3 − 5 m, 8 − 10 m long and circulate
about 400− 1200 ton/h producing 100− 300 ton/h of on-size pellets. For an optimal
performance, the material flow on the wide belt conveyor beneath the outlet and onto
the sieve need to be as homogeneous in space and time as possible. The right image
in Fig. 3 is an example of a failed outlet design that would cause substantial loss in
productivity or poor pellet quality.
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Figure 2: Illustration of the iron ore pelletising process. The balling process
occur between step 7 and 9. Image courtesy of LKAB.
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Figure 3: Illustration of the balling circuit and application of NDEM simu-
lation to exploration of outlet designs.

5 Simulation Software

The project has involved a substantial amount of implementation work and numerical
experiments. This has been carried out using a combination of the simulation software
AgX Dynamics [23] and a series of prototype codes were developed and managed by
the author. This code has been a mixture of C++, Python, Lua and Matlab scripts.
AgX Dynamics is a software library supporting multidomain dynamics simulation
for industrial and scientific applications. It is particularly well suited for realtime
interactive simulation involving contacting rigid multibody systems. One large area
of applications is heavy machinery simulators. AgX Dynamics also has a number
of solutions for computer aided design and engineering. This include a module for
modeling and simulation of granular materials and bulk handling systems. The core
library include a direct solver for quadratic programming problems using a block
pivot method with highly optimised algorithms and data structures for multibody
systems with contacts and nonsmooth dynamics. A parallelised version of the PGS
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algorithm using spatial partitioning for granular materials is implemented. The direct
and iterative solvers can be run as coupled hybrid solvers.

6 Thesis Contribution and Future Work

A short description of the findings of the thesis’ papers is given below. All papers
have multiple authors and a short description of the main contribution by the author
of the thesis is therefore included. All papers have been written in close collaboration
and with good opportunity to provide input to and influence the development of the
manuscripts.

Paper I

In this paper the computational properties of smooth and nonsmooth DEM are com-
pared and a regularized version of NDEM based on the Hertz-Mindlin contact law is
introduced, thus relating the NDEM solver parameters directly to fundamental ma-
terial parameters. It has the both the conventional DEM and NDEM as limit cases.
The required number of iterations needed to obtain a certain error tolerance is inves-
tigated in order to understand the true performance of NDEM in relation to accuracy
and material properties. A surprising finding is that the required number of itera-
tions do not always grow with the number of bodies in the system. Analogously to
the Jansen effect of pressure saturating with depth in a granular column, due to force
arching, also the required number of iterations can saturate and become independent
of system size.

My contribution: development of a prototype NDEM simulation code with Hertzian
contact model and PGS solver; setup and management of simulation system and post-
processing pipeline; data analysis; establishing the convergence formula.

Paper II

NDEM simulation is shown to be a feasible tool for exploring the geometric design
space of ore pellet balling drums. This is formulated as a design optimization prob-
lem. The objective function take the material distribution on the conveyor belt as
input. A downscaled drum with a two-parameter outlet design is considered. Over
2000 simulations of different design are run with the identical drum flow to find an
optimal shape. The conclusions include that the design principle is fundamentally
flawed, as the design can be optimal only for a specific flow rate. It is also observed
that the spherical idealization of the particles and absence of rolling resistance lead
to significant disagreement between the simulated and observed pile formation.
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My contribution: modeling of the balling circuit; setup and management of a
system for batch simulations and post-processing; analysis and summary of simulation
result.

Paper III

The practical steps of parameter identification, verification and validation of NDEM
is described and applied to iron ore green pellets and the balling circuit. Also, the
contact model is extended to include constraint based rolling resistance. The valida-
tion tests of simulated bulk behaviour show a good agreement with measurements of
material flow in the balling plant. The sensitivity to model and solver parameters
are investigated. This reveals that the results are very sensitive to rolling resistance
and outlet geometry but not particularly sensitive to elasticity, friction coefficient
and pellet diameter. It is also found that the application allows for surprisingly large
time-step. Although this introduce big errors to a significant fraction (17 %) of the
contacts the effect on the bulk flow is negligible.

My contribution: identification of material parameters and material flow from
optical measurements; modeling and analysis of verification and validation systems;
implementation and testing of rolling resistance model.

Paper IV

The possibility and efficiency of applying warm-starting to the PGS solver in NDEM
simulation is investigated. Two methods are proposed - history based and model based

- and tested. It is found that warm-starting based on the history can significantly
reduce the required number of iterations. This primarily improve the convergence of
friction forces and rolling resistance. A speedup between 2 to 5 can be achieved.

My contribution: joint work in developing the two warm-starting methods; proto-
type implementation; modeling, simulation and analysis of the column, pile and drum
experiments.

Paper V

This paper presents a model order reduction technique for DEM simulations. Al-
gorithms to substitute rigid aggregate bodies adaptively for collections of contacting
particles that collectively co-move as rigid bodies are developed, as well as methods to
refine the aggregates to smaller parts when necessary. The complexity of the reduced
system can be many times smaller than the original. Two methods for predicting
refinement are studied: contact event split and background trial solve split. The
method has potential to accelerate NDEM simulations by 5− 50 times for reduction
levels of 70−95 %, if the computational overhead can be kept below given thresholds.
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My contribution: algorithm development and prototype development of merge-split
algorithms; joint work in development of split conditions; simulation and analysis to
identify parameters and artefacts; investigate advantage and drawback of each merge-
split method.

Future Work

There are many interesting questions and ideas to pursue in future work. When it
comes to the application of iron ore pelletising systems, it is unclear how the presence
of fine material and moisture affect the bulk behaviour of ore green pellets. It is also
not clear how a mixture of fines and ore green pellets are efficiently modeled and
simulated in a nonsmooth DEM framework - if at all possible. In reality, the ore
green pellets are plastic and it is also an open question how to extend the NDEM
contact model to this. On the computational modeling side, there are also many
attractive continuations. In most real granular systems the solid, liquid and gaseous
phase are simultaneously present and they typically benefit from different simulation
modes, e.g., smooth versus nonsmooth DEM, size of time-step, number of iterations
or change of solver. Ideally one should apply different iteration count, time-step and
DEM-smoothness in different parts of the system and adaptively change this in order
to focus the computational power to the part where it is needed the most. This point
at asynchronous time-integration of the NDEM equations and the use of model order
reduction interleaved in the PGS iterations. It is also clear that full use of model
order reduction require extension from rigid to deformable aggregates.
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approaches to granular matter
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SUMMARY

The smooth and nonsmooth approaches to the discrete element method (DEM) are examined from a
computational perspective. The main difference can be understood as using explicit versus implicit time
integration. A formula is obtained for estimating the computational effort depending on error tolerance,
system geometric shape and size, and on the dynamic state. For the nonsmooth DEM (NDEM), a regularized
version mapping to the Hertz contact law is presented. This method has the conventional nonsmooth and
smooth DEM as special cases depending on size of time step and value of regularization. The use of the
projected Gauss-Seidel solver for NDEM simulation is studied on a range of test systems. The following
characteristics are found. First, the smooth DEM is computationally more efficient for soft materials, wide
and tall systems, and with increasing flow rate. Secondly, the NDEM is more beneficial for stiff materials,
shallow systems, static or slow flow, and with increasing error tolerance. Furthermore, it is found that just
as pressure saturates with depth in a granular column, due to force arching, also the required number of
iterations saturates and become independent of system size. This effect make the projected Gauss-Seidel
solver scale much better than previously thought. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discrete element method (DEM) of simulation is an important tool for studying many
natural phenomena and structures in the fields of material science, statistical physics, and
geophysics when granular material is involved. It is also an important tool for design and
optimization in the industries of processing, manufacturing, storage, and transportation of granular
materials, e.g., grains, minerals, pharmaceutical pills, pellets, sand, and rocks. One of the
main challenges for DEM simulation is to reduce the computational time of large-scale simu-
lations with 103 � 109 elements. There are two main approaches to discrete element simula-
tion, referred to as smooth DEM (SDEM) and nonsmooth DEM (NDEM). The difference lies
in whether the viscoelastic nature of the contacts is resolved in time or not. The nonsmooth
approach considers collisions and stick-slip frictional transitions as instantaneous events,
where the velocity may change discontinuously in time, according to a given contact law.
This allows for large time step integration with the potential of considerably less computa-
tional effort. Surprisingly few comparisons between SDEM and NDEM can be found in liter-
ature. One comparison of the computational scaling is made by Brendel et al, summarized by
Equation (1.37) and Figure 6 in Ref. [1]. According to that analysis, the nonsmooth approach
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†E-mail: martin.servin@physics.umu.se
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is most favorable for dense, quasistatic systems with few particles and high ratio of mate-
rial stiffness over element mass, while the smooth approach becomes increasingly favorable
with increasing number of particles, kinetic energy, and decreasing material stiffness. The com-
parison in Ref. [1] is, however, overly simplified and does not fully account for the dynamic state or
geometric shape of the system and does not include any error tolerance threshold.

The main purpose of this paper is to provide a theoretical basis and empirical data for deciding
when to use SDEM or NDEM simulation. Also, a regularized version of NDEM is presented,
referred to as semi-smooth DEM. It has the smooth and nonsmooth methods as limiting cases
and thus constitutes a hybrid method sharing properties of both the other methods and forming
a starting point for developing DEM simulation with adaptive transitions between smooth and
nonsmooth time integration.

The paper is outlined as follows. In Section 2, an overview of SDEM and NDEM is given
with key references. A hybrid version of the SDEM and NDEM is presented in Section 2.4.
The computational properties of SDEM and NDEM are outlined and discussed in Section 3. The
metrics used for comparison are introduced in Section 4.1. In Section 4, the simulation procedure
and chosen test systems are described. The results of the simulations are presented and discussed in
Section 5. The main conclusions are finally presented in Section 6.

1.1. Notation

For a rigid body, a, we use the notations ExŒa�, EvŒa�, Ef Œa�, and mŒa� for position, velocity, force,
and mass, and EeŒa�, E!Œa�, E�Œa�, and I Œa�, for orientation, angular velocity, torque, and
inertia tensor. We agglomerate into generalized position, velocity, force, and mass, denoted

xŒa�, vŒa�, fŒa�, and MŒa�, with vŒa� D
�
Ev
T
Œa�, E!

T
Œa�

�T
etc. and MŒa� D diag

�
mŒa�13�3, I Œa�

�
. These

are components of the global system quantities that we denote x, v, f, and M. We use quaternions
for representing orientations. The theory and algorithms in this paper applies to rigid bodies
of general shape, although the simulations are made for spherically shaped rigid bodies, where
integration of the orientation can be omitted. These bodies are referred to as particles but do
posses rotational degree of freedom. Contact forces and velocities are sometimes decomposed
in the directions of contact normals, En and tangents, Et. The gap function g.x/ measures the
magnitude of overlap between contacting bodies. Np denotes the number of particles and
Nc the number of contacts. The matrix dimension of the global quantities are dim.x/ D 7Np � 1,
dim.v/ D dim.f/ D 6Np � 1, dim.M/ D 6N p � 6Np, and dim.g/ D Nc � 1. Time is
discretized in steps of size h, and we denote the discrete time points by integer index i such
that ti D ti�1 C h. We use integer k for solver iteration step. Particle indices are emphasized by
square brackets Œa� and Œb� and contact index by round brackets .˛/. The relative velocity at a con-

tact point ˛ between bodies a and b can thus be written as Eu.˛/ D EvŒa� C Ed
.˛/

Œa� � E!Œa� � EvŒb� �

Ed
.˛/

Œb� � E!Œa�, where Ed
.˛/

Œa� is the position of the contact point relative to ExŒa� and Ed
.˛/

Œb� relative to ExŒb�.
Furthermore, the notation G .n1 W n2,m1 Wm2/ is the standard Matlab notation for submatrices,
referring to the rectangular submatrix block of G that ranges from row-column index .n1,m1/ to
.n2,m2/.

2. SMOOTH AND NONSMOOTH DISCRETE ELEMENT METHODS

An introduction to the theory and computational aspects of SDEM can be found in Ref. [2].
Comprehensive descriptions of NDEM and its relation to SDEM can be found in Ref. [3] and
in Ref. [4]. Important original works include those of Cundall and Strack [5] and Moreau [6]. In
Section 2.4, we introduce a semi-smooth DEM that share features of both methods.

From a computational perspective, the main difference between SDEM and NDEM is related to
explicit and implicit integration. In SDEM, the contact forces are modeled as damped springs or
more general penalty functions [7, 8]. The equations of motion are the Newton–Euler equations

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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of rigid body motion, which form a set of ordinary differential equations (ODE) and are usu-
ally integrated with an explicit time stepper using small step size depending on spring stiffness
and particle mass. For an overview of explicit time stepping schemes, see [9]. Forces are
computed locally for each contact pair. In NDEM, the Newton–Euler equations are constrained
by the Signorini–Coulomb contact law [3, 4], replacing the contact springs. The velocities are
no longer assumed time-continuous. The contact forces and resulting velocities are computed
globally by solving the constrained equations of motion for the entire contact network using an
implicit time-integration algorithm. The nonsmooth method is a direct consequence of implicit
time-integration in the presence of inequality conditions, e.g., that the contact force should vanish at
separations or be limited by the Coulomb friction cone. As shown in Section 2.1, it is convenient to
extend the system with auxiliary variables, Lagrange multipliers [8], and explicit use of constraints.
Mathematically, this transforms the system from an ODE to a differential variational inequality
(DVI) [10].

2.1. Relations between implicit and explicit integrators and constrained systems

In this section, we elucidate the relations between implicit and explicit integrators, constrained sys-
tems, and nonsmooth dynamics. Consider a point particle of unit mass in one dimension subject to
the potential U D 1

2"
x2, yielding the force f D �@U=@x D �"�1x. Writing v � Px, an explicit

integration using the Verlet method with time step h yields

viC1 D vi C hfi D vi � h"
�1xi

xiC1 D xi C hviC1.
(1)

Here, only the force at time i is needed to advance the system. Using the implicit midpoint method,
we instead have

viC1 D vi C hf

�
xiC1C xi

2

�
D vi �

h

2"
.xiC1C xi /

xiC1 D xi C
h

2
.viC1C vi / .

(2)

Simple manipulations yield �
1C

h2

4"

	
viC1 D

�
1�

h2

4"

	
vi �

h

"
xi . (3)

This is a standard implicit integration, and if the system was of higher dimension, the terms inside
the brackets would be matrices and we would have to solve a linear system of equations for viC1.
The terms containing "�1 are problematic in the limit "! 0. Now introduce the auxiliary variable
�D "�1x in continuous time so that, in discretized time,

�D�
1

2"
.xiC1C xi /D�

1

"
xi �

h

4"
vi �

h

4"
viC1. (4)

After simple manipulations, the stepping scheme reads�
1 �1

1 4"
h2

	 �
viC1
h�

	
D

�
vi

� 4
h
xi � vi

	

xiC1 D xi C
h

2
.viC1C vi /.

(5)

There are no longer problematic terms of 1=", and we can in principle set "D 0. If the spring is one
sided, i.e., inactive when x > 0 the integration should respect the condition fi D 0 if xi > 0.

If we now consider a more general mechanical system with mass matrix M, coordinates x and
velocity v subject to a strong potential U D 1

2"
gTg, the force is then f D �@U=@xT D �1

"
GTg,

where G D @g=@x. Though the mass matrix M depends on the coordinates x in general, as in
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the case of the rigid body, this is neglected for simplicity. Following the same steps as before, the
implicit integration can be written as either�

MC
h2

4"
GTG

	
viC1 D

�
M�

h2

4"
GTG

	
vi �

h

"
GTgi (6)

or, by introducing auxiliary variable �D�"�1g.x/�
M �GT

G 4"
h2

	 �
viC1
�

	
D

�
vi C hfs

�h
4

gi CGivi

	
, (7)

where we absorbed the h factor in � and added soft forces fs in view of what we will do below.
Clearly, if there were conditions on the forces �, they would have to be applied globally.

That is not the case for the explicit method in which cases rules such as one-sided springs would
be used, one force at a time at each step. The perturbation 4"=.h2/ in the matrix in Equation (7)
can be clearly related to a penalty. When it vanishes, however, we have a constrained system
with hard contacts. From this perspective, the fundamental difference between SDEM and NDEM
is related to explicit and implicit integration methods. The first one computes forces locally, the
second globally.

The correspondence to constrained mechanical systems contains a number of subtleties with
regards to the convergence of the trajectories, velocities, and forces � in the limit where "! 0. The
basic theory is simple; however, if we consider the Legendre transform of a potential U D 1

2"
gTg

where g.x/ is a well-behaved function of x such that the Jacobian matrix @g=@x D G has full rank
at g.x/D 0. Choosing � and the transform variable, the Legendre transform is defined as

QU .�/D�max
g



�TgC NU .g/

�
(8)

where NU.g/ is the pullback of U.x/. This leads to

U.x/D NU .g/D�
"

2
�T���Tg

"�C gD 0.
(9)

Note in particular that @U=@xT D�GT�. For a simple mechanical system with equations of motion
MRx C @U=@xT � fs D 0, where fs are the ‘weak’ forces, of the augmented equations of motion
are then

MRx�GT�D fs
g.x/C "�D 0.

(10)

It is possible to show that Equation (10) has a well-behaved limit as " # 0 provided there is
some dissipation force of the form fd D ��GT Pg D ��GTGPx [11]. At the limit " D 0, we have
the dynamics of a constrained system. Nonsmooth formulations are entirely based on constrained
systems, and this leads naturally to Differential Algebraic Equations of motion or DVIs when
including impacts and dry friction. Though the general numerical methods for these are compu-
tationally expensive [12], the special case of multibody systems allows simpler methods such as
RATTLE [13].

In principle, therefore, if we accept a nonzero relaxation, ", there is no difference between the
smooth (local) and nonsmooth (global) formulation other than the time integration method until
inequalities are considered. However, it is clear from Equation (1) that inequalities and complemen-
tarity conditions, such as 0 6 f ? g.x/ > 0, can be treated one at a time in the smooth formulation,
but this is not the case when considering the system in Equation (7).

2.2. Smooth discrete element method

In SDEM, the contact normal force is a direct function of the geometric overlap function, g.x/, and
its time derivative. An example of a common force model is the nonlinear Hertz model that follows

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



EXAMINING THE SMOOTH AND NONSMOOTH DISCRETE ELEMENT

from the theory of linear viscoelastic materials. Friction is usually modeled as a spring in the tan-
gential direction. The tangential spring extension is computed by integrating the slip velocity, and
the force is projected onto the friction cone to obey the Coulomb law. For spherical particles, the
normal and tangential contact forces are [2]

Ef n D kn

�
g3=2C cg1=2 Pg

�
En (11)

Ef t D proj
�jEfnj

�
�

Z
ktEutdt

�
(12)

where Eut is the tangential relative velocity at the contact point. From the Hertz model for
spheres, the normal spring stiffness and damping coefficients are kn D E

p
2d=3

�
1� �2

�
and

c D 4
�
1� �2

�
.1 � 2�/�=15E�2, where E is the Youngs’s modulus, � is the Poisson ratio, and

d D
�
d�1
Œa�
C d�1

Œb�

��1
is the effective diameter from the interaction between spheres with diameter

dŒa� and dŒb� and the material viscosity constant � [14]. For the friction spring coefficient kt, there is
no such relation to fundamental material parameters, and it must be determined by comparison with
experimental results.

For explicit time integration methods, .xi , vi /! .xiC1, viC1/, such as Verlet or symplectic Euler,
the time step hmust be smaller than the shortest time scale given by the viscoelastic interaction timep
m=kn.

2.3. Nonsmooth discrete element method

In NDEM, the dynamics at short time scales is not resolved. Instead, the velocity is allowed to
be discontinuous in time and contact forces, represented by impulses or kinematic constraints, can
propagate through the system instantly. This enables large time step integration despite stiff materi-
als. The contact force laws may be derived from the same penalty potentials as for SDEM or simply
be determined directly empirically. We denote the impulse by Er , instantly changing the contact
velocity from Eu to Eu+

D Eu
-
CWEr , with a transfer matrix W consistent with the preservation of total

momentum. Over one time step h, the time-averaged contact force is Ef D Er=h. Specifically, the
explicit contact force model in Equations (11) and (12) is replaced by the Signorini-Coulomb law
[3, 4] that if g > 0 then lawSC



EuiC1, Er iC1

�
D true:

06 Eun ? Ef n > 0 (13)

Eut D 0 H) j Ef t j6 �j Ef nj (14)

Eut ¤ 0 H) j Ef t j D �j
Ef nj , Ef

T

t Eut D�j
Ef t jjEut j (15)

where the last condition is the maximum dissipation principle. We use lawSC


EuiC1, Er iC1

�
D true

in short for the inequalities in (13)–(15). Newton’s impact law of restitution, Eu+
n D �eEu

-
n with

coefficient of restitution 0 6 e 6 1, is conventionally also included in the contact law. The
occurrence of time-discontinuities mediated by constraints or impulses changes the dynamic
system from an ODE into a DVI. Solving the set of coupled inequalities (13)–(15) and update
equations .xi , vi / ! .xiC1, viC1/ for the entire granular system is the main computational task
in NDEM simulations, while it is a fast straight forward step in SDEM simulations. Observe that
in NDEM, the magnitude of contact forces do not necessarily depend on the magnitude of the
overlaps. Also, a local change in the system may propagate instantly through the entire contact net-
work thanks to the implicit nature of the method. This produces the required bulk behavior without
need for resolving fast pressure waves. Observe that instant propagation speeds assume perfectly
rigid bodies, but also for stiff materials, the propagation length in one time-step may exceed the size
of the system.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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There are several methods for numerical integration of DVI systems. The approaches may be
divided into iterative (splitting) solvers and direct (pivoting) solvers, but it is also possible to con-
struct hybrid direct-iterative solvers. Often, the time-integration is made with a single-step first order
method such as the symplectic (semi-implicit) Euler, resulting in a scheme nearly identical to the
RATTLE algorithm [13] for molecular dynamics. In general, because the system is non-smooth,
there is no benefit from higher order methods, e.g., multistage or multistep. In Section 2.4, we
present an extension of NDEM that give the contact constraint force viscoelastic properties and is
based on the linear complementarity formulation of NDEM. The simulation result in the paper are
produced with an implementation of this method. Therefore, the linear complementarity formulation
is outlined in more detail in Section 2.3.2.

2.3.1. Projected Gauss-Seidel. A natural and common approach is to treat each single contact prob-
lem, ˛,ˇ D 1, 2, : : : ,Nc, sequentially and then iterate, k D 1, 2, : : : ,Nit, until all contact laws
are fulfilled to a desired error tolerance. A common algorithm for this is the blocked projected
Gauss-Seidel solver [15]. This is a stationary iterative method for solving Equations (13)–(15)

approximately. At the k:th iteration step, each pair of contact velocity and impulse
�
Eu
.˛/

k , Er.˛/k

�
is solved for each local contact problem ˛

Eu
.˛/

k �W .˛˛/Er
.˛/

k D Eu
.˛/
s C�Eu

.˛/

k (16)

lawSC

h
Eu
.˛/

k , Er.˛/k

i
D true (17)

where

�Eu
.˛/

k D
X
ˇ<˛

W.˛ˇ/Er
.ˇ/

k C
X
ˇ>˛

W.˛ˇ/Er
.ˇ/

k�1 (18)

and Eus is the contact velocity as would be in the presence of only smooth forces, W.˛ˇ/ D
HT
.˛/Œa�

M�1
Œab�

H.ˇ/Œb� is the Delassus operator for contact ˛ and ˇ with HT
.˛/Œa�

being the affine trans-
formation of velocity of body a to relative contact velocity in point ˛ and M the mass matrix of
the system. After convergence to a set of impulses and contact velocities fulfilling lawSC to desired
tolerance, the body velocities in global coordinates are computed by viC1 D vsCHr with the final
net impulse Hr and vs D vi ChM�1fs is the updated velocity in presence of smooth forces. Finally,
position is updated by xiC1 D xi C hviC1. In 	 D 1=2 integration methods, the positions are first
update on half time step with the velocities from smooth forces before contacts are computed.

2.3.2. Mixed linear complementarity problem. Another popular method follows from linearization
of the Coulomb friction law, by approximating the friction cone with a (scaled) box or a poly-
hedral cone. The constrained equations of motion may then be put in the form of a mixed linear
complementarity problem (MLCP). In terms of body velocity v and Lagrange multiplier �, the
MLCP reads [16]

HzC bD wC �w�
06 z� l? wC > 0
06 u� z? w� > 0

(19)

where

HD

2
4 M �GT

n �GT
t

Gn 0 0

Gt 0 0

3
5 , zD

2
4 viC1
�n,iC1

�t,iC1

3
5 , bD

2
4�Mvs

0

0

3
5 (20)

Gn and Gt are the normal and tangential constraint Jacobians for the Signorini–Coulomb law and
w˙ are (temporary) slack variables, l and u are the upper and lower limits on the solution implied
by the linearized Signorini–Coulomb law. The normal and tangential contact constraint force is
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Figure 1. Overlapping discrete elements with notations.

fn D GT
n�n=h and ft D GT

t �t=h, respectively. The h�1 factor is due to a convenient normalization
of the Lagrange multiplier such that it has the dimension of impulse.

The MLCP formulation with saddle-point matrix H in Equation (20) is common in the realm
of multibody system dynamics for modeling of linked mechanism using kinematic constraints for
describing various joints, their actuations, and geometric limits. One significant advantage of this
formulation of NDEM is therefore that it automatically provides a unified formulation for modeling
and simulating of granular material strongly coupled with mechatronic systems, such as vehicles,
conveying systems, and articulated manipulators [17].

A generalization of the MLCP formulation to include also viscoelastic properties in the contact
dynamics is presented in Section 2.4 and used in simulation in Section 4. Therefore, we provide
some further details on the MLCP formulation here. The normal constraint force acts to prevent
penetration, i.e., to maintain the constraint g.˛/ 6 0, for each contact candidate ˛ between body a
and b. The overlap is computed

g.˛/ D En
T
.˛/

�
ExŒa�C Ed

.˛/

Œa� � ExŒb� �
Ed
.˛/

Œb�

�
(21)

with the contact normal En.˛/ directed outwards from a, and Ed
.˛/

Œa� is the position of the contacting
point on the surface of body a relative to its center of mass position ExŒa�, see Figure 1. The
nonpenetration constraint implies that the relative contact normal velocity should be zero or
separating, i.e., G.˛/

n v > 0, with the normal Jacobian G.˛/
n D @g.˛/=@x. The nonzero blocks of

the normal Jacobian are

G.˛/

nŒa�
D

�
�En

T
.˛/ �

�
Ed
.˛/

Œa� � En.˛/

�T 	
(22)

G.˛/

nŒb�
D

�
En
T
.˛/

�
Ed
.˛/

Œb� � En.˛/

�T 	
(23)

Friction is introduced as a constraint of vanishing relative contact velocity Eu.˛/Œab� in the tangent plane,

i.e., G.˛/
t vD 0, unless the force reach the friction bounds. With the box friction approximation, the

tangent plane is spanned with two orthogonal vectors Et
.˛/T

1 and Et
.˛/T

2 , and each friction multiplier

has two components �.˛/t D
h
�
.˛/
t1 �

.˛/
t2

iT
. The nonzero blocks of the tangent Jacobian are

G.˛/

tŒa�
D

2
664
�Et

.˛/T

1 �

�
Ed
.˛/

Œa� � Et
.˛/

1

�T

�Et
.˛/T

2 �

�
Ed
.˛/

Œa� � Et
.˛/

2

�T

3
775 (24)

G.˛/

tŒb�
D

2
664
Et
.˛/T

1

�
Ed
.˛/

Œb� � Et
.˛/

1

�T

Et
.˛/T

2

�
Ed
.˛/

Œb� � Et
.˛/

2

�T

3
775 (25)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme



M. SERVIN ET AL.

The Jacobian blocks have dimension dim.G.˛/

nŒa�
/ D 1 � 6 and dim

�
G.˛/

tŒa�

�
D 2 � 6. The

assembled constraint vector g D


g.1/ g.2/ : : : g.Nc/

�T
has dimension Nc � 1, the assembled

Jacobians dim.Gn/ D Nc � 6Np and dim.Gt/ D 2Nc � 6Np, and the Lagrange multipliers
dim.�n/DNc�1 and dim.�t/D 2Nc�1. The resulting MLCP thus consist of a sparse saddle-point
matrix of size dim.H/D .6NpC3Nc/�.6NpC3Nc/ and dim.z/D 6NpC3Nc variables. Improving
the approximation of the friction cone from a box to a polyhedron result in similar system but with
more auxiliary variables.

Contacts are separated into continuous and impacting contacts. Impacting contacts are those
not occurring with last time step. The effect of impacts are treated in an impact stage, solving an
MLCP based on the Newton impact law GnvC

Œab�
D �eGnv�

Œab�
with restitution coefficient e, before

proceeding with the main solve and time integration. See Appendix A for further details.
There are three type of solvers for MLCPs: pivoting methods, Newton (line search) methods,

and iterative methods with different requirements on the matrix H, e.g., being positive-definite.
Regularization is needed for handling ill-posed or ill-conditioned problems, e.g., due to existence
of multiple solutions to the contact problem, contact constraint degeneracy, and occurrence of large
mass ratios. Regularization terms are entered as positive diagonal perturbations in H and stabiliza-
tion terms on the form ˛gC ˇGnv are introduced in the b vector which are required for restoring
constraint violations if they should occur. These terms bring solvability and numerical stability and
corresponds to a solving a slightly different physical system than the original one. The systems
converge to (12)-(14) weakly in the limit of zero regularization. See, e.g., Ref. [18].

2.4. Semi-smooth discrete element method

In this section, we present a semi-smooth DEM that shares the features of large time step integration
with NDEM and the viscoelastic interaction forces of SDEM. Elastic contact models for NDEM by
regularization corresponding to linear springs were recently presented and examined in Ref. [19]. In
the present paper, we describe a regularization that maps to nonlinear springs according to the Hertz
contact law. This is realized by considering the NDEM as the stiff limit of SDEM with particular
energy potentials and dissipation functions, for generating the constraint regularization and stabi-
lization terms to the MLCP form in Section 2.3.2. The theoretical basis is thoroughly described in
Ref. [18] and has previously been applied to large time step simulation of large-scale granular flows
for geometric design of pelletizing drum [20].

First, observe that the normal contact force in Equation (11) follows from f n D�rxUn �rvRn

with the following potential energy function and Rayleigh dissipation functions

Un D
1

2"n
NgT Ng (26)

Rn D
1

2�n

�
NGnv

�T � NGnv
�

(27)

with Ng.˛/ D g
eH
.˛/

, NG.˛/
n D eHg

eH�1
.˛/

G.˛/
n , "�1n D kn=eH, ��1n D knc=eH and exponent eH D 5=4

for the nonlinear Hertz model with stiffness and damping parametrized as in Section 2.2. Note the
relation PNg D NGv. Second, instead of treating contact forces explicitly as gradients of potentials,
these are introduced as constraint forces NGT� and � are introduced as auxiliary variables obeying
"�C NgC 
 NGvD 0, with regularization and damping parameters " and 
 . Third, employing a time-
discrete formulation of the variational principle leads to the following first order fixed time step
integration method, coined SPOOK [18],

NHzC NbD wC �w�
06 z� l? wC > 0
06 u� z? w� > 0

(28)
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where

NHD

2
4 M � NGT

n � NGT
t

NGn † 0
NGt 0 �

3
5 , zD

2
4 viC1
�n,iC1

�t,iC1

3
5 , NbD

2
4 �Mvs
4
h
‡ Ng�‡ NGnvi

0

3
5 (29)

and regularization and stabilization coefficients

† D
4

h2
"n

1C 4 �n
h

1Nc�Nc , � D
�t

h
12Nc�2Nc , ‡ D

1

1C 4 �n
h

1Nc�Nc (30)

The parameter 
n controls the dissipation rate in the normal force. We use 
n Dmax
�
nsh, ��1n

�
with

ns D 2 and the clamping is enforced to guarantee numerical stability at large time step integration.
Similarly, the Coulomb friction is modeled as the stiff limit of a Rayleigh dissipation function for
the relative velocity in the contact tangent plane with and dissipation rate �t and limits on the tan-
gential Lagrange multiplier and NGt D Gt. An algorithm for the semi-smooth DEM with projected
Gauss-Seidel is presented in Appendix B.

Both the SDEM and NDEM can be recovered from the semi-smooth DEM. NDEM follows
directly from taking the stiff limit ", � ! 0. This implies � ,†,‡ ! 0, and Equations (28)–(29)
reduces exactly to Equations (19)–(20). SDEM, on the other hand, is recovered in the limit of time
step h! 0 with ", � , 
 fix. Observe that in this limit

†!
"n


nh
1Nc�Nc , ‡ !

h

4
n
1Nc�Nc ,

4

h
‡ Ng�‡ NGnvi ! 
�1n Ng (31)

Assuming smoothness in v, it is possible to eliminate �n and �t in the MLCP in Equation (28)
whereby it simplifies to the stepping rule MviC1 DMvs,iC1C NGT

n �nC NGT
t �t where

NG.˛/T
n �.˛/n =h� NG.˛/T

n

�

h

"
NG.˛/

n viC1C

h

"

Ng.˛/

�
=h� kn

�
g
3=2

.˛/
C cg

1=2

.˛/
Pg.˛/

�
En
.˛/
� f .˛/n (32)

NG.˛/T
t �

.˛/
t =h� proj

�jf.˛/n j

�
NG.˛/T

t

�
��1 NG.˛/

t vi
��
� proj

�jf.˛/n j

�
ktEu

.˛/
t,i

�
� f

.˛/
t (33)

in which we have approximated NGnviC1 � PNg.ti / and NGT
t
NGtviC1 � �Eut,i and used that kn D

eH"
�1, kt D ��1t , c D 
eH and eH D 5=4. Hence, the multipliers can be removed by substitution,

and we obtain an identical time stepping scheme as for SDEM when applying a semi-implicit Euler
discretization. We thus conclude that the results of semi-smooth DEM and SDEM coincide in the
limit of small time steps.

The elastic properties are present also for large time steps. Specifically, in the quasi-static
regime, the regularization corresponds directly to the Hertz model of elastic contacts. Assume
NGnviC1 D NGnvi � 0 and Equations (28)–(29) imply that †�n D .4=h/‡ Ng and the constraint

force, Ef
.˛/

n D
NG.˛/T

n[b] .1, 1 W 3/�.˛/n =h on body b from contact ˛ with body a become

Ef
.˛/

n D†
�1
�
4=h2

�
‡ NG˛T

n[b].1, 1 W 3/ Ng.˛/ D kng
3=2

.˛/
En
.˛/ (34)

which equals the smooth normal force in Equation (11) in the case of zero relative contact velocity.

3. COMPUTATIONAL PROPERTIES

In this section, we make a theoretical comparison between of the computational properties of SDEM
and NDEM. The semi-smooth DEM has identical computational complexity as the nonsmooth and
is therefore not covered separately. In particular, we consider how the computational effort scale
with the number of particles and dependency on the dynamical state and geometric shape of the
systems. The computational time, 
DEM, for simulating a process lasting for 
real units of real time is


DEM D
�DEM

hDEM


real (35)
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where �DEM is the required computational time for advancing the simulation one time step of size
hDEM. The computational effort is 
DEM=
real. The main steps of the simulation loop are contact
detection, solve, and simulation management and I/O. The contact detection step involves a broad
phase, where contact candidates are found, and a narrow phase, where contact positions and
overlap magnitudes are computed. The solve phase refer to the numeric integration of the equations
of motion.

3.1. Smooth discrete element method

For SDEM with explicit or semi-implicit time integration, the solve stage consists of simple
evaluation and summation of forces and update of velocities and positions involving only a few
multiplication and additions per particle. The computational bottleneck lies in the contact detection
stage. A typical SDEM simulation spends roughly 80% of the computational time on contact
detection [21] and, assuming no parallelization, scales at best linearly with Np and as worst as
Np log.Np/ if temporal coherence cannot be exploited. For numerical stability, the time step size is
limited by hSDEM .

p
m=k and the computational time is thus


SDEM D

r
k

m
KSDEMNp
real (36)

where we have split �SDEM D KSDEMNp, and KSDEM is the average computational time per time
step and particle. The factor KSDEM depends on hardware, software, geometric shape of particles,
and collision detection algorithm and its implementation. With a conventional desktop computer
(specified in Appendix C) running the SDEM software library LIGGGTHS [22] with spherical
particles, it was measured [23] KSDEM � 10

�6.

3.2. Nonsmooth discrete element method

For nonsmooth DEM, the solve stage dominates the computational time, e.g., 88% of the time was
reported in [24]. Typically, the computational time for one time step is much larger than for SDEM.
The benefit instead comes from integration with fewer and larger time steps.

The time step limit in NDEM is set by the characteristic relative velocities or gravity acceleration.
In one integration time step, these should not cause an impact overlap larger than some fraction �
of the particle diameter, i.e., hNDEM 6 �d=vn and hNDEM 6

p
2�d=g. This introduce � as an error

tolerance. The computational time become


NDEM D
�NDEM

min
�
� d
vn

,
q
2�d
g

�
real (37)

Contrary to SDEM, the computational time per time step �NDEM is in general not a linear
function of the number of particles (or number of contacts). The equations of motions for NDEM
are DVI whose computational properties are largely open questions [25], lacking proof of existence
and uniqueness of solutions as well as of general proof of convergence and numerical stability of
most solution algorithms. Both theoretical and empirical analyses are complicated by the fact that
the solutions are in general discontinuous with respect to change in initial data. The computational
scaling depends ultimately on the choice of numerical solver as well as of the dynamical and
geometric state of the system.

A theoretical upper limit of the computational efficiency can be found by considering the linear
system H´C b D 0 of the MLCP in Equation (19) and ignoring the complementarity conditions.
The matrix size is of the order 3Nc � 3Nc. The number of contacts is related to the number of par-
ticles as Nc � .nc=2/Np, assuming each particle on average has nc neighbors, which has a number
ranging between 2, 3� 8, and 6� 12 depending on the system dimensionality ranging between 1D
(chain), 2D (plane), and 3D (bulk) and on the packing density. The matrix H is block-sparse and
the linear system can in many cases be solved efficiently using direct or iterative methods exploiting
the block-sparseness. The best theoretical scaling for direct solvers is provided by algorithms using
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nested dissection for reordering and factorization (the computationally most expensive part). This

has time complexity of �NDEM�O
�
N
.1Cnd/=2
c

�
, for nd D 1 � 3 dimensionality. For the case of a

1D column of particles (chain), the computational time scales linearly with number of contacts and
particles,�NDEM �O .Nc/, but for higher dimensionality, the scaling is in general superlinear. Using
the AgX Multiphysics Toolkit [26], we measured �NDEM D KNDEMNc with KNDEM D 10

�5 s for the
1D column using a block-sparse LU solver. When machine precision is not required, an iterative
solver may give the solution to a given tolerance faster. Multigrid methods and conjugate gradient
[27, 28] method may scale almost linearly with Nc, but many issues remain in transferring these
results to irregular contact networks with complementarity conditions.

3.2.1. Efficiency of the Gauss-Seidel solver. The Gauss-Seidel algorithm (GS) is commonly con-
sidered a poor choice for solving linear systems. Still, it is of common use for integrating NDEM
simulations. Although the asymptotic convergence is slow‡ the initial convergence may be fast, and
the algorithm allows changes in the active set without restarting, as the conjugate gradient does.
The projected block Gauss-Seidel algorithm solves the local contact problem well but approaches
to the global solution in a diffusive manner with increasing number of iterations. The residual from
truncating at finite number of iterations result in numeric elasticity [29] with an effective sound
velocity vGS D

p
Nitd=hNDEM. Consequently, for a system with side length l and particle size d , the

required number of iterations for establishing the contact force network required for maintaining
perfect rigidity scales as Nit / .l=d/

2 �N
2=nd
c . Each iteration step involves solving each of the Nc

two-body contact problem. The resulting computational time complexity thus become

�GS
NDEM DK

GS
NDEMNitNc (38)

where KGS
NDEM is the average computational time for solving each two-body problem. Conse-

quently, projected Gauss-Seidel scales �NDEM � O
�
N
1C2=nd
c

�
. In our implementation, described

in Appendix B, we measure the scaling coefficient to KGS
NDEM D 10

�6 s with a conventional desktop
computer (specified in Appendix C).

3.3. Comparing smooth and nonsmooth discrete element methods

To compare the difference in computational efficiency between the SDEM and NDEM, we consider
the ratio of their computational time from Equations (36) and (37)


NDEM


SDEM

D

s
max

�
��2mv2n , 2��1mgd

�
kd2

�NDEM

KSDEMNp
(39)

When this ratio is smaller than one, the NDEM is more efficient and vice versa. The square root
term is the effect of different time step size hSDEM and hNDEM. The relative efficiency of the NDEM
increase with particle size and stiffness and decrease with increasing relative velocity, and mass.
The second term on the right hand side is the effect of different computational scaling of the solvers
for SDEM and NDEM.

Example. Consider particles of size d D 0.01 m, mass density 2500 kg/m, Young’s modulus
E D 10 GPa, and average normal contact velocity vn . 0.1m=s. This means m � 10�3 kg and
k � 109N/m3=2. The resulting smooth and nonsmooth time step sizes become hSDEM .

p
m=k D

10�6s and hNDEM D 10�3 s for impact overlap tolerance set to � D 0.01. The time step ratio (the
square root in Equation (39)) becomes hNDEM=hSDEM � 10

�3. In the case of 1D dimensionality, e.g.,
a column of particles, and employing a direct solver for the DDEM with KNDEM D 10

�5 (measured
from AgX) and a SDEM implementation with KSDEM � 10�6 (measured from LIGGGHTS), we
obtain the time ratio �NDEM

�SDEM
� 10�2. Hence, for the column configuration, the NDEM is 100 times

‡For the Gauss-Seidel algorithm, the residual decays asymptotically as the logarithm of the spectral radius of the iteration
matrix.
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faster than the SDEM irrespective of the number of particles in the column. If we instead consider
an iterative Gauss-Seidel solver, with scaling KGS

NDEM D 10
�6 for the NDEM, we get the time ratio

�NDEM
�SDEM

� 10�3Nit, which depend on the required number of iterations and thus indirectly on the num-

ber of particles and error tolerance. For small systems and large error tolerance, such that Nit < 10
3

is sufficient, the NDEM will be the faster simulation method, while the SDEM will be faster for tall
columns and small error tolerance.

4. SIMULATIONS

The computational properties presented in Section 3 need to be verified and complemented with
empirical data from numerical simulations with NDEM. It is beyond the scope of this paper to make
a thorough analysis for a range of solvers and the study is limited to projected Gauss-Seidel solver.
In particular, we need to determine how the required number of iterations Nit for an error tolerance
� depend on the geometric shape and dynamic state of the system. For this purpose, we perform
simulations for a number of different test systems.

We use the semi-smooth DEM as outlined in Section 2.4 and implemented according to the algo-
rithm in Appendix B. The reason for this choice is that the computational complexity is identical
to NDEM and that it supports nonsmooth impact and frictional stick slip phenomena as well as
elastic contact properties, in accord with Hertz law. The resulting forces and flows can therefore
be compared with SDEM at the same time as the result in terms of computational efficiency are
representative for NDEM.

4.1. Metrics

Specific metrics are chosen for analyzing the quality of different DEM for granular matter.
On a microscopic level, we consider individual contacts. For any quantity, say f , we denote the
mean value by

˝
�f
˛

and the corresponding standard deviation by f . In particular, we study the
normalized contact overlap �c, slide error �sl and slide direction error �dir. For a contact ˛ between
two bodies a and b with diameter d , these are defined

�.˛/c D g.˛/=d (40)

and if the contact is in slide mode �.˛/sl D

�ˇ̌̌
ˇ Ef .˛/t

ˇ̌̌
ˇ��

ˇ̌̌
ˇ Ef .˛/n

ˇ̌̌
ˇ
�
=�

ˇ̌̌
ˇ Ef .˛/n

ˇ̌̌
ˇ and �dir D .	dir � �/=� ,

where 	 .˛/dir D arccos

�
Eu
.˛/
t , Ef

.˛/

t

�
is the angle between the directions of sliding and friction force.

In the NDEM and semi-smooth DEM, the forces on particle a are Ef
.˛/

n D G.˛/T
n,[a] .W, 1 W 3/�

.˛/
n =h

and Ef
.˛/

t D G.˛/
t,[a].W, 1 W 3/

T�
.˛/
t =h. We use the velocity threshold uthr � 0.01

p
gd=2 to separate

between stick and slide modes
ˇ̌̌
Eu
.˛/
t

ˇ̌̌
> uthr. We also discard the slide errors for the weakest contacts

where
ˇ̌̌
Ef
˛

n

ˇ̌̌
6 fthr � 0.01 mg

The contact forces form force networks. These are weighted graphs with the particles as nodes
and contact forces as edges. We use the normal force magnitude for the edge weight. The topology
and force distributions of the networks are analyzed.

Macroscopic fields of distribution of mass, stresses, and strains are computed using coarse
graining (or homogenization) [30]. In particular, we compute the mass density field �.Ex/,

velocity vector field Ev.Ex/, strain rate tensor field P�.Ex/ with norm P� D
q

tr
�
P�T P�

�
, stress

tensor field � .Ex/, and pressure field p.Ex/ D 1
3

tr.� /. From these, we compute the inertial

number field I.Ex/ � P�.Ex/d=
p
p.Ex/=�.Ex/. The inertial number is a measure of whether a granular

system is in quasistatic resting regime .0 6 I � 1/, dense flow regime .I . 1/ or gaseous regime
.I & 1/.
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Figure 2. The test systems are cylindrical container and rotating drum.

4.2. Test systems

Two class of test systems are considered: cylindrical containers of different size with resting
granular material and rotating drums of different speed with dense material flow. These systems,
depicted in Figure 2, are chosen as they represent the different dynamic regimes for which both
SDEM and NDEM are applicable and because they are common both in the scientific literature and
in real world applications. We use spherical particles with diameter d D 0.01m, mass mD 10�3kg
corresponding to a mass density of 2500kg/m3 and Young’s modulus ED 5 �106 Pa. The equivalent
spring coefficient is kn D 0.5 � 106N/m3=2. We use time step hNDEM D 10�2s, which is 500 times
larger than what is required for SDEM hSDEM D 5 � 10

�5s. Gravity is set to gD 9.8m/s2. With these
parameters, the particles are practically rigid in the performed tests and any particle overlaps larger
than 0.01d will be due to errors and not due to material elasticity. The friction coefficient is set to
� D 0.7 and we use zero restitution coefficient e D 0 for both particle-particle contacts and for
particle-surface contacts. Simulations are run with fixed number of iterations ranging as Nit ranging
between 10 and 500.

4.2.1. Cylinder container. Simulation is performed with particles in cylindrical container with
diameter ˆ D 1, 3, 6, 9, and15d . The cylinders are filled with different number of particles Np

ranging between 5 and 100 in the ˆD 1d case, 100–30K in the ˆD 3�15d cases. The cylindrical
geometry is modeled by 20 rectangular faces. The states are initialized as follows. The particles are
placed in a regular cubic grid with slight perturbation. The particles are left to relax with gravity
acceleration g gradually increasing from 0.01 to 9.82m=s2 over 60 s, sufficient to reach a stationary
state. The simulation is then run for 5 s. Measurements of position, velocity, and contact data are
made. Post-analysis is performed to obtain the metrics in Section 4.1. For cylindrical containers, we
also compute the pressure on the walls as function of height for verification of the Janssen effect.
The wall pressure p.´/ as function of height ´ is computed as the average contact pressure on a
cylindrical strip of width �zD 5d of the container wall. This procedure is repeated for 440 combi-
nations of Np,Nit, and ˆ. We treat the case ˆD 1d somewhat special. The particles are initialized
in a perfect 1D column, and the contacts with walls are deactivated.

4.2.2. Rotating drum. For the rotating drum tests, the geometric shape is kept fixed with
drum diameter ˆ D 80d and length 8d . Simulations are run with drum rotation speeds
! D 0, 0.03, 0.06, 0.13, 0.3, 0.63, 2.5rad/s corresponding to dimensionless Froude number Fr D
0, 0.005, 0.013, 0.025, 0.13, 0.51, with the definition FrD !

p
ˆ=2g. The rotation is about the sym-

metry axis, which is orthogonal to the direction of gravity. Simulations are run with different number
of particlesNp ranging from 100 to 7.5K. To make the flow less dependent on the wall friction force,
the drum surface is given a structural shape that of a sawtooth with 64 teeth of height 1.2d , length
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4d , and tooth attack angle of 50 degrees. For each combination of !,Np and Nit, the state is ini-
tialized into a stationary flow by running a 2s simulation at Nit D 500. When changing Nit, this is
followed by a simulation lasting 1=3 of an evolution plus 3.5 s. Measurements are then made during
10 consecutive time steps.

5. RESULTS AND DISCUSSION

In this section, we present results of the simulation tests outlined in Section 4. From this, we deduce
a formula for the required number of iterations for projected Gauss-Seidel solver for NDEM (and
semi-smooth DEM) depending on a desired error tolerance and system geometric shape and dynam-
ics state. Supplementary data of mean penetrations, slide and friction direction, number of contacts,
force networks, stress fields and velocity fields depending on number of particles, and different
number of iterations are provided on the web page http://umit.cs.umu.se/granular/dem/.

5.1. Cylinder container

Sample force networks from the cylindrical container test with diameter ˆ D 9d is shown in Fig-
ure 3 for Nit D 10, 100, and 500 and Np D 7.5K. Two main observations can be made. First, too
few iterations cause artificial compression of the material. For Nit D 10, the column collapses to a
height less than 40 % of the Nit D 500 solution.

Second, with too few iterations, the strong force chains that are a characteristic feature of
granular materials do not appear. Instead, the force distributes as the hydrostatic pressure in
a fluid, i.e., increases linearly with depth from the top surface. When increasing the number
of iterations, strong force chain structures emerge, and with this, the pressure force saturate
and become independent of depth in the column. This is the well-known Janssen effect
of granular materials, which is due to an arching effect of the force chains whereby the container
walls carry part of the weight of the material [31]. The Janssen force profile along the center
axis for different Nit is shown in Figure 4 for the 9d container with 7.5K particles. The pressure
is normalized by the pressure p0 D 990 Pa at zero height with Nit D 500. It suffices with
Nit D 50 to capture the force saturation effect but at least Nit D 100 for the correct force level
of saturation.

The required number of iterations for keeping the mean penetration h�ci error below a given
threshold is estimated from simulations and denoted by N �

it . The result for the ˆ D 1d con-
tainer is shown in Figure 5 for different values of h�ci and for the cylinder size ˆ D 3, 6, 9, and
15d in Figure 6, for h�ci6 0.05 only. In the 1d case, the required number of iterations grow roughly
linearly with the number of particles, and we estimate the rate of convergence toN �1

it =N
�2
it D �2=�1.

In the ˆ D 3, 6, 9, and 15d cases in Figure 6, we observe a saturation effect in the required
number of iterations. Once the number of particles in the container reach above a certain
number, the required number of iterations stop to increase. We discuss this effect further in
Section 5.3. For the 3d container with Np > 1K, we failed to create stable initial states using
the described procedure.

5.2. Rotating drum

Also for the rotating drum, the material behaves more as a compressive fluid than a granular material
with too few iterations. Sample contact force networks are displayed in Figure 7 for Np D 7.5K and
! D 0.63 rad/s. The velocity field in the drum cross-section is presented in Figure 8 and the flow
profile vx0.´0/ in Figure 9 in the coordinates indicated in Figure 8. With too few iteration, Nit 6 25,
the solutions show significant artificial compression (> 10% decrease in height), and the velocity
profile deviates significantly from the ones from high iterations. For notational clarity, we denote
the radius by R=.ˆ=2/. For high iterations, the flow has the expected two phases: a plug flow zone
[32], which is a thick layer of material co-rotating rigidly with the drum wall, and a shear flow zone.
The thickness of the plug flow layer is around 0.3 for Nit > 150 and then decrease continuously
with decreasing number of iterations until all material is in shear flow. The variations in the velocity
profile at high iterations, Nit > 50, is presumably because the flow is not entirely stationary but
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has a pulsation due to series of avalanches on the surface. For reference, the flow profile for rigid
co-rotation with the drum is included as well as a solution computed with time step hD 10�4 s and
Nit D 500.

Figure 3. Sample force networks in 9d columns for Nit D 10, 100, and 500.
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Figure 4. The Janssen force profile in a 9d column with 7.5K particles and different number of iterations.

Figure 5. The required number of iterations depending on error and number of particles in a 1d column.

Figure 6. The required number of iterations for h�ci6 0.05 in the 3, 6, 9, and, 15d containers.
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Figure 7. Force network in drum rotating with ! D 0.63 rad/s, Np D 7.5K for Nit D 10 (left) and
500 (right).

Figure 8. The velocity field in the drum rotating with ! D 0.63 rad/s for Nit D 10 (left) and 500 (right).

Figure 9. Velocity flow profile in the radial coordinate ´0 in a drum rotating with ! D 0.63 rad/s and
Np D 7.5K particles for different Nit. Rigid rotation and hD 10�4 s reference solution are included.

The required number of iterations N 0.05
it for keeping the mean penetration error below the

threshold h�ci 6 0.05 is shown in Figure 10 for drum speeds ! D 0, 0.13, 0.34, and0.63 rad/s
and different number of particles. The required number of iterations scale linearly with the num-
ber of particles. Increasing drum velocity increases the required number of iterations. The fast drum

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 10. Number of iterations for drum with rotation speed ! and different number of particles.

! D 2.5 rad/s could not be made to converge below the error threshold h�ci6 0.05. The total number
of contacts is nearly independent of drum rotation speed but are redistributed from continuous con-
tacts to impacting contacts as drum rotation speed increases. For the case of 7.5K particles and the
given time-step hNDEM D 0.01, the fraction of impacting contacts is almost 50% for ! D 2.5 rad/s
and 10% for ! D 0.13rad/s. For ! D 2.5rad/s, the impact overlaps are too large to be reduced by
any number of iterations.

5.3. Computational scaling as function of geometry and state

As is clear from the results in Sections 5.1 and 5.2, the required number of GS iterations
does not depend on the number of particles or contacts alone but on the geometric shape and
size and of the dynamic state. We conjecture that the shape and size can be characterized by the
system length l in the direction of gravity (or more dominant external force) and on the width
w of the cross section area. We represent these in units of particle size d . Furthermore, we
use the inertial number I for characterizing the dynamic state of the system ranging from static
to rapid flow. The cylindrical container results in Figure 6 suggest that the number of
Gauss-Seidel iterations N �

it .l ,w, I / scale linearly with l until it saturates at a certain length to
width ratio l=w to a value proportional to width w. Supposedly, also this saturation is due to
the emergence of strong force chains forming arching structure over between the container
walls and thereby reducing the distance over which contact force need to be communicated by
the iterative solver. In the Janssen effect, the wall pressure saturates to a value corresponding
to supporting an apparent mass according (p. 270 [31]) to the formula mapp D
msat .1� exp Œ�mfill=msat�/, with actual fill mass mfill D �lA, cross-section area A D �w2

and saturation mass msat D �Aw=2�wK with particle-wall friction coefficient �w and Janssen
coefficient 0 < K < 1. We note that mapp D msat .1� exp Œ�2�wKl=w�/ and assume functional
dependency on l=w holds for the saturation of N �

it .l ,w, I / unless for systems too narrow, w . 5,
for arching to occur. We further assume that the convergence rate, N �1

it =N
�2
it D �2=�1, as found for

1d container is a general result. The rotating drum results in Figure 10 suggest linear dependency
on rate of change. Based on these observations and assumptions, we make the following ansatz for
a general system

N �
it .l ,w, I /D

c0.1C c1I /

�

´
w
�
1� exp

h
� c2l
w

i�
, if w & 5

c2l , if w < 5
(41)
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Figure 11. Number of iterations as function of system height l (left) and of shape factor l=w for containers
only (right). The fitted formula is indicated as a solid line.

with coefficients c0, c1, and c2 to be determined. Observe that in the limit where w 	 l this
approximates to N h�iit .l ,w, I / � c0.1Cc1I/

�
c2l . In the container tests, we simply identify l by the

material height andw by the cylinder diameter, i.e.,w Dˆ=d . In the drum tests we estimate l by the
averaged thickness of the material in radial direction and width by w by the drum diameter. Using
nonlinear least square regression for fitting Equation (41) with the results in Figures 6 and 10, we
find the parameter values c0 D 0.3.0.005/, c1 D 2.0.1.1/ and c2 D 0.44.0.02/ with standard error
in the parenthesis. The residual of the fitting is r2 D 1.25. The matching of the function compared
with the test systems is displayed in Figure 11.

With knowledge of N �
it .l ,w, I /, it is now possible to compare the computational efficiency

of SDEM and NDEM without running any simulations but instead evaluating Equations (36),
(37), (38), (39), and (41) with KGS

NDEM D 10�6 from our implementation and KSDEM D 10�6

measured from running LIGGGHTS on the same computer (Appendix C). Observe that these
scale factors are implementation and hardware dependent. To illustrate the computational dif-
ferences, we calculate the computational effort for 33 different cases. The results are found in
Table I. For convenience, a calculator for the formula has been made available on web: http:
//umit.cs.umu.se/granular/dem/. In Table I, we observe the SDEM to be considerably faster in the
examples of rows 13, 15, 18, 25, 27, 29, and 30, which are characterized by softer material, higher
inertial number, and tall systems. The NDEM is considerably faster in the examples of rows 1, 4–10,
and 20–24, which are characterized by stiffer material, low inertial number, and shallow systems.
Larger error tolerance make the NDEM more efficient. Real-time performance, i.e., when the com-
putational effort 
=
real is smaller or equal than one, can be achieved with NDEM in the examples of
rows 5, 14, 20, 26, 31, and 31 and for SDEM in examples 26 and 31 and with systems up to roughly
1000 contacting rigid bodies.

For the highest material stiffness, ED 10 GPa, the regularization for semi-smooth DEM become
too small for the system to remain well-posed and numerical instability appears as small vibra-
tions. We compensate the high E by reducing the time step to make the regularization † factor
in Equation (28) remain large enough. Specifically, for E D 10 GPa, we clamp the time step to
hNDEM D 0.004 s for d D 0.01 m and to hNDEM D 0.001 s for d D 0.001 m. The relative velocity
was estimated from the inertial number as vn � 0.2I

p
p=�.

5.4. Effect of contact model and solver settings

The simulation results in Section 5 are based on the semi-smooth DEM introduced in Section 2.4
integrate using the projected Gauss-Seidel solver implemented following the algorithm described
in Appendix B. The elastic Hertz contact model was verified in tests with 1D columns of parti-
cles deforming elastically under its weight with Young’s modulus ranging from 105 to 1013 Pa and
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with Nit D 500. In a column of 20 particles, the overlap g agrees with the Hertz contact law in
Equation (11) with mean error of less than 0.001 of a particle diameter. We also implemented and
tested the NDEM in Section 2.3 with regularization and constraint stabilization following to the
SPOOK scheme [18]. No significant difference in convergence rate or stability was found in the
comparison between this and the semi-smooth DEM.

We also investigated the effect of applying solver warmstarting on the convergence rate, i.e., set-
ting the initial guess on the Lagrange multipliers equal to, or some fraction of, the value from the
previous time step. This accelerated the convergence of 1D columns but had no significant effect on
other systems. Also the effect of using sequential or random order of iterations was found to be of
no significance.

6. CONCLUSIONS

The SDEM and NDEM can both be used for computing the motion and interaction forces in
granular matter. The NDEM formulation can be modified with constraints nonlinear in the gap
function and mapped to the Hertz contact law with regularization and constraint stabilization
terms from conventional to the viscoelastic parameters, e.g., the Young’s modulus and Poisson
ratio. This model, presented in Section 2.4 and referred to as the semi-smooth DEM, thus
combines the potential speed-up of nonsmooth DEM with the ability of SDEM to accurately
model viscoelastic contacts. Both the SDEM and NDEM follow as special cases in certain limits.
Hence, the main difference between SDEM and NDEM lies in the required computational time for
a given accuracy.

The time step size for NDEM (and semi-smooth DEM) is several order in magnitude larger than
SDEM but each integration step is more computationally intense. It is difficult to judge a priori
which of the methods is the most beneficial one for a given system and desired accuracy without
actually testing the alternatives.

To remedy this, we provide formulas for estimating the required computational time. For NDEM
with projected Gauss-Seidel solver, it is given by Equations (37) and (41). The formula takes as input
system size and shape .l and w/, dynamic state .I / that may range from static to rapid flow, mate-
rial properties .�,E, �, d/, and error tolerance .�/ as arguments as well as the scale factorsKGSNDEM
and KSDEM that depend on implementation and hardware. The relative computational efficiency of
SDEM and NDEM becomes


NDEM


SDEM

D

vuutmax
�
mv2n
�2

, 2mgd
�

�
kd2

KGS
NDEM

KSDEM

Nc

Np

c0.1C c1I /

�
�

´
w
�
1� e�

c2l

w

�
w & 5

c2l w < 5
(42)

The number of particles is estimated Np � l � wx � wy , w D max.wx ,wy/ and the number of
contacts Nc D npNp, with np . 10 is the average number of contact neighbors. The general
trends are as follows. SDEM is computationally more efficient for wide and tall systems, rapid
flows and soft materials. The NDEM with a projected Gauss-Seidel solver is more beneficial
for shallow systems, static or slow flow, stiff materials, and with increasing error tolerance.
Examples are provided in Table I. Observe that also in the large-scale limit, Np ! 1, it is not
evident which method is the fastest, as opposed to the formula given in Ref. [1]. The NDEM may
be faster for large-scale systems if they are shallow enough. The saturation effect, in Figure 6, on
iterations at l=w 	 c2 due to arching over the container walls make the projected Gauss-Seidel
solver scale much better than previously thought and can make the NDEM competitive also for
tall systems.

It should be emphasized that the results are limited to the use of projected Gauss-Seidel solver for
the NDEM. This is the solver most often reported to be used for NDEM. The scaling of the square
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root bracket in Equation (42) is due to the time step size and is a general feature for the NDEM
making computational efficiency increase with material stiffness and approaching the quasti-static
limit. It is left for future investigations to provide empirical data for computational scaling and
error analysis for other solvers that have more promising scalability (Section 3). Also, the effect of
parallelization of SDEM [33] and NDEM [34] should be included in future work.

A third interesting topic for future research is the possibility of extending the semi-smooth DEM
to an adaptive hybrid DEM, where different domains of the system are solved with smooth and
nonsmooth methods and adjusted adaptively based on which method is most computational effi-
cient based on current geometric and dynamic state. In the semi-smooth setting, it is trivial to
replace a contact constraint by the corresponding nonlinear spring force, as in Equation (34). The
computational effort becomes that of the nonsmooth DEM with Nit D 1.

APPENDIX A: IMPACT STAGE MIXED LINEAR COMPLEMENTARITY PROBLEM

In large-scale simulations, it becomes too inefficient to locate the exact time of each impact and
solve for the entire contact network. Instead, fixed time step is used and impacts are detected post
facto and solved simultaneously in a separate impact stage while preserving also the previously
existing contact constraints.

In the impact stage, we split the contact set into two. One set of impacting contacts Ni, arising
during the last time step, and one set of continuous contacts Nc. The contact Jacobians are split
correspondingly from Gn into Gin and Gcn such that Ginv� < 0.

Impacts are instantaneous impulse transfers where the velocity changes discontinuously from v�

to vC as

MvC DMv�CGT
in�inCGT

cn�cn (A.1)

due to the impact impulse GT
in�in and response GT

cn�cn to preserve the Signorin Coulomb law
in the continuous contact network. The impacts impulses should satisfy the Newton impact law,
GinvC D �eGinv�, with restitution coefficient e between 0 and 1 that corresponds to completely
inelastic and perfectly elastic collision, respectively. The propagation of the impulse through the net-
work of continuous contacts should not create constraint violations, i.e., should satisfy GcnvC D 0
and act only repulsive, �in > 0. Adding tangential friction impulses satisfying the Coulomb law is
straight forward as is the extension to semi-smooth DEM with regularization. Collecting the impulse
equation (A.1) and the Newton impact law plus constraint preservation, we see that they constitute
an MLCP of the same form as in Equation (19) with

HD

2
66664

M � NGT
in � NGT

cn � NGT
it � NGT
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NGin †i 0 0 0
NGcn 0 †c 0 0
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2
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�in

�cn

�it

�ct

3
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�Mv�

eGinv�

0

0

0

3
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APPENDIX B: PROJECTED GAUSS-SEIDEL SOLVER

Consider the system of equations for the nonsmooth DEM

�
M �GT

G †

	 �
v
�

	
D

�
p
q

	
(B.1)
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with friction cone conditions � 2 C .��n/

C .��n/�
®
�D



�n,�t1 ,�t1

�
W �n > 0, j�tj6 � j�nj

¯
Let the submatrices M and† be block diagonal and G block sparse. Split the linear system on Schur
complement form such that

�
GM�1GTC†

�
�D q�GM�1p (B.2)

vDM�1pCM�1GT� (B.3)

Split the Schur matrix SDGM�1GTC† as SD LCDCLT, where D is block diagonal and L is
strictly lower triangular. On block form Equation (B.6), with block indices ˛ and ˇ, Equation (B.2)
can be solved iteratively k D 0, 1, 2, : : : by

D.˛˛/�
.˛/

kC1
C
X
ˇ<˛

L.˛ˇ/�
.ˇ/

kC1
C
X
ˇ>˛

L.˛ˇ/�
.ˇ/

k
D q.˛/ �G.˛/M

�1p.˛/ (B.4)

with D.˛˛/ D
P
a G.˛/

Œa�
M�1
Œaa�

G.˛/T
Œa�
C†.˛˛/. Adding and subtracting D.˛˛/�

.˛/

k
to this we obtain

the following update formula for �.˛/
kC1

D.˛˛/�
.˛/

kC1
C r

.˛/

k
�D.˛˛/�

.˛/

k
D 0 (B.5)

where the solution must satisfy the complementarity condition �.˛/
kC1

2 C
�
��

.˛/

n,kC1

�
and the

residual vector is

r.˛/
k
D S.˛˛/�

.˛/

k
CG.˛/M

�1p.˛/ � q.˛/ DG.˛/v
0 � q.˛/ (B.6)

where v0 � M�1p CM�1GT
.˛/
�k . In the projected Gauss-Seidel we solve first the normal com-

ponent. Then, if �.˛/
n,kC1 > 0, we solve for the tangential components and project it onto the cone

surface if it was outside

�
.˛/

t,kC1 proj
��
.˛/

n,kC1

�
�
.˛/

t,kC1

�
Dmin

0
@��.˛/n,kC1ˇ̌̌
�
.˛/

t,kC1

ˇ̌̌ , 1
1
A ��.˛/

t,kC1 (B.7)

The algorithm is valid also for semi-smooth DEM by substituting the nonlinear normal con-

straints and Jacobians. For the projection onto the friction cone, replace ��.˛/
n,kC1=

ˇ̌̌
�
.˛/

t,kC1

ˇ̌̌
!

�

ˇ̌̌
ˇ Ef .˛/n,kC1

ˇ̌̌
ˇ =
ˇ̌̌
ˇ Ef .˛/t,kC1

ˇ̌̌
ˇ. with Ef

.˛/

n D
NG.˛/

n[a].W, 1 W 3/
T�

.˛/
n =h and Ef

.˛/

t DG.˛/
t[a] .W, 1 W 3/

T�
.˛/
t =h.

The algorithm for the projected Gauss-Seidel solver for the semi-smooth DEM then is:
Pseudocode for the algorithm is available at http://umit.cs.umu.se/granular/dem/.

APPENDIX C: COMPUTER SPECIFICATION

The simulations where performed with a desktop computer with Intel(R) Core(TM) Xeon X5690,
3.46 GHz, 48 GB RAM on a Linux 64 bit system.
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Projected GS MLCP solver
Input: State .xi , vi /, smooth force fs, contacts Nc

Constants: Particle properties .m, d/
Output: New state .xiC1, viC1,�iC1/

1. Initialization
.x, v,�/D .xi , vi , 0/
2. Contact constraint data
For every contact ˛ 2Nc compute:
g.˛/, G.˛/n , G.˛/t as in Equation (21), (22)-(25)
Ng.˛/ D g

eH
.˛/

, NG.˛/n D eHg
eH�1
.˛/

G.˛/n
NGt DGt

� ,†,‡ by Equation (30)
D�1n , D�1t1 and D�1t2
3. Solve impacts
for k D Œ0 WNit� or until error small:
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4. Pre-solve

qn D�.4=h/‡ NgC‡ NGnv
pDMvC hfs

v0 DM�1p
5. Continous contacts

for k D Œ0 WNit� or until error small:
for all .˛/ 2Nc solve normal then tangent:
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6. Update position and orientation
viC1 D v0

xiC1 D xi C hviC1
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Abstract

We consider the application of a nonsmooth discrete element method to ge-
ometric design optimization of a balling drum outlet used in production of
iron ore balls. The geometric design optimization problem is based on the
need for homogeneous flow of balls from the balling drum onto a wide belt
conveyor feeding a roller screen (sieve). An outlet with two design variables
is investigated and the optimal shape for the given system and production
flow is found by exploring the design space with 2000 simulations.

Keywords: Nonsmooth discrete element method, design optimization,
mineral processing, balling drum.

1. Introduction

There is big potential in optimizing particulate flow in mineral and pro-
cessing technology. Determining the optimal design and control parameters
for the systems running on-line in plants is typically too time-consuming,
impractical and economically infeasible. This calls for time very efficient
simulations that allows exploration of the large design space for the opti-
mization variables.

Simulation based design optimization of systems involving particulate
flow is uncommon. Supposedly this is due to that simulations of such sys-
tems are associated with long computing times which prohibits systematic
approach including exploring large design space. With increasing comput-
ing power and advances in the modeling and simulation of granular matter
design optimization of complex systems is becoming feasible.

Preprint submitted to Powder Technology November 25, 2013



One common method for simulating particulate flow is the discrete ele-

ment method (DEM) [1];[7]. It can be used for simulating granular matter
in the gaseous, liquid as well as solid regime whereas many of the alternative
methods is best suited for a single regime. In the present paper we use a nons-
mooth DEM (nDEM) [8] approach, also referred to as the nonsmooth contact

dynamics method [6];[3]. The particular variant of nonsmooth DEM used in
the present paper is described in more detail in an accompanying paper [10].
The nonsmooth approach allows for time integration using time-steps much
larger than the characteristic elastic response time and considerable speed-up
can be achieved as compared to standard, or smooth, DEM. An alternative
to DEM would be multiphase computational fluid dynamics [12], e.g., using
frictional-kinetic stresses model [11, 9]. However, the width of the gaps in
the outlet range down to one particle diameter. At this length scale the
continuum models of granular material do not apply.

The current paper considers simulation based geometric design optimiza-
tion of a balling drum outlet. The purpose is to demonstrate the feasibility
of nDEM to this problem and provide a systematic methodology for the
geometric design optimization for systems involving particulate flow.

Balling drums are used in agglomeration of powdered mineral ore and
binding agency into spherical green balls [2]. The balling process precedes
the induration process where the green balls are hardened into pellets by
heating them in a sinter machine. For the sake of quality of the pellets,
the ideal goal for the balling process is to produce a nearly steady flow of

spherically symmetric, mono-sized homogeneous green balls from the balling
process. The capacity of the entire pelletizing plant is limited to the maxi-
mum flow rate from the balling process that secures high quality pellets. The
sieving is maximally efficient when the balls flows over the roller screen in
even layer covering the entire screen. This requires that the outlet produce
a homogeneous bed of balls. A poor outlet design produces in an inhomo-
geneous pellet bed and thus less efficient sieving. A homogeneous bed of
pellets reaching the end of the horizontal belt conveyor is therefore our basis
for formulating the objective function for the design optimization.

We consider a particular balling plant design that is used at LKAB [5]
iron ore pelletizing plant MK3 in Malmberget, Sweden. The balling circuits,
depicted in Fig. 1 and more schematically in Fig. 2, has the following compo-
nents: an inclined rotating cylindrical drum with an outlet in the lower end,
a wide horizontal belt conveyor where the material lands from the outlet, a
roller screen where the material is sieved onto conveyors transporting balls of
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correct size (about 10 mm in diameter) further to the sinter machine. Under-
sized and over-sized material is conveyed from the sieve, over-sized balls are
crushed, and fed back into the higher end of the balling drum together with
powdered ore and binding agency. This full scale industrial balling circuit
has drum diameter about 3.6 m and circulate material in the range 200-300
tons/hour. A laboratory balling circuit in scale of order 1:4 is under construc-
tion in the nearby research facility Pelletizing Research Centre (PRC). The
design optimization in this paper is for the laboratory balling drum outlet.

2. Model of the balling plant

We consider design optimization of a laboratory balling circuit in scale
1:4 scale compared to the one in production. Many parameters of the lab
system can be changed. We choose to fix the following geometric parameters:
drum diameter d ≈ 0.75 m, drum length L ≈ 2.5 m, outlet length l ≈ 0.75
m, drum inclination θ ≈ 7.5 degrees, conveyor width w ≈ 1.0 m and the
rotation speed of the drum is ω ≈ 2.5 rad/s. The conveyor velocity is set to
v = 0.25 m/s unless otherwise stated. See, Fig. 2, for a simple illustration
of the design and notations. The positions of the outlet projected onto the
conveyor belt are indicated by the points y1 = 0.15 m and y2 = 0.9 m.

The current study is restricted to one particular geometric design of the
outlet, illustrated in Fig. 3. It has three gaps with bisector inclination angle
η = 15◦. The gap width increases with angle α. The inner base width of the
gap at the interface to the drum is denoted by β. These α and β are our
design variables.

The drum, outlet, belt conveyor and roller screen are considered as rigid
kinematic objects. The drum and outlet are represented by a mesh of reso-
lution 0.01 m. The drum and outlet is also given a geometric ’texture’ con-
sisting of Gaussian shaped bumps randomly distributed with random height
in the range [0.002, 0.008] and random width in the range [0.005, 0.02]. The
surface density of irregularities is set to 700 dimples per m2 with random
height in the range. The texture has been added to model the presence of
agglomerated fine material on the inside of the drum and outlet which causes
higher lifting of the balls. The contact force with the rotating drum surface
drive the material into a rotational flow in the cross-section plane with an
additional flow component in the axial direction by gravity and drum incli-
nation. A close-up from simulation of full scale system is shown in Fig. 4,
and an overview is shown in Fig. 5.
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The drum is fed with balls at the rate 4.4 kg/s. In the real system the
particulate material has a distribution of particle size, mass and moisture
content. We model the material as perfectly spherical balls with 10 mm
diameter and mass density of 2500 kg/m3. The elastic modulus has been
measured to be roughly Y = 0.5 × 106 Pa according to Fig. 26 in [2]. The
friction coefficient is set to 0.7. From experiments with real balls the coef-
ficient of restitution has been estimated to be close to zero and the friction
angle to 35◦.

3. Simulation

3.1. Nonsmooth DEM

We use nonsmooth DEM for simulating the dynamics of the ore green
balls. Each ball is represented as a rigid body. The bodies interact by dry
frictional contacts modeled by constraints and complementarity conditions
for unilateral nonpenetration and friction according to the Coulomb law.
Impacting contacts and stick-slip transitions are considered as instantaneous
events making the velocities nonsmooth in time. Our nonsmooth DEM ap-
proach, outlined in more detail in Servin et al. [10], allows for time-integration
with large time-steps as compared to conventional smooth DEM. A partic-
ular schema for constraint regularization and stabilization [4] brings both
numerical stability and possibility to map the nonsmooth simulation param-
eters to the conventional viscoelastic material parameters. Time integration
(xi, vi) → (xi+1, vi+1) of the system position x and velocity v from time ti to
ti+1 = ti+h involve solving a mixed linear complementarity problem (MLCP)
of the form

[

M −GT
i

Gi Σ

] [

vi+1

λi+1

]

=

[

pi
qi

]

(1)

with friction cone conditions λ ∈ C(µλn)

C(µλn) ≡ {λ = [λn, λt1 , λt1 ] : λn ≥ 0, |λt| ≤ µ|λn|}

on the Lagrange multiplier,λ, for the constraint force, GTλ, responsible for
maintaining non-penetration in the contact normal direction n and Coulomb
dry friction in the contact tangent plane spanned by t1 and t2. The sub-
matrices M and Σ are block diagonal matrices of body mass and contact
regularization, respectively. The submatrix G is block sparse contact Jaco-
bian built of by normal and tangent vectors. The constraints regularization,
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Σ and stabilization terms qi are based on the energy and dissipation poten-
tials from Hertz contact law and thus link the parameters of the numerical
integration scheme directly to measurable or tabulated viscoelastic material
parameters. For spheres, the Hertz contact law reads f = k(g3/2 + cg1/2ġ),
where f is the force, g the contact overlap, k the stiffness coefficient and c
the damping coefficient. We use constraint regularization and stabilization
terms [10] that map to k = 25 kN/m3/2 and c = 0.02 s−1. For impacting con-
tacts, we instead apply zero restitution, which corresponds to setting qi = 0
in Eq. (1). The time-step h should be a fraction of R/vn not to cause too
big contact overlaps, where vn is the characteristic relative normal velocity in
the contact points and R is the ball radius. In the drum, the material shear
rate is roughly γ̇ ≈ ∆v/∆x ≈ ωd/hp, where hp ≈ 20R is the height of the
material in the drum and we assume to have a dense flow with velocity scal-
ing linearly from the drum surface to the top surface. The relative contact
velocity between two particle layers is thus estimated to γ̇2R ≈ ωd/10 ≈ 0.2
m/s such that R/vn ≈ 0.25 s. We therefore choose time step h = 0.01 s.
The time integration includes solving a mixed linear complementarity prob-
lem (MLCP) condition with 3Np + (3/2)Nc ∼ 6Np variables assuming the
Np particles has on average 6 contacting neighbours summing to Nc con-
tacts in total. The simulation involves approximately 80k particles, which
means 500k variables. The contact constraint forces and resulting velocity
changes are computed using a projected Gauss-Seidel solver for the MLCP.
The number of iterations are set to 25.

The computational time for simulation of one drum evolution (2.6s) with
80k particles is measured to be 585s, i.e., average computational speed for
1k particle is 2.8s computing time for 1s real time. The simulation are r-un
single threaded and on a desktop computer Intel(R) Core(TM) Xeon X5690
3.46 GHz processor. Sample simulations with full scale drum and up to 1.8M
particles, shown in Fig. 4 and Fig. 5, runs on a desktop computer with 16
GB RAM memory.

Video from simulation is available on the web: http://umit.cs.umu.

se/granular/outlet.

3.2. State intialization

An initial state close to stationary flow is produced by running a simula-
tion for 40 s, (approximately 15 drum evolutions) with iron ore balls added in
the rate of 4.4 kg/s at the upper end of the drum. Particles reaching the belt
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conveyor are deleted during the simulation. This state – consisting of Np po-
sition vectors, velocity vector and angular momentum vector plus drum and
outlet orientation – is used for each simulation in the design optimization.
To let the flow adapt to a new outlet geometry each simulation is initialized
by another 10.4 s (4 drum evolutions) of simulation before recording starts.

3.3. Recording

The position of each particle reaching the belt conveyor is stored together
with the time of impact. The particle is then removed from the simulation in
order to save computational time. Recording is made during a time-interval
of two drum evolutions (5.2 s). The positions and time are transformed
into a coordinate system co-moving with the belt conveyor, i.e., (x, y, t) →
(x − vt, y). A sample recording of particle positions on conveyor from one
simulation is shown in Fig. 6. The flow inside the drum was observed to be
close to stationary after more than 10 s of initialization, i.e., there was no sign
of flow instabilities or pulsating phenomena. The characteristic and expected
striped pattern on the conveyor belt contact data is due to the outlet gaps
and the time duration of the recording is six times of the gap periodicity.

3.4. Surface reconstruction

The particles impacting the belt conveyor forms a bed with some height
surface shape h(x− vt, y) m. We use cellular automata [7, Ch. 6] to recon-
struct this surface from the particle scatter data. The number of particles
on the conveyor data in Fig. 9 is roughly 200 k, compared to roughly 80 k in
the drum. Hence, simulating all particles would take 3.5 times longer time.
Also, stable pile formation would require adding constraint based rolling re-
sistance, which would add additional 2× Nc equations to the MLCP solved
at each time-step. The net effect would be an increase in CPU time by more
than 5 times. The cellular automata operates on a regular square grid with
cell size of 2.5 particle diameters, friction angle 35◦ (measured in tests) and
packing ratio of 0.7. The surface reconstruction of the particle data in Fig. 6
is shown in Fig. 7.

4. Design optimization

4.1. Objective function

The goal is to determine the values of the design variables (α, β) ∈ D
for the outlet geometry that produces an even flow of iron ore balls onto the
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sinter screen. By even flow we mean that the height of the iron ore ball bed
reaching the end of the belt conveyor has constant cross-section when time-
averaged over one drum evolution td = 2π/ω. The rotating outlet typically
produces stripes of pellets on a the conveyor belt, see Fig. 7. If the stripes
are perfectly uniform it is possible to find a velocity of the belt conveyor that
compress the stripes into a planar surface. The time averaged pellet bed
height is computed:

h(t, y) ≡ 1
td

∫ td

0

h(x0 − v(t+ τ), y)dτ (2)

If the flow of iron ore balls inside the drum is stationary when reaching the
outlet the time-averaged height of the iron ore ball bed will be constant in
time and we denote it h(y). Any discrete height profile h(y) can be rep-
resented by its fast Fourier transform (FFT) with complex amplitudes an,
n = 0,±1,±2, . . . ,±N . Each mode contributes to variations of the heigth
profile with magnitude |an|/N and wave length lc/π|n|, where lc is the width
of the conveyor. A constant profile would correspond to h(y) = a0/N and
an = 0 for all n 6= 0. The low mode number variations (n 6= 0) are the most
negative ones for the sintering performance. Higher modes correspond to
short wave length fluctuations that disperse more easily on the sinter screen.
Therefore we introduce a decaying weight factor wn = 2|n|−1 and chose the
following objective function

f(α, β) =
1

N

N
∑

n=1

wn

(

‖a-n‖+ ‖an‖
)

(3)

We use N = 20 modes in the design optimization. The optimal design
parameter pair is the solution to argmin(α,β)∈D f(α, β), where the design
space D is the domain of objective function. Since the object function is
based on the time averaged height profile the result depends very weakly on
the choice of conveyor speed. The effect on the value of the objective function
at the optimum by reducing the speed by half or doubling it was found to
be 4%. The conveyor velocity is also limited from below and above to avoid
high pellet beds and high impact velocities at the roller screen.

4.2. Optimization procedure

The objective function cannot be assumed convex and local minima might
exist. This calls for heuristic strategy in finding optimal solution. In the first
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stage a large design space, D1, is chosen. The space is covered by a regular
grid of ∼ 200 nodes, each corresponding to a simulation with particular
value for (α, β). Potential regions of optimum are investigated further in
successive stages. If the objective function appears smooth various local
optimization techniques may be applied. We set the procedure is terminated
when we found a solution of which all amplitudes an ≤ 1

10
a0 for all N ≥ 1.

That suggests the objective function deceeds the chosen tolerance threshold,
‖f(α, β)‖ < ǫh = 0.01 m.

5. Results

5.1. Optimal design

The first stage analysis of the objective function in the design space start
with a series of simulations in region α ∈ [0◦, 0.6◦] and β ∈ [0.01, 0.2] m with
a coarse grid. That give us a first rough view of the objective function in the
design space.

At the second stage we zoomed in on the region D1 with α ∈ [0.1◦, 0.4◦]
and β ∈ [0.03, 0.07] m. The result from 768 simulations, which cost about
one hour each to run, provides us an convex surface with some noise.

The third stage is carried out on a smaller region with higher resolu-
tion grid, D2 with α ∈ [0.12◦, 0.33◦] and β ∈ [0.034, 0.06] m contains 864
simulations.

The optimum solution is found (αI , βI) = (0.20◦, 0.048 m) with error tol-
erance (∆α,∆β) = (0.01◦, 0.003 m). We show the contour plot of combined
2nd stage and 3rd stage grids in Fig. 8. Note that the bold line is the border
of the chosen tolerance threshold ‖f(α, β)‖ < ǫh.

5.2. Sample data

We provide more detailed simulation results for four sample points listed
in table 1. For each data point we present the particle position scatter plots
on belt conveyor, post-processed surface, the time-integrated height profile
and the corresponding FFT spectrum that builds up the objective function
value. These data are found in Fig. 9.

5.3. Observations

We make the following observations. A too wide angle and too wide base
width results in too big outflow between the gaps and formation of a heap
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Table 1: Sample points

Point α [degree] β [m] f(α, β) [m] Comment

I 0.20 0.048 0.006 optimum
II 0.17 0.051 0.010 on the tolerance
III 0 0.01 0.077 too narrow gaps
IV 0.6 0.2 0.045 too large gaps

under the edge between the end of the drum and the outlet (data point IV).
A too narrow angle and too narrow base width produces too small outflow
between the gaps resulting in a heap under the end of the outlet. There is
no point in the design space that produces a planar bed of ore balls. The
optimal solution (I) has a constant rate of outflow between the gaps along the
axial direction (y-axis) but the outlet is too short for all particles to spread
evenly. The ’excessive’ particles form a heap at the end of the outlet.

6. Discussion

There are a number of uncertainties in the model and simulation that
must be remedied before the presented design optimization method have fully
known predictive power. These include the choice of material and model
parameters (size distribution, friction, geometric shape, etc.) and simula-
tion parameters (time-step, number of iterations). The latter is thoroughly
considered in a separate publication [10]. Validation of remaining model pa-
rameters, foremostly the contact model of the drum wall, is left for future
work when the lab drum system is installed and in operation. The result,
that the particular design principle considered in this work cannot produce a
planar height profile, is likely to remain. Furthermore, it is improbable that
this design principle will be optimal for a range of different input mass flow.
Alternative design principles are called for and the presented method can be
applied to design exploration and sensitivity analysis and finally optimization
of the design.

7. Conclusions

Design optimization of balling plant outlet geometry based on nonsmooth
DEM simulation has been shown feasible. The relevant design space was
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covered by approximately 2000 simulations of 15.6 s material flow each with
80× 103 particles. The total computational time was 7.6× 106 CPU seconds
(2100 hours or 88 days). We used a computer with 12 CPUs in which case
the total time for the design optimization procedure was roughly seven days
of computation. With this performance it is possible to cover alternative
designs that requires a larger design space. The conclusion from the design
analysis is that the particular outlet design considered has no solution for
which a planar bed can be produced. One solution is found that produces
a even outflow but the outlet form a heap at the end. Future steps involve
sensitivity analysis of model and simulation parameters as well as of the
realization of stationary flow. Alternative outlet design will be considered
that avoids the formation of a heap at the end.
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Fig. 1: A balling plant showing part of the balling drum, outlet, belt conveyor and roller
screen. Picture courtesy of LKAB.
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Fig. 2: Drum configuration.
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Fig. 3: 2D-projection of the outlet clarifying the design parameters angle and width.

Fig. 4: Capture from simulation showing material flow from the outlet onto the conveyor
and roller screen.
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Fig. 5: Capture from simulation showing overview of the balling plant.
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Fig. 6: The particles hitting the conveyor is stored as point scatter in a 2D surface.
Particles are colored in red, blue or green depending of which of the three gaps it exited.
The projected position of the outlet is at y1 and y2.
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Fig. 7: Particle 2D height surface on conveyor reconstructed from particle impacts. The
color codes the height in units m. The projected position of the outlet is at y1 and y2.
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Fig. 9: Simulation sample data from the points I-IV (left to right) in the design space, as
described in Table 1. The subplots show raw particle scatter data on the belt conveyor
from one drum evolution (first row), reconstructed height surface (second row) with the
color indicating the height in units m, time-averaged height profile (third row) and the
corresponding FFT spectrum 1

N
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Abstract

The nonsmooth discrete element method (NDEM) have the potential of high
computational efficiency for rapid exploration of large design space of systems
for processing and transportation of mineral ore. We present parametrization,
verification and validation of a simulation model based on NDEM for iron ore
green pellet flow in balling circuits. Simulations are compared with camera
based measurements of individual pellet motion as well as bulk behaviour of
pellets on conveyors and in rotating balling drum. It is shown that the NDEM
simulation model is applicable for the purpose of analysis, design and control of
iron ore pelletizing systems. The sensitivity to model and simulation parameters
is investigated. It is found that: the errors associated with large time-step
integration do not cause statistically significant errors to the bulk behaviour;
rolling resistance is a necessary model component; and the outlet flow from the
drum is sensitive to fine material adhering to the outlet creating a thick coating
that narrows the outlet gaps.

Keywords: granular materials; discrete element method; validation; iron ore
pellets; pelletizing; balling circuit
2010 MSC: 00-01, 99-00

1. Introduction

Numerical simulation of granular materials is an important tool both for
advancing the fundamental understanding of many natural phenomena in ma-
terial science and geophysics, and for the design, control and optimization of
systems for processing, manufacturing, storage and transportation of granular
materials, e.g., grains, corn, pharmaceuticals pills, pellets, soil and minerals.
In the mineral processing industry, experiments and in situ measurements are
many times prohibitive for practical and economical reasons, and in these cases,
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modeling and simulation play an essential role in finding deeper understand-
ing of the process, making radical improvements and innovating entirely new
solutions.

Parametrization, verification and validation are critical steps for making
sure that the simulation model provides a sufficiently accurate representation
of the real system. By parametrization we mean the process of identifying
numerical values of the model parameters from observations of the real system.
By the verification it is established that the computer simulation reproduces the
mathematical model. A failure indicates either a flaw in the numerical method
or in the software implementation. Validation is testing the agreement between
the simulated model and the real system. This determines the predictive power
of the simulated model to some given degree of accuracy of a selected set of
observables. A significant disagreement implies that the model is not useful for
describing the systems behaviour.

We consider the use of large-scale granular matter simulation based on the
nonsmooth discrete element method (NDEM) [1, 2] for the design of balling
drum outlets [3] used in iron ore pelletizing [4]. The NDEM have the poten-
tial of high computational efficiency compared to conventional (smooth) DEM.
This enables rapid exploration of the design space. The NDEM is on the other
hand not as well tested as conventional DEM for industry applications and
scarcely put to validation tests. In this paper we present procedure and results
for parametrization of the properties of green iron ore pellets and validation of
the macroscopic bulk behaviour by comparing the numerical simulations with
camera based measurements. The measurements include tracking of individual
iron ore green pellets and characterization of bulk behaviour in an industrial
pelletizing system. The goal is to establish the predictive power of NDEM sim-
ulations for the purpose of design and control of pelletizing systems, including
the sensitivity of the flow characteristics with respect to certain model param-
eters. The NDEM method in [2] is also extended to include a constraint based
rolling resistance which is shown to be crucial for the material distribution of
iron ore green pellets.

2. Background

2.1. Iron ore pelletizing

The iron ore pelletizing process usually has the following main stages [4].
Comminuted fine size ore, fines, is first mixed with binder material. Agglomer-
ation into soft ore balls, green ore pellets, occur in balling circuits where fines,
water and undersized pellets are fed into rotating drums. In the drum flow the
green pellets are mixed with fine material and grow by layering and coalescence.
New pellets are formed by nucleation. The drum is slightly inclined to produce
an axial flow. The green pellets leave the drum through an outlet and are size
distributed on a roller sieve, see Fig. 2. Under-sized particles are fed back to
the drum. Over-sized pellets are crushed and mixed with the fines. On-sized
pellets (9 to 16 mm in diameter) are conveyed to the induration furnace where
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Figure 1: Measurement of elasticity and strength of iron ore green pellets from Forsmo et al
in Ref. [20] Fig. 1 and 13c.

they form hard pellets by oxidation and sintering. After this stage the cooled
pellets are ready for transportion to distant steelmills. A typical iron ore balling
circuit may have drum diameter ranging between 3 − 5 m and 8 − 10 m long
and circulate about 400− 1200 ton/h producing 100− 300 ton/h on-size pellets.

The mathematical modeling of granulation systems was reviewed in Ref. [5].
A smooth DEM simulation model of iron ore granules in a continuous drum
mixer was developed in [6] to analyse the flow dependence on drum design
(angle and length). In [3] a methodology based on the nonsmooth discrete
element method (NDEM) was presented for simulation based design of drum
outlets, for even flow profile of ore green pellets on to the roller sieve. Fig. 2
show an image from outlet analysis using NDEM simulation. The simulation
demonstrate that the original outlet design was far from optimal as the material
distribution on the wide-belt conveyor is inhomogeneous. As an effect, the roller
sieve cannot be used efficiently. Furthermore, the green pellets may be damaged
by the pressure from building a too thick pellet bed. A simulation model for
the analysis and design of the balling process must be able to predict the flow
and distribution of material both inside the balling drum and on the conveyor
belt below the outlet.

2.2. Nonsmooth discrete element methods

In the conventional discrete element method (DEM) the granules are mod-
eled as rigid bodies interacting by contact forces modeled as linear or non-linear
damped springs. We refer to this as smooth DEM as it involves the numerical
integration of smooth (but usually stiff) ordinary differential equations. The
computational aspects of smooth DEM is covered in Ref. [7]. In the nonsmooth
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Figure 2: Image from simulation of balling drum with green ore pellets flowing through the
outlet gaps onto the wide-belt conveyor feeding the roller sieve.
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DEM [8, 9, 1], impacts and frictional stick-slip transitions are considered as
instantaneous events making the velocities discontinuous in time. The contact
forces and impulses are modeled in terms of kinematic constraints and comple-
mentarity conditions between constraint forces and contact velocities, e.g., by
the Signorini-Coulomb law for unilateral non-penetration and dry friction. The
contact network become strongly coupled and any dynamic event may propa-
gate through the system instantaneously. The benefit of nonsmooth DEM is
that it allows integration with much larger simulation step-size than for smooth
DEM and is thus potentially faster.

We use a regularized version of nonsmooth DEM referred to as semi-smooth

DEM in Ref. [2], which combines the numerical stability at large step-size with
the possibility of modeling the viscoelastic nature of the contact forces and
mapping the simulation parameters to the conventional material parameters.
The constrained equations of motion, between impacts, are

Mv̇+ Ṁv = fext +GT
nλn +GT

t λt (1)

0 ≤ εnλn + gn(x) ⊥ λn ≥ 0 (2)

γtλt +Gt(x)v = 0 (3)
∣

∣λ
(α)
t

∣

∣ ≤ µ
∣

∣G
(α)T
n λ

(α)
n

∣

∣ (4)

where x,v and fext are global vectors of position, velocity and external force, and
M is the system mass matrix. Rotational degrees of freedom are included such
that v and fext are vectors of dimension 6Np including components of angular
velocity and torque. The constraint forces for maintaining the non-penetration
constraint and Coulomb friction are GT

nλn and GT
t λt, where λn and λt are

the Lagrange multipliers for the normal (n) and tangential (t) directions of
each contact plane. The corresponding contact Jacobians are Gn and Gt. In
absence of regularization the constraints express non-penetration, δ ≥ 0, where
δ is the gap function, and no-slip, Gtv = 0. The constraints can be regarded as
the limit of infinitely strong potentials and dissipation functions Uε(x) =

1
2εg

T g

andRγ(x, ẋ) =
1
2γ ḡ

T ḡ with ε, γ → 0 [10, 12]. Eq. (2) and (3) are the regularized
versions of non-penetration and no-slip, with regularization parameters εn and
γt. We use finite regularization and map the non-penetration constraint, for each

contact α with gap function δ(α), to the Hertz contact force law, f(α) = knδ
3/2
(α) ,

by defining g
(α)
n ≡ δeH(α) with exponent eH = 5/4. This maps the regularization

parameter to the Hertz spring coefficient and conventional material parameters
as εn = eH/kn = 3eH(1 − ν2)/E

√
r∗, where E is the Young’s modulus, ν the

Poisson ratio and r∗ is the effective contact radius. Similarly, a dissipation term,
γnGnv, may also be added to the normal constraint multiplier condition (2).
This produce a viscous damping force term, fd = knc

√
δδ̇, in Hertz contact law

with the damping parameter defined as γn = e2
H
/knc, which relates it also to

the physical viscosity constant η by c = 4(1 − ν2)(1 − 2ν)η/15Eν2 [11]. See
Ref. [2] for details on the mapping of regulization parameters. The friction

constraint impose zero tangential contact velocity, G
(α)
t v(α) = 0, unless the

tangent force reach the friction bounds set by the Coulomb law, Eq. (4). The
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tangent plane is spanned with two orthogonal vectors t
(α)
1 and t

(α)
2 resulting in

friction multiplier having two components λ
(α)
t = [λ

(α)
t1 λ

(α)
t2 ]T. When impacts

occur, the equations of motion are supplemented by the Newton impact law,
G(α)

n v+ = −eG(α)
n v−, with coefficient of restitution e.

For numerical time integration we use the SPOOK stepper [12] derived from
discrete variational principle for the augmented system (x,v,λ, λ̇). Stepping
the system position and velocity, (xi,vi) → (xi+1,vi+1), from time ti to ti+1 =
ti+∆t involve solving a mixed linear complementarity problem (MLCP) [13] of
the form

Hz+ b = wl −wu

0 ≤ z − l ⊥ wl ≥ 0

0 ≤ u − z ⊥ wu ≥ 0

(5)

where

H =





M −GT
n −GT

t

Gn Σn 0
Gt 0 Σt



 , z =





vi+1

λn,i+1

λt,i+1



 , b =





−Mvi −∆tM−1fext
4
∆tΥngn −ΥnGnvi

0





(6)
and the solution vector z contains the new velocities and the Lagrange multi-
pliers λn and λt. For notational convenience, a factor ∆t has been absorbed
in the multipliers such that the constraint force reads GTλ/∆t. The diagonal
matrices Σn, Σt and Υn are given in Appendix A in terms of the viscoelastic
material parameters. The upper and lower limits, u and l in Eq. (6), follow from

Signorini-Coulomb law including 0 ≤ λ
(α)
n and |λ(α)

t | ≤ µs|G(α)T
n λ(α)

n | with the
friction coefficient µs. wl and wu are temporary slack variables. Impacts are
treated post facto. After stepping the velocities and positions an impact stage
follows. This include solving a MLCP similar to Eq. (5) but with the Newton

impact law, G(α)
n v+ = −eG(α)

n v−, replacing the normal constraints for the con-
tacts with normal velocity larger than an impact velocity threshold vimp. The
remaining constraints are maintained by imposing Gv+ = 0.

We use a projected Gauss-Seidel (PGS) algorithm, as described in Ref. [2]
and summarized in Appendix A, for solving the MLCP (5). The method is
implemented in the software AgX Dynamics [14]. The time-step ∆t should be
chosen

∆t . min(ǫd/vn,
√

2ǫd/g) (7)

for contact error threshold ǫ, where vn is the characteristic relative normal
contact velocity and gacc = 9.82 m/s2 is the gravitational acceleration. We
set the impact velocity threshold to vimp = ǫd/∆t. The required number of
PGS iterations depend on the size and configuration of the contact network.
For bulk systems a rough rule is Nit = 0.1 × n/ǫ, where n is the length of
the contact network (number of contacts) in the direction of gravity [2]. The
computational time tcomp per simulated time treal is

tcomp =
Ω

h
treal (8)
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where Ω = KcpuNitαpNp/Ncpu, αp is the average number of contacts per par-
ticle, Ncpu the number of cpu cores and Kcpu the average computational time
for a single PGS update. We measure Kcpu ≈ 1−6 s with a desktop computer
with Intel(R) Core(TM) Xeon X5690, 3.46 GHz, 48 GB RAM on a Linux 64 bit
system. The PGS implementation parallelizes well up to 8 cores but saturates
beyond that.

2.3. Rolling resistance constraint

There are several physical causes for rolling resistance, see, e.g., Ref. [15].
These include the effect of particle shape deviating from a spherical idealization,
plastic or viscous deformations of the object itself or in the contact interface, fric-
tional slippage in the contact interface and surface adhesion. In the idealization
of rigid bodies, rolling resistance may be modeled as a torque, τ r, on the con-
tacting bodies counteracting their relative rolling motion. Similarly to Coulomb
friction, the rolling resistance torque is limited in magnitude by |τ r| ≤ µrr

∗
ab|fn|,

where 0 ≤ µr is the rolling resistance coefficient, r∗ab = rarb/(ra + rb) is the
effective contact radius of two contacting geometries a and b. When the source
of rolling resistance is purely geometric the rolling resistance coefficient can be
derived from the shape. For octagon shape µr = 0.1 [16]. Rolling resistance is
important to include for correct prediction of single particle motion as well as
for the collective behaviour of granular materials, e.g., formation of stable piles
with accurate angle of repose, stress and strain relationships in dense packings
and the shear rate in flowing systems. An overview of the conventional smooth
DEM models and their agreement with experiments is found in Ref. [15]. Some
rolling resistance models in smooth DEM work well for quasi-static systems
while poorly for flowing systems and vice versa. In nonsmooth DEM, where the
contact forces and dynamics are computed implicitly, e.g., as kinematic con-
straints, a single model can be used for both regimes. Only a few models of
rolling resistance for nonsmooth DEM can be found in literature [17, 18, 19]
and no reported results concerning parametrization and validation with exper-
imental data.

We extend the nonsmooth DEM model by including additional rolling resis-
tance constrains in Eq. (5) of the form Grv = 0 and constraint force (torque)
τ r = GT

r λr/h. Consider a contact α between two granules, a and b, with linear
and angular velocity vectors denoted u and ω. Let the contact plane have unit
normal n and orthonormal tangents t1 and t2. This is illustrated in Fig. 3. The
condition for zero relative rolling velocity can be expressed

03×1 =





tT1 (ωa − ωb)
tT2 (ωa − ωb)
nT(ωa − ωb)



 =





01×3 tT1 01×3 −tT1
01×3 tT2 01×3 −tT2
01×3 nT 01×3 −nT





︸ ︷︷ ︸

Gr







ua

ωa

ub

ωb







(9)

from which we identify the constraint Jacobian for rolling resistance. By the
geometry of the Jacobian it is clear that this constraint force is indeed a torque.
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Figure 3: Illustration of two contacting granular geometries a and b. Rolling resistance con-
straint produce a torque, τ r, limited in magnitude relative to the normal contact force fn in
a similar way as the Coulomb friction force ft.

Table 1: Identified iron ore green pellet parameters.

ρ 3700 kg/m3 mass density
d 12.7± 3 mm diameter
E 6.2± 0.7 MPa Young’s modulus
e 0.18± 0.04 coefficient of restitution
µs 0.91± 0.04 surface friction coefficient
µr 0.32± 0.02 rolling resistance coefficient

We denote the components of the multiplier λr = (λrt1 , λrt2 , λrn)
T . The third

constraint 0 = nT(ωa−ωb) oppose relative twisting and produce torsional force.
We linearize the limits on the torque, |τ r| ≤ µrr

∗
ab|fn|, and obtain additional

multiplier conditions to Eq. (5)

−µrr
∗
abλn ≤ λrt1 ≤ µrr

∗
abλn (10)

−µrr
∗
abλn ≤ λrt2 ≤ µrr

∗
abλn (11)

−αrnµsr
∗
abλn ≤ λrn ≤ αrnµsr

∗
abλn (12)

where αrn is a factor depending on shape with value zero for perfect spheres
and up to 1 for shapes with contact surface area as for a cube. A regularization
term Σr is added to the new diagonal block in H, see Appendix A, and the
corresponding components in b are set to zero.

3. Identification of iron ore green pellet parameters

The identified parameters for onsize iron ore green pellets are summarized
in Table 1.
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Figure 4: Measurement of coefficient of restitution by impacting ore green pellet captured at
100 Hz.

3.1. Mass and geometry

Iron ore green pellet have mass density of about 3700 kg/m3. The shape is
approximately spherical with diameter ranging between 9 and 16 mm and shape

factor1 in the range 0.7− 0.95.

3.2. Elasticity

The elasticity and strength of iron ore green pellets was investigated by
Forsmo et al [20]. Assuming a relation between pressure force fn and com-
pression δ of the form of Hertz contact law, fn = knδ

3/2, we identify kn =
(0.35±0.05)×106, which translates to Young’s modulus E = 3kn(1−ν2)/

√
2d =

6.2± 0.7 MPa , see Fig. 1. We assume Poisson ratio ν = 0.25.

3.3. Restitution

The coefficient of restitution is identified from drop tests where ore green
pellets impact on a surface coated with a 10 mm thick layer of ore material
packed to similar density as of ore green pellets, see Fig. 4. The green pellet
was released from height 0.45 m and bounces to a height of 12± 4 mm, which
implies an impact velocity v− = 2.97 m/s and a post impact velocity v+ =
0.49± 0.08 m/s. The coefficient of restitution e = −v+/v− is thus found to be
e = 0.18± 0.04.

3.4. Surface friction

The friction coefficient, µs, between two ore surfaces is identified by measur-
ing the required force f for pulling a block of packed ore over a surface of packed
ore, see Fig. 5. From the Coulomb law, f = µsmgacc, we find µs = 0.91± 0.04

3.5. Rolling resistance

The rolling resistance coefficient is determined from observing the angle φr at
which the ore green pellet starts to roll down an inclined plane. We observe φr =
17.8 ± 0.1◦. With τ r = (d/2) sin(φr)fn we thus identify the rolling resistance
coefficient to µr = 0.32± 0.02.

1The shape factor of a cross-section of area A and perimeter length L is 4πA/L2. A sphere
has shape factor 1 and a square has roughly 0.78.
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Figure 5: Measurement of surface friction (left) and rolling resistance (right).

Table 2: Summary of results from verification tests.
Test Quantity Result Comment

Elasticity ‖keff − k‖/k 0− 2% error 2% at ρ/d & 0.1 and ∆t & 5 ms

Restitution ‖eeff − e‖/e 1% ∆t . min(ǫd/vn,
√

2ǫd/g) and ǫ = 0.01
Friction ‖µeff − µ‖/µ 0% fulfilled to machine precision
Rolling resistance ‖µr,eff − µr‖/µr 0− 1% 1% error at rolling onset.

4. Verification of simulated pellets

Material parameters in Table 1 are translated to simulation parameters of
NDEM according to Sec. 2.2 and verified in elementary tests described below.
The results are summarized in Table 2. Simulation parameters are set to ∆t =
0.01 s, Nit = 150 if nothing else is stated.

4.1. Elasticity

The elasticity model is verified in simulation by compressing a pellet between
a moving piston and a static plane. The piston moves in 0.02 mm/s towards
to the plane. The measured constraint force GT

nλn/∆t coincide with the Hertz
model with an effective elasticity coefficient keff = fn/δ

3/2 deviating from kn
with maximally 2% at δ/d = 0.1 for time step ∆t = 5 ms. The deviation
decrease for smaller overlap and with decreasing time step. In the case of a
single particle compressed towards to the static ground by external force, the
result match to machine precision.

4.2. Restitution

The impact model is verified by measuring the re-bounce height hb from
dropping particles from height hd and computing the effective coefficient of
restitution eeff =

√

hb/hd. The impact stage reproduce the impact law v+ =
−ev− to machine precision. However, finite time-stepping cause impact overlaps
of magnitude δ ≤ ∆tv+. This produce errors in the particle trajectories of
the same order. Furthermore, the division of contacts into an impact stage
and continuous contact stage can produce residual energy at contact separation
that cause violation of the impact law. Thus, the effective dissipation can be
smaller than predicted by the impact law, i.e., the effective restitution become
bigger. The effect is more notable for low-restitution materials and appears as an
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Figure 6: Verification of the impact model by measuring the effective restitution.

effective restitution larger than e. The test is performed for drop height ranging
up to 0.45 m and time step 5 ms and 0.2 ms. The results are shown in Fig. 6.
The effective restitution become 0.17 ± 0.07 and 0.175 ± 0.004, respectively.
Note that given the drop-height 0.45 m and an error tolerance of ǫ = 2%, the
time-step rule ∆t . ǫd/vn imply ∆t = 0.4 ms. The time-step 5 ms, on the other
hand, correspond to an error tolerance of ǫ = 100%. The verification results are
thus in good agreement with these error estimates but it is clear that using too
large time-step may cause significant errors in energy dissipation at impacts.

4.3. Surface friction

The surface friction model is verified by simulating a pellet being pressed
towards a static plane and pulled horizontally until it starts to slide. The
effective friction coefficient is computed as the ratio of the horizontally applied
force at slide onset over applied normal pressure, µs,eff = ft/fn. The result
agree with µs to machine precision.

4.4. Rolling resistance

As verification of rolling resistance we measure the maximum angle φr where
a simulated ore green pellet doesn’t start rolling on an inclined plane and com-
pute the effective rolling resistance coefficient µr,eff = sin(φr). The result is
φr = 17.84◦ and µr,eff = 0.31, to be compared to the corresponding values
17.8± 1◦ and 0.32 from experiment. The discrepancy is due to truncation error
of the residual in the Gauss-Seidel solver but is of no practical significance to
the results in the paper. As a complementary verification test, we simulate the
deceleration of a fast rolling pellet on a horizontal plane assuming no-slip. The
result agree with the analytical solution v̇ = − 5

7µrgacc to machine precision.

5. Observed bulk behaviour of iron ore green pellets

We use two on-line production balling circuits at LKAB pelletizing plant
in Malmberget, Sweden, for observation and validation of iron ore green pellet
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Figure 7: Illustration of the balling circuit.

Table 3: Specification of balling circuit parameters.
Notation Value Parameter

ωd 0.53 rad/s drum rotation speed
βd 7◦ drum inclination
D 3.7 m drum inner diameter
L 8.1 m drum length
{e1 : e2} {4.7 : 7.9} d inner : outer gap width
wb 2.4 m width of wide-belt conveyor
vb 0.19 m/s speed of wide-belt conveyor
hdb 0.45 m distance drum to conveyor

Ṁrk1 340 ton/h mass flow rate in rk1

Ṁrk5 275 ton/h mass flow rate in rk5

bulk behaviour. The circuits, referred to as rk1 and rk5, are identical but run
with different feed rate. The balling process was described in Sec. 2.1 and the
balling circuit is illustrated in Fig. 7. The key parameters are given in table 3.
We observe and validate three bulk properties: the angle of repose of static piles
on the conveyor of on-size pellets, the properties of the flow inside the balling
drum and the spatial distribution of material on the wide-belt conveyor that
results from the interaction of the flow with the outlet geometry.

5.1. Pile shape

The resting angle of repose, θr, is measured on the conveyor belt transport-
ing on-size green pellets from the balling circuit to the induration furnace. An
elongated pile is formed on the conveyor by feeding material from another con-
veyor, aligned perpendicularly to the first. The drop height is 0.3 m and feed
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Figure 8: Photos from angle of repose measurement.

Figure 9: Sample images of drum interior (left and middle) and distribution on wide-belt
conveyor (right). The bulk flow of ore pellets circulate in the lower left section of the drum.
The fine material adhere to the drum walls and form an irregular surface coating. The middle
image show a close-up of the irregular drum surface and coating of fine material around the
outlet gaps.

rate 14.4 ton/h. The pile formation is filmed with high-speed cameras, see Fig.8.
The average angle of repose of the pile is found to be θr = 34± 3◦.

5.2. Flow in an inclined drum

The flow inside balling drum rk1 was observed during 30 minutes of stable
production of green ore pellets. A camera was placed at the end of the outlet to
capture the flow inside the drum , see. Fig. 9. The drum was fed with mass rate
Ṁrk1 = 340 ton/h divided in 110 ton/h iron fines mixed with binding agents
and 230 ton/h return feed of undersized material. The drum rotation produce a
circulating flow that is nearly stationary and in the rolling or cascading regime
[21]. At the bottom of the drum the material form a plug zone where ore
pellets co-move rigidly with the drum rotation. The material is lifted up to
some maximal angle θ1 where particles begin to slide and form a shear zone of
a gravity driven flow on top of the plug zone down to the drum bottom at angle
θ2, Fig. 9. The dynamic angle of repose is identified by the surface inclination,
i.e., θ′r = 180◦ − 1

2 (θ1 + θ2).
From camera measurements it is found θ1 = 120 ± 2◦, θ2 = 167 ± 2◦ and

θ′r = 35 ± 5◦. The inclination of the drum also lead to an axial transportation
flow, presumably localized to the shear zone. Cloth tracers are dropped into
the drum and tracked by camera in order to measure the surface velocity of the
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Figure 10: Pellet flow in rotating inclined drum.

bulk flow, vs, and its axial and cross-sectional components, vsz and vs⊥. The
measurement region is limited by the angles θ3 and θ4 and between the drum
center and beginning of the outlet, as indicated in Fig. 10. The measurement
results are found in Table 4. The measurement of θ1 and θ2 is based on a
100 s recording. The surface velocity is computed by time-of-flight from 10
passages of cloth tracers over the measurement region. We compute the axial
bulk transportation velocity as vtr = Ṁ/ρAχ, where A ∈ [Amin, Amax] is the
bulk cross-section area and χ is the packing ratio. The upper and lower bounds
of the cross-section area are determined by assuming either the shape of circle
sector or of an annulus sector, both limited by θ1 and θ2, see Fig, 10. This give
Amin = 0.18 m2 and Amax = 0.27 m2. The packing ratio is assumed χ = 0.7.

The video material also reveal that the drum interior is not perfectly cylindri-
cal but has a structure of bumps and dimples formed by fine material adhering
and loosening from drum interior surface, see Fig. 9. This drum texture presum-
ably lead to an increased effective surface friction, higher lifting of the material
and induce more flow disturbances.

5.3. Material distribution on wide-belt conveyor

The spatial distribution of material on the wide-belt conveyor depends on
the flow structure inside the drum and of the geometric shape of the outlet. The
outlet is 2.3 m long and has three spiral shaped gaps. The inner and outer width
of the gaps are e1 = 4.7d and e2 = 7.9d in the z′ direction. We describe the
resulting material height profile by h(y, t−x/vb). The goal is a constant height
profile h(y, t− x/vb) = h0 which is presumed to maximize the efficiency of the
roller sieve. The flow of material at the end of the wide-belt conveyor, x = 0,
is captured using video camera over a time period of 16 s. The height profile
is extracted by image analysis using feature matching to localize the conveyor
belt and color gradient for tracking the material surface. A sample is shown in
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Table 4: Validation of simulated bulk behaviour by comparing with observations in balling
circuits.

Test Quantity Observation Simulation

Pile shape θr 34± 3◦ 36± 2◦

Drum flow θ′r 35± 5◦ 34± 2◦

vtr 0.20± 0.03 m/s 0.22± 0.02 m/s
vs 1.31± 0.06 m/s 1.27± 0.09 m/s
vsz 0.58± 0.05 m/s 0.49± 0.03 m/s
vs⊥ 1.18± 0.07 m/s 1.17± 0.09 m/s

Bed profile rk1 σh 0.41
rk1-o 0.83
rk1-m 0.66
rk1-c 0.46
rk1-ic 0.44

σ
h−h̄

0
rk1-o 1.01
rk1-m 0.81
rk1-c 0.54
rk1-ic 0.27

Bed profile rk5 σh 0.33
rk5-o 0.83
rk5-m 0.68
rk5-c 0.42
rk5-ic 0.42

σ
h−h̄

0
rk5-o 0.71
rk5-m 0.47
rk5-c 0.35
rk5-ic 0.11
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Figure 11: Sample images from extraction of height profile on wide-belt conveyor in rk5.
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Figure 12: The time averaged height profile on the wide-belt conveyor from rk1 and rk5.
The dashed line is the result from video measurement. The solid lines are from simulations
using the original outlet (o) , modified outlet (m), with uniform gap coating (c) and with
inhomogenous gap coating (ic).

Fig. 11. A 2D height profile h(y, t− x/vb) is reconstructed for comparison with
simulations in Sec. 6. The time averaged profile at x = 0 is computed as

h(y) = 1
t2−t1

∫ t2

t1

h(y, t)dt (13)

The result from rk1 and rk5 are found in Fig. 12. The coefficient of variation
of the height profile is

σh =

√

1
wb

∫ wb

0

[
h(y)− 〈h〉

〈h〉

]2

dy (14)

where 〈h〉 = 1
wb

∫ wb

0
h(y)dy is the average height. The observed values are

σrk1

h = 0.41 and σrk5

h = 0.33, which are acceptable although not optimal. The
design objective of producing a uniform profile of pellets correspond to σh = 0.
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Figure 13: Images from simulation of pile formation.

6. Validation of the simulation model

The observations of ore green pellet flow in the balling circuit described in
Sec. 5 are used for validation of simulated bulk behaviour. The validation results
are summarized in Table 4. The simulation model is parametrized by the values
in Table 1 found from experiments. Monosized particles with diameter d are
used. All simulations are performed with time-step ∆t = 5 ms, Nit = 150 PGS
iterations and vimp = 0.05 m/s, unless otherwise is mentioned. See Sec. 6.4
for an analysis and discussion regarding the choice of time-step. Videos from
simulations are found at http://umit.cs.umu.se/granular/video/.

6.1. Angle of repose

A long pile is formed by dropping particles at rate 14.4 ton/h from a 0.05×0.4
m2 source elevated 0.3 m over a planar surface moving 0.1 m/s relative to the
source, see Fig. 13. The cross-section profile is measured as the average from
20 segments between 10d and 60d from the source, see Fig. 14. The average
angle of repose is found to be θr = 36± 2◦. To examine the sensitivity to rolling
resistance, the simulation is also performed with rolling resistance coefficient
µr decreased to 10%. The piles disperse more and the resulting angle of repose
become 22◦. With zero rolling resistance coefficient the initial pile formation has
angle of 15◦ but quickly melt to 0◦. Rolling resistance is clearly needed for the
formation of piles with correct shape. A simulation with time-step ∆t = 0.2 ms
was also made to investigate the effect of errors from large time-step integration.
The resulting angle of repose is 33±2◦. The difference is believed to reside from
larger overlap errors occuring at impact in the ∆t = 5 ms simulations. Both
results are within the standard variation of the observed angle of repose 34±3◦.

6.2. Flow in an inclined drum

A virtual replica of the inclined rotating drum is constructed from CAD
drawings. The interior drum texture is modeled by perturbing the cylindrical
surface with a random distribution of gaussian shaped bumps of width 50 mm
and height in the range 30 to 50 mm. The average density of bumps is 20 per
m2. The texture cover also the outlet interior. A particle source is placed at
the center of the drum emitting particles of diameter d at a rate Ṁrk1 = 340
ton/h. The simulation is first run for five evolutions (60 s) to create a nearly
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Figure 14: The average pile profile and its linear interpolation for different values of rolling
resistance. For µr = 0 the pile quickly disperse to zero angle of repose.

stationary flow, see Fig. 16. The particle dynamics is then captured during one
drum evolution, 12 s. The analysis is limited to a 1 m long section centred
between the source and the outlet and, for the surface flow, between angles
θ3 = 135◦ and θ4 = 160◦. Sample plot of the velocity field and mass density
field from a cross-section is shown in Fig. 15 computed by coarse graining on a
grid with mesh size of 1d. The plug zone where material co-rotate rigidly with
the drum is clearly visible. The axial transportation occur in the shear zone
layer above the plug zone. The surface shape and flow is slightly irregular and
nonstationary. The time averaged mass distribution is shown in Fig. 15. The
average dynamic angle of repose is found to be θ′r = 34± 2◦.

The average bulk transportation velocity in the measurement region is 0.22±
0.02 m/s. The surface between angles θ3 and θ4 is tracked over time and the
average surface velocity is found to be vs = 1.27± 0.09 with cross-sectional and
axial components vs⊥ = 1.17± 0.09 m/s and vsz = 0.49± 0.03 m/s.

To test the sensitivity to rolling resistance, the simulation is also performed
with rolling resistance coefficient µr decreased from 0.33 to 0.03. The effect
on the flow is significant. The dynamic angle of repose becomes 25 ± 2◦ and
the surface velocity vs = 0.6 ± 0.1 with components vs⊥ = 0.43± 0.1 m/s and
vsz = 0.41±0.03 m/s. Hence, rolling resistance is a necessary model component
also for the simulated drum flow to agree with observations. The effect on
the flow by variations of the surface friction, elasticity and particle size was
also investigated and found to be small. The time-averaged cross-sectional flow
velocities and dynamic angle of repose was affected by roughly 5 % by the
changes µ′

s = 0.9µs, E
′ = 0.5E, E′ = 2E and d′ = 0.8d.

6.3. Material distribution on wide-belt conveyor

The third validation test is the distribution of ore pellets on the wide-belt
conveyor below the drum outlet. This tests the predictive power of NDEM
simulation to capture the non-stationary granular flow created by the interaction
with a moving irregular geometry. Sample images from simulation is shown in
Fig. 16. Simulations are performed both with the original outlet design (rk1-o
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Figure 15: Time instants of flow velocity field (top), mass density field (middle) and time-
averaged mass density field (bottom) in a drum cross-section.
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Figure 16: Image from simulation showing material distribution inside drum (top) and on the
wide-belt conveyor (bottom). The original outlet deisgn is used. Particles are color coded by
velocity and height, respectively.
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and rk5-o), in Fig. 2 and 16, with gap width {eo1 : eo2} = {11.8 : 39.4}d, the
CAD models of modified outlet that are in operation (rk1 and rk5), see Fig. 7,
with {em1 : em2 } = {4.7 : 7.9}d as well as outlet geometry models that include
coating effect of fine material that make the effective gap width smaller (rk1-c
and rk5-c), {ec1 : ec2} = {3.1 : 6.3}d. The gap models are illustrated in Fig. 17.
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Figure 17: The different outlet gap functions e(z′) in rk5 simulations.

First, a stationary flow through the drum is established from a feed of rate
Ṁrk1. The simulations are then run for three drum evolutions, t = 36s, while
recording the material distribution on the wide-belt conveyor. The simulations
involved nearly 1 M particles for which the total computational time on a 12
cpu machine become of the order 10 hours, see Eq. (8). A sample height surface
from the rk5 simulation is found in Fig. 18. The time-averaged profile from
rk5 and rk1 is found in Fig. 12 and the coefficients of variation are found in
Table 4. To compare the simulated and experimentally measured profiles we
compute also the relative coefficient of variation

σh−h̄ =

√
√
√
√ 4

wb

∫ wb

0

[

h(y)− h̄(y)

〈h〉+
〈
h̄
〉

]2

dy (15)

where h(y) is a profile from simulation and h̄(y) is the profile from experimental
observation. The simulations confirm that the original outlet model, rk5-o,
was indeed a very poor design as it produce a nonuniform profile with almost
all material distributed on the right hand side of the wide-belt conveyor and
σrk5−o
h = 0.83. But also the simulation with the modified CAD model, rk5-m,

distribute a substantial excess of material on the right-hand side. Much more
than the experimental observation from balling drums as is seen both in Fig. 18
and 12, and by the value of the relative coefficient of variation σrk5−m

h−h̄
= 0.47.

The clogged outlet geometry, rk5-c, agree better with observation, σrk5−c
h−h̄

=

0.35, but not entirely. In the region y ∈ [1.5, 2.0] m the experimental profile
show a material depletion that has no correspondence in the simulated profile.

We hypothesize that the material depletion is due to the coating being in-
homogeneous and time-dependent. Supposedly, the coating increase gradually
as material adheres until it reaches a critical thickness and become too heavy
to support its own weight and drop from the outlet. We test this by modi-
fying the gap geometry to an inhomogeneous coating, eic(z′), as illustrated in

21



Figure 18: The height surface of the material distribution on the wide-belt conveyor in rk5.
Left image is the result from video measurement and the others from simulation. The second
to fifth images are from simulations using the original outlet (o) , modified outlet (m), with
uniform gap coating (c) and with inhomogenous gap coating (ic).

Fig. 17. The results from the simulations with inhomogeneous gap coating,
rk5-ic, match the experimental observations fairly well, σrk5−ic

h−h̄
= 0.11.

Variations in surface friction, elasticity and particle size were tested to rule
out that the deviation in material distribution is mainly due to too imprecise
material parameters. The time-averaged bed profile was affected by roughly 5
% by the changes µ′

s = 0.9µs and E′ = 2E. The changes E′ = 2E and d′ = 0.8d
affect the bed profile by roughly 15 %. As can be expected, with smaller particles
the bed is shifted more to the right. The effect is significant but not enough
to explain the deviation from the observed profile. The sensitivity of time-step
size is considered in the next subsection.

6.4. Dependency on time-step size

The balling circuit simulations are run with time-step ∆t = 5 ms. This
choice is based on the formula Eq. (7) and an assumed impact normal velocity
vn ∼ 0.02 m/s and error tolerance ǫ = 0.01. This assumed impact velocity is
characteristic for flow in a drum with rotation speed ωd = 0.53 rad/s, causing a
characteristic shear rate σ̇ ∼ 2ω/[1−cos(θ/2)], where the circular sector angle is
θ = θ2−θ1. There are impacts with higher contact velocity in the system but we
assume the statistical occurrence of these are small and their error contribution
to the overall bulk behaviour is insignificant. On the other hand, as found in
Sec. 4, using too large time-step may lead to significant errors in the energy
dissipation for impacts. Adapting the time-step for high velocity would have
severe effects for the computational time. Particles impacting with the pellet
bed on the wide-belt conveyor, for instance, have velocity up to

√
2gacchdb ∼ 3

m/s. The required time-step for maintaining an error tolerance of ǫ = 0.01 for
these contacts is 0.04 ms.

The distribution of impact velocity and contact overlap from a simulation
with ∆t = 5 ms of material flowing from the drum onto the belt conveyor are
presented in histograms in Fig. 19. Analysis show that 7% of the contacts are
impacts, i.e., occur with relative normal velocity higher than vimp = 0.05 m/s
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Figure 19: Distribution of normal contact velocity (left) and contact overlap (right) in balling
drum and conveyor system from simulation using ∆t = 5 ms. The contacts are divided into
continuous contacts (red) and impacts (blue).

and less than 0.01 % has velocity higher than 1 m/s. The majority of contact
overlap are below the error tolerance ǫ = 0.02 but 17 % of the contacts have
larger overlap. The overlap range up to 2d, which is consistent with the impact
velocity between particles and drum, or conveyor, ranging up to 5 m/s.

To verify the assumption that ∆t = 5 ms is indeed a valid time-step and that
the errors from high-velocity contacts do not have a significant contribution to
the bulk behaviour, a simulation was also run with time-step ∆t = 0.1 ms. The
drum flow characteristics are θ′r = 33± 2◦, vtr = 0.23± 0.03 m/s, vs = 1.0± 0.1,
vsz = 0.45 ± 0.03 m/s and vs⊥ = 0.9 ± 0.1 m/s for the rk1. This is in good
agreement with both the experimental observation and with the ∆t = 5 ms sim-
ulations in Table 4. Histograms of the contact normal velocity and overlap from
the ∆t = 0.1 ms simulation is found in Fig. 20. At finer time-discretization more
contact events can be resolved in time. The impact threshold vimp = ǫd/∆t be-
come roughly 2.5 m/s, i.e., essentially all contacts are resolved as continuous
contacts. Furthermore, in this regime the time-step is small enough for the
normal contact dissipation to be resolved with the physical viscosity from Hertz
contact law, i.e., τn = max(ns∆t, εn/γn) become εn/γn = c/eH. We identi-
fied c ≈ 1 ms, from the high-speed camera measurements in Fig. 4. These
adjustments of vimp and τn with time-step are important. Otherwise the small
time-step simulation model become too dissipative and produce a flow that does
not agree well with observations.

7. Conclusions

A successful parameterization, verification and validation of a NDEM model
for iron ore green pellets for the design and control of balling circuits has been
demonstrated. The parameterization consists in the direct identification of in-
dividual ore green pellet physical parameters. The procedure involves no pa-
rameter calibration. The simulated bulk behaviour in the formation of piles and
flow in a rotating inclined drum agrees with camera-based measurements in the
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Figure 20: Distribution of normal contact velocity (left) and contact overlap (right) in balling
drum and conveyor system from simulation using ∆t = 0.1 ms. The contacts are divided into
continuous contacts (red) and impacts (blue).

pelletizing plant. The angle of repose agrees within 5% and the flow velocity
within 10 %. The pellet distribution on the wide-belt conveyor from the drum
outlet show a more significant discrepancy between simulation and real system.
The proposed explanation is that the simulated and actual outlet geometry do
not agree although they are based on the same CAD model. Observations re-
veals that fine material adheres to the inside of the drum and outlet, creating
a thick coating that alters the geometry. In particular, the outlet gaps become
more narrow. Simulations confirm that the outlet flow is sensitive to this effect
and that the material distribution produced by outlet geometries where this is
included agree better with observation. The coating is believed to be dynamic
in nature, gradually increasing in thickness until it breaks and drop, making the
outlet gap narrowing variable and inhomogeneous. This has the consequence
that even if a stationary flow inside the drum can be achieved, the material
distribution on wide-belt conveyor and roller sieve will nevertheless have varia-
tions. The conclusion is that the outlet should be designed with materials and
geometric shape which minimize the amount of coating or at least minimize the
variability and effect on the flow.

The sensitivity of the simulation model to parameters is also investigated.
It is shown that the rolling resistance is a necessary component of the model to
obtain stable piles and the rolling resistance coefficient significantly affect the
shape of piles as well as the flow characteristics in the rotating drum. The drum
flow is found not to be sensitive to particle size. For an accurate conveyor bed
profile beneath the outlet the detailed outlet geometry and rolling resistance are
the critical parameters, but next to this the particle size was also found to be
important.

It is also demonstrated that using time-step as large as 5 ms do not cause any
statistically significant errors to the bulk behaviour as compared to using 0.1
ms although the larger time-step occasionally produce large errors in contacts
between individual particles. As contrast, a conventional DEM simulation would
require a time-step of size ∆tDEM ≤ 0.17

√

m/kn [22], which evaluates to 0.02
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ms for the given material parameters. Hence, NDEM simulation provide a time-
efficient and reliable tool for exploring and optimizing the design and control of
iron ore pellet balling drums and of similar systems. Future work should include
extension to nonuniform and variable size distribution of ore green pellets and
modeling of the mixing with ore slurry and the agglomeration process inside the
drum.
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Appendix

A. Simulation algorithm

The algoritm for simulating a system of granular material using NDEM
with PGS solver is given in Algorithm 1. The projection on line 14 limit the

Algorithm 1 NDEM simulation with PGS solver

1: constants and parameters
2: initialization: (x0,v0)
3: for i = 0, 1, 2, . . . , t/∆t do ⊲ Time stepping
4: contact detection
5: compute g,G,Σ,Υ,D, see Eq. (18)
6: impact stage PGS solve vi → (v+

i ,λ
+
i )

7: bn = −(4/∆t)Υngn +ΥnGnv
+
i

8: pre-step v = v+
i +∆tM−1fext

9: for k = 0, 1, . . . , Nit − 1 or |r| ≤ rmin do ⊲ PGS iteration
10: for each contact α = 0, 1, . . . , Nc − 1 do

11: for each constraint n of contact α do

12: r
(α)
n,k = −b

(α)
n,k +G(α)

n v ⊲ residual

13: λ
(α)
n,k = λ

(α)
n,k−1 +D−1

n,(α)r
(α)
n,k ⊲ multiplier

14: proj(λ
(α)
n,k,v) → λ

(α)
n,k ⊲ project

15: ∆λ
(α)
n,k = λ

(α)
n,k − λ

(α)
n,k−1

16: v = v+M−1GT
n,(α)∆λ

(α)
n,k

17: end for

18: end for

19: end for

20: vi+1 = v ⊲ velocity update
21: xi+1 = xi +∆tvi+1 ⊲ position update
22: end for

multipliers to the Signorini-Coulomb law. Each contact α between body a and
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b add contributions to the constraint vector and normal and friction Jacobians
according to

δ(α) = nT
(α)(xa + d(α)

a − xb − d
(α)
b )

g(α) = δeH(α)

G(α)
na = eHg

eH−1
(α)

[

−nT
(α) −(d

(α)
a × n(α))

T
]

G
(α)
nb = eHg

eH−1
(α)

[

nT
(α) (d

(α)
b × n(α))

T
]

(16)

G
(α)
ta =

[

−t
(α)T
1 −(d

(α)
a × t

(α)
1 )T

−t
(α)T
2 −(d

(α)
a × t

(α)
2 )T

]

G
(α)
tb =

[

t
(α)T
1 (d

(α)
b × t

(α)
1 )T

t
(α)T
2 (d

(α)
b × t

(α)
2 )T

]

The diagonal matrices and Schur complement matrix D are

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1Nc×Nc

Σt =
γt
∆t

12Nc×2Nc

Σr =
γr
∆t

13Nc×3Nc
(17)

Υn =
1

1 + 4 τn
∆t

1Nc×Nc

D = GM−1GT +Σ

The mapping between regularization parameters and material parameters are

εn = eH/kn = 3eH(1− ν2)/E
√
r∗

τn = max(ns∆t, εn/γn) (18)

γ−1
n = knc/e

2
H

and we use γt = γr = 10−6, ns = 2.

References

[1] F. Radjai, V. Richefeu, Contact dynamics as a nonsmooth discrete element
method, Mechanics of Materials 41 (6) (2009) 715–728.

[2] M. Servin, D. Wang, C. Lacoursière, K. Bodin, Examining the smooth and
nonsmooth discrete element approach to granular matter, Int. J. Numer.
Meth. Engng. 97 (2014) 878–902.

[3] D. Wang, M. Servin, K.-O. Mickelsson, Outlet design optimization based on
large-scale nonsmooth DEM simulation, Powder Technology 253 (0) (2014)
438–443.

26



[4] S. Forsmo, Influence of green pellet properties on pelletizing of magnetite
iron ore, Ph.D. thesis, Lule̊a University of Technology, Lule̊a (2007).

[5] I. Cameron, F. Wang, C. Immanuel, F. Stepanek, Process systems mod-
elling and applications in granulation: A review, Chemical Engineering
Science 60 (14) (2005) 3723–3750.

[6] R. Soda, A. Sato, J. Kano, E. Kasai, F. Saito, M. Hara, T. Kawaguchi,
Analysis of granules behavior in continuous drum mixer by DEM, ISIJ
International 49 (5) (2009) 645–649.
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Electronic Press, 2007, pp. 40–48.

[13] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming,
Helderman-Verlag, Heidelberg, 1988.

[14] Algoryx Simulations. AGX Dynamics, December 2014.

[15] J. Ai, J.-F. Chen, J. M. Rotter, J. Y. Ooi, Assessment of rolling resistance
models in discrete element simulations, Powder Technology 206 (3) (2011)
269–282.
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Abstract The effect on the convergence of warm start-
ing the projected Gauss-Seidel solver for nonsmooth

discrete element simulation of granular matter are in-

vestigated. It is found that the computational perfor-

mance can be increased by a factor 2 to 5.
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1 Introduction

In simulations of granular matter using the nonsmooth
discrete element method (NDEM) [1–3] the computa-

tional time is dominated by the solve stage, where the

contact forces and velocity updates are computed. Con-

ventionally this involves solving a mixed complementar-

ity problem or a quasi-optimization problem that arises
from implicit integration of the rigid multibody equa-

tions of motion in conjunction with set-valued contact

laws and impulse laws, usually the Signorini-Coulomb

law and Newton impulse law. The computational prop-
erties of the solution algorithms for these problems are

largely open questions, lacking general proof of exis-

tence and uniqueness of solutions as well as of general

proof of convergence and numerical stability [4]. The

projected Gauss-Seidel (PGS) algorithm is widely used.
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The popularity of PGS is likely due to having low com-
putational cost per iteration, small memory footprint

and produce smooth distribution of errors that favour

stable simulation. In many cases PGS require few itera-

tions to identify the active set of constraints. This make

PGS a natural choice for fast simulations of large-scale
rigid multibody systems with frictional contacts. The

asymptotic convergence, however, is slow. The PGS al-

gorithm solves each local two-body contact problem ac-

curately but approaches to the global solution in a dif-
fusive manner with iterations. This has a smoothing

effect both on errors and on the solution and limits

the practical use of PGS for simulations of high accu-

racy. The residual error appear as artificial elasticity

[5], with an effective sound velocity vPGS =
√
Nitd/∆t,

where Nit is the number of iterations, d is the parti-

cle size and ∆t is the timestep. To accurately resolve

the impulse propagation of stiff materials require large

number of iterations or small timestep. The required
number of iterations for a given error tolerance increase

with the size of the contact network, particularly with

the number of contacts in direction of gravity or applied

stress, but may also saturate by arching phenomena as

in Janssen’s law for silos [14]. Contrary to many authors
claim, the PGS algorithm is parallelizable for hardware

with distributed memory using domain decomposition

methods [6,7].

Warm starting is to start PGS with an initial guess,

λw
0 , that presumably is closer to the exact solution,

λ , than starting with the nominal choice of λ0 = 0.

The idea, illustrated in Fig. 1, is that the warm started

PGS reach an approximate solution, λk′ , with fewer it-

erations than the solution, λk, starting from nominal
value. In other words, |λ − λw

k′ | . |λ − λk| < ε with

k′ < k. The effective increase in convergence should

be most significant for static or nearly static configu-
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Fig. 1 Illustration of improved convergence by warm start-
ing.

rations. For rapid granular flows the solution change
rapidly with time and no or little effect on convergence

is expected. There have been several reports on im-

proved convergence by using warm starting [3,8–12] but

to the best of our knowledge no quantitative analysis
has previously been presented.

2 PGS for nonsmooth discrete element

simulation

The mixed complementarity problem (MCP) for com-

puting the update of the velocity from vold ≡ v(t−∆t)

to v ≡ v(t) and the Lagrange multiplier λ of the con-

tact constraints and take the form
[

M −GT

G Σ

] [

v

λ

]

=

[

p

q

]

(1)

λ(α) ∈ Cµ(λ(α)
n ) , α = 1, 2, . . . , Nc (2)

whereM is the mass matrix andG the Jacobian of con-
tact constraints. The contact force, GTλ, is restricted

by a friction cone condition that we represent λ(α) ∈
Cµ(λ(α)

n ), where α indexes the contacts. The diagonal

perturbation Σ regularize the problem and allow mod-

eling of contact elasticity. The vectors p and q on the
right hand side depend on particle inertia, external force

and constraint violations on position and velocity level.

As friction cone condition we use the Signorini-Coulomb

law including 0 ≤ λ
(α)
n and |λ(α)

t | ≤ µs|G(α)T
n λ

(α)
n | with

the friction coefficient µs for each contact α divided

in one normal (n) and two tangential (t) components.

The constraint forces act to prevent contact overlap,

g ≤ 0, and contact sliding, Gtv = 0. Similarly, rolling

resistance (r) is imposed by a constraint Grv = 0 with

a Coulomb like law: |λ(α)
r | ≤ µrr

∗|G(α)T
n λ

(α)
n |, where

r∗ is the effective radius. See Appendix A for further

details. For a system with Np particles represented as

rigid bodies and Nc contacts with normal and tangen-
tial force and rolling and twisting resistance the vec-

tors and matrices in Eq. (1) have the following dimen-

sions dim(M) = 6Np × 6Np, dim(G) = 6Nc × Np,

dim(v) = dim(p) = 6Np dim(λ) = dim(q) = 6Nc. The

matrices are however very sparse. M and Σ are block

diagonal and G is block sparse. The blocks have dimen-

sion 6× 6. The main steps of the PGS iteration are

λ
(α)
k+1 = λ

(α)
k +D−1

(αα)r
(α)
k (3)

λ
(α)
k+1 ← projCµ

(λ
(α)
k+1) (4)

vk+1 = vk +M−1GT
(α)∆λ

(α)
k+1 (5)

with iteration index k = 0, 1, 2, . . . , Nit − 1, change in

multiplier ∆g
¯
λ
(α)
k+1 = λ

(α)
k+1 − λ

(α)
k and residual

r
(α)
k = G(α)vk − q(α) (6)

where v0 = M−1p and D is the block diagonal part of

the Schur complement matrix S = GM−1GT+Σ. The

details of the vectors p and q depend on the stepping
scheme and constraint stabilization method. When in-

tegrating with fix timesteps ∆t using the SPOOK step-

per [13] one has p = Mvold +∆tfext, with smooth ex-

ternal forces fext, and q = (qT
n ,q

T
t ,q

T
r )

T with qn =

−(4/∆t)Υ ḡ + ΥGnvold, qt = 0 and qr = 0. The pro-

jection λ
(α)
k+1 ← projCµ

(λ
(α)
k+1) is made by simply clamp-

ing λ
(α)
k+1 to the friction or rolling resistance limit if

exceeded. After stepping the velocities and positions

an impact stage follows. This include solving a MCP
similar to Eq. (1) but with the Newton impact law,

G(α)
n v+ = −eG(α)

n v−, replacing the normal constraints

for the contacts with normal velocity larger than an im-

pact velocity threshold vimp. The remaining constraints
are maintained by imposing Gv+ = 0. An algorithm of

NDEM simulation with PGS is given in Appendix A

together with details on the Jacobians and relation be-

tween the solver parameters and material parameters.

3 PGS warm starting

By default the PGS algorithm is initialized with λ
(α)
0 =

0. We refer to this as cold starting. In a stationary state

the contact force GTλ is constant in time. In a nearly

stationary state we expect the multipliers to remain
almost constant between two timestep. Therefore it is

reasonable to use the solution from last timestep as

an initial guess, λ(t) ≈ λ(t − ∆t). We use a fraction

β = 0.85 of the solution from last timestep

λ0(t) = βλNit(t−∆t) (7)

It is important to also apply the corresponding impulse
to the particles and update the velocity

v0 = M−1p+M−1GTλ0 (8)

such it become consistent with the initial guess for the

multiplier. We refer to warm starting based on the last
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solution as history based warm starting. For any new

contact we set λ
(α)
0 = 0. Warm starting is not applied

at the impact stage and we assume that the contact net-

work is not fundamentally rearranged by the impacts

and use the solution from last timestep despite the oc-
currence of impacts.

An alternative method for warm starting a nearly

stationary state is to estimate each local contact force

and assign this to the contact multipliers. When us-
ing regularized NDEM the local contact force can be

estimated from the overlaps and relative contact veloc-

ities much as in conventional smooth DEM. We refer to

this approach as model based warm starting. For nor-

mal forces we use the Hertz contact law fn = kng
3/2
n ,

with overlap function gn and based on fn ≈ GT
nλn/∆t

we estimate

λ
(α)
n,0 ≈ 5

4∆tkng
5/4
n(α) (9)

Similarly the regularized tangent friction force and rolling

resistance force can be estimated via the Rayleigh dis-
sipation functions to

λt,0 ≈ γ−1
t ∆t(Gtv)

TGt (10)

λr,0 ≈ γ−1
r ∆t(Grv)

TGr (11)

Note that the friction and rolling resistance should,

if large, be clamped to obey the conditions |λ(α)
t | ≤

µs|G(α)T
n λ

(α)
n | and |λ(α)

r | ≤ µrr
∗|G(α)T

n λ
(α)
n |.

4 Numerical experiments

Numerical simulation of different systems were performed

to analyse the effect of warm starting on the conver-
gence of NDEM simulations. The following systems were

studied: a 1D column, formation of a pile, dense flow

in a rotating drum and a triaxial shear cell. The main

material and simulation parameters are listed in Ta-
ble 1. The method was implemented in the software

AgX Dynamics [15] in the module for NDEM simu-

lation with optimized data structures and support for

collision detection and PGS using parallel computing

on multicore processors. The simulations were run on a
desktop computer with Intel(R) Core(TM) i7 CPU, 2.8

GHz, 8 GB RAM on a Windows 64 bit system. Videos

from simulations are found at http://umit.cs.umu.

se/granular/warmstarting/.

4.1 Column

Particles of diameter d = 13 mm are initiated on top of

another with zero overlap. The system compress slightly

under its weight. The simulation is run until the 1D

Table 1 Main material and simulation parameters

Notation Value Comment

[d, d2] [13, 10] m bi-disperse particle diameter
ρ 3700 kg/m3 particle mass density
E 6 MPa 1 Young’s modulus
e 0.18 restitution coefficient
µs 0.91 surface friction coefficient
µr 0.32 rolling resistance coefficient
∆t 5 ms timestep
vimp 0.05 m/s impact threshold

Nit = 10 Nit = 50 Nit = 500 Nit = 10
w

Nit = 5
w

Fig. 2 Samples of five columns simulated, from left to right,
with cold starting Nit = 10, 50 and 500, and history based
warm starting Nw

it = 10 and 5.

column have come to rest. Sample images from simula-

tion with and without warm starting and for different

number of iterations are shown in Fig. 2. Warm start-

ing clearly improve the convergence. To make a quan-
titative convergence analysis we study the deviation of

the simulated column height, lNit , from the theoretical

height, l, computed using the Hertz contact law

εl =
l − lNit

l
(12)

A series of simulations are run with number of par-

ticles, NP, ranging from 5 and 100, number of itera-

tions, Nit, ranging from 10 to 500. The required number
of iterations, Nε

it, to reach a solution with error toler-

ance εl = 0.1%, 1% and 5% are presented in Fig. 3.

It scales almost linearly with the number of particles

and increase with decreasing error tolerance εl. History
based warm starting is on average three times as effi-

cient as cold starting. Also model based warm starting

improve the convergence at low error tolerance. The

performance gain from model based warm starting de-

crease with increasing error tolerance and for εl = 5%
model based warm starting require twice as many iter-

ations as cold starting. Figure 4 show the evolution of

the mean residual, see Eq. (6), for the normal force con-

straint during a PGS solve for a column with Np = 25.
The convergence rates are similar but warm starting

clearly has the advantage of starting closer to the solu-

tion.
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Fig. 3 The required number of iterations for a 1D column
simulation for error tolerance ε1D = 0.1% (top), 1% (middle)
and 5% (bottom) depending on the number of particles and
warm starting method.
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Fig. 4 The evolution of the mean normal force residual dur-
ing a PGS solve for a Np = 25 column using cold starting
and history based warm starting.

4.2 Pile formation

A pile is formed by continuously emitting particles of
diameter d = 13 mm from a 3d wide source placed 15d

above a ground plane. The number of particles in the

pile is Np = 3363. Again we use the relative height, εl
in Eq. (12), as error measurement. The reference height
about 15 d is measured from a pile constructed using

small time-step ∆t = 0.2 ms and Nit = 500. Pile for-

mation is then simulated using time-step ∆t = 5 ms

for different number of iterations and warm starting

methods. Sample images from simulations are shown

in Fig. 5. The angle of repose is an alternative mea-

Fig. 5 Samples from simulations of pile formation. From left
to right is the cold started pile (∆t = 5 ms, Nit = 50), a
reference pile (∆t = 0.2 ms, Nit = 500) and a warm started
pile (∆t = 5 ms, Nit = 50)

sure but was found to give less precise result. The pile

height is measured 10 s after the last emitted parti-

cle has come to approximate rest. Simulations are run
with warm starting applied both to normal forces, fric-

tion and rolling resistance and to normal forces only.

The historical warm starting is tested with and with-

out the velocity update associated with the warm start

in Eq. (7). The required number of iterations for a given
error threshold are given in Fig. 6. With few iterations

the piles experience artificial compression and contact

sliding such that the pile gradually melt down to a singe

particle layer. The pile stability increase with the num-
ber of iterations. History based warm starting, applied

to both normals, friction and rolling resistance, give

the best result and require roughly half the number of

iterations of cold starting. If the warm start velocity

is not applied the result is worse than cold starting.
Model based warm starting is only marginally better

than cold starting and is from further experiments here

on excluded. Applying warm starting to the normal

constraints only does not improve the convergence sig-
nificantly. The convergence is also analysed by studying

the evolution of the Lagrange multiplier and the resid-

ual. The relative error of the normal force multiplier is

computed as

ελk
=

〈

|λn(α)
500 − λ

n(α)
k |

|λn(α)
500 |

〉

(13)

The evolution of ελk
during a solve of a stationary pile

is shown in Fig. 7. The multiplier error for history based

warm starting is roughly five times smaller than for cold

starting and remain more accurate indefinitely. A more

careful analysis can be made by studying the evolution
of the residual, defined in Eq. (6), and how it is dis-

tributed over the constraints. To get comparable states

a stationary pile is prepared by using 500 iterations

from which the cold and warm started simulations are
started and run for 1 s before the measurement. The

evolution of the mean residual during a PGS solve is

shown in Fig. 8. The convergence rates are similar but
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Fig. 6 The required number of iterations versus pile height
error for different warm starting methods.
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Fig. 7 The evolution of the relative multiplier during a PGS
solve for a resting pile using cold starting and history based
warm starting.

the initial lead of history based warm starting over cold

starting by roughly a factor 5 remains throughout the

500 PGS iterations. Comparing the residual histograms

from using cold and warm starting in Fig. 9 it is clear
that the solutions differs primarily in the errors for the

rolling resistance and friction constraints and less so

for normal force constraints. This is consistent with the

faster melting of the piles simulated with cold starting.

4.3 Rotating drum

A cylindrical drum with diameter D = 40d and width

w = 7d is rotated with angular velocity Ω = 0.25

rad/s. This corresponds to the Froude number Fr ≡
DΩ2/2g ∼ 10−3 which corresponds to the dense rolling

flow regime. A nearly stationary flow of Np = 4864

particles with bi-disperse size distribution d and d2. At
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Fig. 8 The mean residual dependency on the number of iter-
ations when simulating a resting pile for 1 s using cold starting
and history based warm starting.
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Fig. 9 The residual distribution for a resting pile after 1 s
using Nit = 100 iterations, cold starting (top) and history
based warm starting (bottom).

this low Froude number a large plug-zone is developed
where particles co-rotate rigidly with the drum. A con-

vergence analysis is made of the plug-zone number frac-

tion, Nplug/Np, and the dynamic angle of repose, θ′.

These are measured for different number of iterations
on a flow averaged over 2 s for cold starting and histor-

ical warm starting. The sample trajectories in Fig. 10

illustrate the general trend that the dynamic angle of

repose and the size of the plug zone decrease with de-

creasing number of iterations but less so using warm
starting. The normalized particle flow velocity relative

the plug flow is computed vir ≡ |vi − ri ×Ω|/RΩ and

sample plots are shown in Fig. 11. As threshold for the

plug zone flow we set vr ≤ 0.15, which is fulfilled by
N500

plug/Np = 58% ± 5% particles where the variations

reflect the slightly pulsating nature of the flow, due to

sequential onset of avalanches. The plug zone fraction
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Fig. 10 A sample of particle trajectories from simulation of a
rotating drum with Ω = 0.25 rad/s, ∆t = 5 ms and Nit = 10
(left),Nit = 500 (middle) and warm startingNit = 10 (right).

number error is defined

εplug =
N500

plug −NNit

plug

Np
(14)

and the relation to the required number of iterations is

found in Fig. 12. The warm starting solution approach

the solution faster but seems to have larger variations

at high iteration numbers. The convergence analysis of
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Fig. 11 A sample of cross-section flow from a simulation of a
rotating drum with Ω = 0.25 rad/s, ∆t = 5 ms and Nit = 10
(left),Nit = 500 (middle) and warm startingNit = 10 (right).
The colour coding show the particle velocities relative to rigid
co-motion with the drum.
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Fig. 12 The convergence of the plug zone fraction number
for cold starting and history based warm starting.

the dynamic angle of repose also show that warm start-

ing converges faster although to a slightly higher angle

θ500w,plug = 50◦ compared to θ500plug = 48◦, see Fig. 13. The
dynamic angle of repose is measured as the displace-

ment of the material centre of mass from the z-axis

which is more robust than tracking the surface.
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Fig. 13 The dynamic angle of repose as function of number
of iterations for cold starting and history based warm start-
ing.

4.4 Triaxial shear

The triaxial shear test is constructed by six dynamic

rigid walls of mass 100 kg each that are driven with

prismatic motors to apply a specific stress σi = fi/Ai,
where Ai is the cross-section area and fi the applied

motor force in the coordinate direction i = x, y, z, see

Fig. ?? First, a hydrostatic pressure of σh = 100 Pa is

fz

fz

fx
fx

v
0 155 10

lx

lz

[mm/s]

Fig. 14 Sample image from the triaxial test.

applied on all sides. Then the top and bottom walls are

driven inwards at 0.01 m/s by regulating σz and main-

taining a constant side wall pressure at σx = σy = σh.

At some critical deviator stress σc
z − σh the material

fail to sustain further increase in stress and starts to

shear indefinitely. The transition is more or less sharp

depending on the initial packing ratio, hydrostatic pres-

sure and applied shear rate. In this test the Young’s

modulus is set to the stiffer value of E = 60 MPa to get
a sharper transition between compression and shear.

The critical axial stress σc
z is computed as the averaged

σz in the shear phase between lateral strain ε = 10%

to ε = 25%. The critical stress deviator depending on
the number of iterations for cold starting and history

based warm starting is shown in Fig. 15 Both curves

converge to about 1± 0.2 kPa. With warm starting the
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stress levels out at Nit & 200 while cold starting re-

quire Nit = 1000. Sample curves of the stress deviator

N
it
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]
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σ

Fig. 15 Critical yield stress as function of number of itera-
tions for cold starting and history based warm starting.

as function of lateral strain are shown in Fig. 16. These

confirm the faster convergence when warm starting but

also show higher stress fluctuations in the shear phase.

Whether this is an artefact of the warm starting or an
actual feature of the triaxial test has not been pursued.

ε

zc
h

[k
P

a
]

0 5

1

Fig. 16 Sample stress curves in triaxial test for 100 and 1000
iterations.

5 Application example

The effect of using warm starting in practical simulation

applications is illustrated with two application exam-

ples. The first example is part of a balling drum circuit

used in ore pelletizing systems [16], see Fig. 17. Simula-
tions are used for the purpose of process control and for

finding a design of the drum outlet that maximizes an

evenly distributed throughput on the roller sieve where

material is size distributed. Three distinctive subsys-

tems with different dynamics can be identified. Firstly,
there is the drum with an almost stationary flow. Sec-

ondly, material is distributed onto quasistationary piles

on a wide-belt conveyor. Thirdly, the particles disperse

over a roller sieve with increasing gap size downwards
to achieve a size separation. The design problem is fore

mostly a geometric flow problem and the material dis-

tribution need to be computed with sufficient accuracy.

We assume 5 % is a required accuracy for dynamic and

static angle of repose. From Fig. 13 we estimate that

warm starting is roughly three times more computa-

tionally efficient in computing the drum flow and, ac-

cording to Fig. 6, twice as efficient for pile formation
on the conveyor. The flow on the roller sieve is more

disperse and collision dominated requiring only few it-

erations (Np < 25) and it can be expected that warm

and cold starting are equally efficient. The overall com-
putational speed-up by applying warm starting is thus

estimated to a factor 2.

The second example is an excavator. A rectangular

trench is filled with roughly 105 spherical particles of

uniform size distribution between 25 and 100 mm and
particle mass density of 2500 kg/m3. The excavator is

modeled as a rigid multibody system of total mass 50

ton divided in 10 bodies, 8 joints and 3 linear actuators

(hydraulic cylinders) and one rotational motor. The full
system of granulars and vehicle take the mathematical

form of Eq. (1) and is solved using a split solver where

the vehicle part is solved using a direct block-sparse piv-

oting method [15] and the granular material with a PGS

solver as described in this paper. Simulations were run
with time-step h = 2.5 ms, which allow for a low num-

ber of iterations. The machine perform an excavation

cycle by a pre-programmed control signal to the actu-

ators. The resulting actuator forces are measured and
these include the back reaction from the resistance and

inertia of the granular material. Two simulations, with

and without warm starting, are run withNit = 25. Sam-

ple images from the simulations are shown in Fig. 18.

Observe the difference in height surface of the granu-
lar material due to artificial compression and frictional

slippage due to numerical errors in the PGS solve. The

undisturbed height in the two simulations differ by 10

% and volume of displaced material differ by at least
30 %. The difference in granular dynamics also affect

the measured force response. The force trajectory of the

middle actuator is provided in Fig. 19. In the phase be-

tween 8− 10 s, when the bucket is dragged through the

material the force when using warm starting is almost
50% larger because more material is set in motion and

stronger resistance to shear motion. Whether h = 2.5

ms,Nit = 25 and the improvement by using warm start-

ing give sufficiently accurate force response depend on
the intended use of the data and require further conver-

gence analysis. On a desktop computer2 with the given

NDEM settings the computational time is roughly 100

s per realtime second.

2 Performance measurement are made on a desktop com-
puter with Intel(R) Core(TM) Xeon X5690, 3.46 GHz, 48 GB
RAM on a Linux 64 bit system.
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Fig. 17 A balling drum circuit with granular material in
different states.

Fig. 18 An excavator digging in trench with 105 particles,
h = 2.5ms, Nit = 25 and using cold starting (top) and warm
starting (bottom). The colour codes the particle height with
red to blue ranging from 0 m to −2 m. Gray particles are
above 0 m.

6 Conclusions

The convergence of the projected Gauss-Seidel algo-
rithm for NDEM simulation is increased by warm start-

ing with the solution from previous time-step. The com-

putational speed-up by warm starting is demonstrated
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Fig. 19 The force trajectory of the middle link pistons of
the excavator while digging with Nit = 25 using cold starting
and warm starting.

to be about 2− 5 for a wide range of systems including

pile formation, granular drum flow and triaxial shear.

An examination of the residual distribution show that

convergence improvement primarily improve on the ve-
locity constraints - friction and rolling resistance - and

less so on the normal force constraints. Warm starting

the Lagrange multiplier based on 85 % of the value from

last time-step was found to give best results. Warm

starting based on an explicit contact force model give
only marginal speed-up, for example 20 % for a pile for-

mation. This is not surprising since the damping coef-

ficients in the dissipation models for sliding and rolling

are not physics based and can only predict the value of
contact forces in slide mode but not of stick mode inside

the friction and rolling resistance limits. For materials

under high stress, compared to the stress produced by

the materials own weight, warm starting show larger

fluctuations in the stress when shearing. Whether this
is an artefact or correct behaviour has not been estab-

lished. A more in depth analysis of systems under large

stress should be made considering also alternative size

of time step, shear rate, hydrostatic load stress and par-
ticle stiffness.

Acknowledgements This project was supported by Algo-
ryx Simulations, LKAB, UMIT Research Lab and VINNOVA
(dnr 2014-01901).

Appendix

A. Simulation algorithm

The algorithm for simulating a system of granular ma-

terial using NDEM with PGS solver with warm starting
is given in Algorithm 1. Based on the Hertz contact law,

each contact α between body a and b add contributions

to the constraint vector and normal and friction Jaco-
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Algorithm 1 NDEM simulation with warm started

PGS solver
1: set constants and parameters
2: initial state: (x0,v0)
3: for i = 0, 1, 2, . . . , t/∆t do ⊲ Time stepping
4: contact detection
5: compute g,G,Σ,D
6: impact stage PGS solve vi → (v+

i ,λ+
i ) ⊲ impacts

7: compute qn = −(4/∆t)Υngn + ΥnGnv
+
i

8: pre-step v = v
+
i +∆tM−1fext

9: λk0
= 0 or warm start λk0

10: warm-step v = v+M−1GTλk0

11: −−− ⊲ PGS solve for continuous contacts− −−−
12: for k = 1, . . . , Nit and while criteria(r) do

13: for each contact α = 0, 1, . . . , Nc − 1 do

14: for each constraint n of contact α do

15: r
(α)
n,k = −q

(α)
n,k +G

(α)
n v ⊲ residual

16: λ
(α)
n,k = λ

(α)
n,k−1 +D

−1
n,(α)

r
(α)
n,k ⊲ multiplier

17: λ
(α)
n,k ← proj

Cµ
(λ

(α)
k ) ⊲ project

18: ∆λ
(α)
n,k = λ

(α)
n,k − λ

(α)
n,k−1

19: v = v+M−1GT
n,(α)∆λ

(α)
n,k

20: end for

21: end for

22: end for

23: vi+1 = v ⊲ velocity update
24: xi+1 = xi +∆tvi+1 ⊲ position update
25: end for

bians according to

δ(α) = nT
(α)(xa + d(α)

a − xb − d
(α)
b )

g(α) = δeH(α) , eH = 5/4

G(α)
na = eHg

eH−1
(α)

[

−nT
(α) −(d

(α)
a × n(α))

T
]

G
(α)
nb = eHg

eH−1
(α)

[

nT
(α) (d

(α)
b × n(α))

T
]

(15)

G
(α)
ta =

[

−t(α)T1 −(d(α)
a × t

(α)
1 )T

−t(α)T2 −(d(α)
a × t

(α)
2 )T

]

G
(α)
tb =

[

t
(α)T
1 (d

(α)
b × t

(α)
1 )T

t
(α)T
2 (d

(α)
b × t

(α)
2 )T

]

G(α)
ra =







01×3 t
(α)T
1 01×3 −t(α)T1

01×3 t
(α)T
2 01×3 −t(α)T2

01×3 n(α)T 01×3 −n(α)T







G
(α)
rb =







01×3 −t(α)T1 01×3 t
(α)T
1

01×3 −t(α)T2 01×3 t
(α)T
2

01×3 −n(α)T 01×3 n(α)T







where d(α)
a and d

(α)
b are the positions of the contact

point α relative to the particle positions xa and xb.

The orthonormal contact normal and tangent vectors

are n(α), t(α)1 and t(α)2 .

The diagonal matrices and Schur complement ma-

trix D are

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1Nc×Nc

Σt =
γt
∆t

12Nc×2Nc

Σr =
γr
∆t

13Nc×3Nc
(16)

Υn =
1

1 + 4 τn
∆t

1Nc×Nc

D = GM−1GT +Σ

The mapping between MCP parameters and material

parameters are

εn = eH/kn = 3eH(1 − ν2)/E
√
r∗

τn = max(ns∆t, εn/γn) (17)

γ−1
n = knc/e

2
H

where r∗ = (ra + rb)/rarb is the effective radius and we

use γt = γr = 10−6, ns = 2.
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Adaptive model reduction for nonsmooth discrete

element simulation
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Abstract

A method for adaptive model order reduction for nonsmooth discrete

element simulation is developed and analysed in numerical experiments.

Regions of the granular media that collectively move as rigid bodies are

substituted with rigid bodies of the corresponding shape and mass dis-

tribution. The method also support particles merging with articulated

multibody systems. A model approximation error is defined and used to

derive conditions for when and where to apply reduction and refinement

back into particles and smaller rigid bodies. Three methods for refinement

are proposed and tested: prediction from contact events, trial solutions

computed in the background and using split sensors. The computational

performance can be increased by 5 - 50 times for model reduction level

between 70 - 95 %.

1 Introduction

Simulation of granular matter is important for increased understanding of the
nature of granular media and as an engineering tool for design, control and
optimization of processing and transportation systems [1]. With the discrete
element method (DEM) the material is modeled as a system of contacting rigid
bodies, referred to as particles in this text. This provides detailed information
about force structures and particle kinematics on a microscopic level. DEM ac-
curately capture many of the characteristic phenomena of granular media - for
instance jamming, dilatancy, emergence of strong force chains, strain localiza-
tion, avalanches and size-segregation upon fluidization - that are difficult or even
impossible to model with continuum based methods. The required computa-
tional time increase with the number of bodies and this limit the practical use of
DEM for exhaustive simulation studies of large-scale systems and large parame-
ter spaces. One strategy to remedy this is to increase the computational perfor-
mance by use of parallel algorithms and dedicated hardware. Another strategy
is the use of implicit integration with large time-step using the nonsmooth DEM
(NDEM) [2], also known as the contact dynamics method [3,4], where velocities
may be time-discontinuous and impulses can propagate instantly through the
system.
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A third strategy, that is pursued in the paper, is to reduce the computational
complexity by identifying regions in the granular media where the particles may
be substituted by approximate models with less degrees of freedom.

1.1 Previous work

Model order reduction is well established and widely used for reducing the com-
putational complexity in solid and fluid mechanics, dynamical systems and con-
trol theory [5, 6]. In multibody dynamics, it is often used for reducing the
degrees of freedom of flexible bodies [7] while the number of multibodies are
preserved. There are few examples that resemble model order reduction for the
discrete element method. Glössmann [8] applied the Karhunen-Loéve transform
to clusters of discrete elements that show dynamic coherence to reduce the or-
der of generalized coordinates. In the combined finite-discrete element method
(FDEM) each body is represented as a discrete element that is also discretized
by a finite element method [9]. The bodies may deform, fracture and fragment
indefinitely into smaller elements based on the internal stresses. An inversion
of this is the hierarchical multiscale modeling of granular media discretized by
a coarse mesh of finite elements in combination with assemblies of fine grained
discrete elements for numerical computation of the local constitutive law for
the finite element computations [10,11]. A two-scale and two-method approach
for modeling granular materials is presented in [12], where DEM is used for do-
mains of large and discontinuous deformations and as an elastoplastic solid using
FEM in continuous domains. Automatic simplification algorithms of articulated
multibody systems have been developed and shown to increase computational
performance by two orders in magnitude on large-scale linkage systems [13,14].
Dynamic formation of both rigid aggregates (clumped particles) and elastic ag-
gregates (clustered particles), are supported by several discrete element codes
and is used for modeling grains in brittle rock [15].

1.2 Outline of the idea and the challenges

The idea is to identify regions of the granular media that collectively move
as rigid bodies and substitute each of these regions with rigid aggregates of
the corresponding shape and mass distribution. Particles and rigid aggregates
may also merge with rigid bodies or kinematic geometries that do not represent
granular media, for instance the particles in an excavator bucket may merge
with the bucket into one single rigid body. The aggregated rigid bodies still
contribute to the system dynamics but require only a few degrees of freedom.
When merged material is disturbed, by a change in external forces or boundary
contacts, it may split into smaller constituents that are either rigid aggregates
of fewer particles or single particles.

The complexity of systems with granular media in the solid state is thus
largely reduced and the computational performance increase correspondingly
while the macroscopic dynamics may be preserved. For granular media in the
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gaseous or liquid state, on the other hand, a model reduction into rigid ag-
gregates will cause significant errors. This paper is limited to model reduction
into rigid bodies. The extension to elastoplastic bodies can be imagined but
is beyond the current scope. The ultimate goal is to achieve optimal trade-
off between: maximum system reduction; minimum errors on the macroscopic
dynamics; minimum computational overhead.

The main challenge is to predict when and where merged material should
be refined, or split. Most real systems are in a combination of the three states
of granular media: solid, fluid and gas [16]. If the split conditions are too
restrictive, or the merge condition too progressive, the bulk properties become
wrong. This may appear as incorrect angle of repose, artificial resistance to
compression and shearing forces and erroneous rheology in the fluid state. If
the split conditions are too permissive, or the merge conditions too strict, most
particle will remain free and the there is no computational gain. Also, the
computational overhead of model reduction must be small in comparison to the
computational time for the fully resolved system.

The idea is illustrated in Fig. 1 with an excavator digging in a bed of granular
material. Only a finite domain of the material around the bucket is displaced and
need to be simulated dynamically. The remaining part is static and contribute
merely with supporting contact pressure. When the bucket is filled and starts
to lift, most material co-move rigidly with the bucket. If the purpose of the
simulation is to compute the dynamics of the excavator and the load forces in
the mechanism, the material and the bucket can be approximated by a single
rigid body. When the bucket accelerates or rotate slowly the force distribution
in the granular material change and it might start to flow. Several methods for
predicting splitting of the rigid aggregates are proposed and tested in numerical
experiments. The method are based either on contact events or estimating force
distribution or particle motion by computations in the background.

2 Particles, rigid aggregate and multibodies

This section is devoted to the mathematical representation of contacting par-
ticles and rigid bodies as multibody systems with nonsmooth dynamics and
kinematic constraints.

2.1 Global system variables

The variables for particles, rigid aggregates and other rigid bodies are compo-
nents of the global system variables that we denote x,v,f and M and refer
to as generalized position, velocity, force and mass although they are concate-
nations of linear and rotational degrees of freedom. Quaternions are used for
representing orientations. The matrix dimension of the global quantities are
dim(x) = 7Nb, dim(v) = dim(f) = 6Nb, dim(M) = 6Nb×6Nb, where Nb is the
total number of bodies.
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Figure 1: Illustration of model reduction in an excavation scenario simulated
without model reduction. The particles are color coded by velocity from blue
(stationary) to red. Most particles in the bed are in relative rest and would be
well described by a single rigid body. The particles in the excavator bucket may
be aggregated with the bucket into a single rigid body. The main challenge is
to predict when and where the merged material should split.

2.2 Nonsmooth multibody dynamics

The following equations of motion for nonsmooth multibody dynamics are as-
sumed:

Mv̇+ Ṁv = fext +GT
nλn +GT

t λt +GT
r λr +GT

j λj, (1)

0 ≤ εnλn + gn + τnGnv ⊥ λn ≥ 0, (2)

γtλt +Gtv = 0, |λ(α)
t | ≤ µt|G(α)T

n λ(α)
n |, (3)

γrλr +Grv = 0, |λ(α)
r | ≤ µrr|G(α)T

n λ(α)
n |, (4)

εjλj + ηjgj + τjGjv = 0. (5)

The first equation is the Newton-Euler equation of motion for rigid bodies with
external (smooth) forces fext and constraint forceGTλ with Lagrange multiplier
λ and Jacobian G, divided into normal (n), tangential (t), rolling (r) and ar-
ticulated and possibly motorized joints (j). Details are found in the Appendix.
Equations (2)-(3) are the Signorini-Coulomb conditions with constraint regu-
larization and stabilization terms εn, τn and γt. With εn = τn = 0, Eq. (2)
state that bodies should be separated or have zero overlap, gn(x) ≥ 0, and if
so the normal force should be non-cohesive, λn ≥ 0. With γt = 0, Eq. (3)
state that contacts should have zero relative slide velocity, Gtv = 0, provided
that the friction force remain bounded by the Coulomb friction law with fric-
tion coefficient µt. Eq. (4) similarly constrains relative rotation of contacting
bodies provided the constraint torque do not exceed the rolling resistance law
with rolling resistance coefficient µr and radius r. The constraint force, GT

j λj,
arise for articulated rigid bodies jointed with kinematic links and motors rep-
resented with the generic constraint equation (5). With εj, τj = 0 and ηj = 1,
it become an ideal holonomic constraint g(x) = 0. For ε, η = 0 and τ = 1, it
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become an ideal Pfaffian constraint Gẋ = 0. With ε, η, τ 6= 0 it can represent a
generic constraint with compliance and damping. The set of equations (1)-(5)
may thus model granular materials strongly coupled with mechatronic systems,
e.g., vehicles, robots and mechanical processing units.

The Lagrange multiplier become an auxiliary variable to solve for in ad-
dition to position and velocity. The regularization and stabilization terms, ε
and γ, introduce compliance and dissipation in motion orthogonal to the con-
straint manifold. In the absence of the inequality and complementarity con-
ditions, the regularized constraints may be viewed as Legendre transforms of
a potential and Rayleigh dissipation function of the form Uε(x) =

1
2εg

Tg and
Rγ(x,v) = 1

2γ (Gv)T (Gv) [17, 18]. This enable modeling of arbitrarily stiff
elastic and viscous interactions in terms of constraint forces with direct map-
ping between the regularization and stabilization terms to physical material
parameters. This is applied to map the stiffness and damping terms from the
nonlinear Hertz contact law, or linear spring and dashpot, from conventional
(smooth) discrete element method to the constraint based and nonsmooth dis-
crete element method. The detailed constraints, Jacobians and parameters are
found in Ref. [19] and summarized in Appendix A together with the numerical
integration scheme used in this paper.

The dynamics is allowed to be nonsmooth which means that velocities may
change discontinuously in time. Impacts and frictional stick-slip transitions
may thus be considered as instantaneous events and propagate immediately
through the entire system by an impulse transfer altering the velocities from
v− to v+. The contacts are divided into impacts and continuous contacts,
depending on the magnitude of the incoming relative normal velocities Gnv−.
The impulse transfer through the system should satisfy the Newton impact law,
G(n)

n v+ = −eG(n)
n v−, with coefficient of restitution e for the impacts (n), as

well as preserve all remaining constraints (m) on velocity level, G(m)v+ = 0.

2.3 Particles

Each elementary granule is referred to as a particle and is modeled as a rigid
body with solid geometry. A particle is either free or part of a rigid aggregate
of particles. Each free particle is represented by a dynamic discrete element
obeying the equation of motions in Sec. 2.2 and may interact with other particles
and rigid aggregate bodies via contacts. Each particle that is part of a rigid
aggregate is a kinematic discrete element that co-move rigidly with the aggregate
body. No forces are applied to aggregated particles. For simplicity, particles
are assumed spherical but can easily be extended to more general geometric
shapes. Reference to a specific particle is made by latin indices, e.g., a, b, . . . =
1, 2, . . . , Np, and we use square brackets to emphasize particle index. We use the

notations ~x[a], ~v[a], ~f[a], m[a] and d[a] for position, translational velocity, force,
mass and diameter, and ~e[a], ~ω[a], ~τ[a] and I[a], for orientation, angular velocity,
torque and inertia tensor. Spatial components of a vector or matrix is indexed
by α, β = 1, 2, 3 referring to the x, y, z axes in a global Cartesian coordinate
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system, e.g., x
[a]
α and Iαβ . We concatenate these variables into a particle’s

generalized position, velocity, force and mass, denoted x[a],v[a], f[a] and M[a],
with v[a] = (~vT

[a], ~ω
T
[a])

T etc. and M[a] = diag(m[a]13×3, I[a]).

2.4 Rigid aggregates

A rigid aggregate, or just aggregate, is a rigid body that represent an aggregate of
particles co-moving as a single rigid body. The rigidity is an assumed collective
result of the contact forces creating a jammed state although no such internal
forces are modeled or computed explicitly. The variables of rigid aggregates are
represented with similar notations as for particles, e.g., x[A] and M[A], but with
capital latin indices A,B, . . . = 1, 2, . . . , Na. The set of particles that constitute
an aggregate A is denoted NA. The relation between the dynamic variables of
the aggregate and the particles are illustrated in Fig. 2 and computed as follows:

m[A] =
∑

a∈NA

m[a], (6)

~x[A] = m−1
[A]

∑

a∈NA

m[a]~x[a], (7)

~v[A] = m−1
[A]

∑

a∈NA

m[a]~v[a], (8)

I
[A]
αβ =

∑

a∈NA

m[a]

(

|~r[aA]|2δαβ − r[aA]
α r

[aA]
β

)

, (9)

~ω[A] = I−1
[A]

∑

a∈NA

m[a]~r[aA] × ~v[aA], (10)

where ~r[aA] = ~x[a] − ~x[A] and ~v[aA] = ~v[a] − ~v[A]. The kinematics of the aggre-
gated particles a ∈ NA is

~x[a] = ~x[A] + ~r[aA], (11)

~v[a] = ~v[A] + ~ω[A] × ~r[aA], (12)

~ω[a] = ~ω[A]. (13)

2.5 Multibodies

By elementary rigid bodies it is meant bodies that represent other than granular
bodies, e.g., part of an articulated multibody. Elementary rigid bodies are
also included in model reduction and may form reduced aggregates with both
elementary rigid bodies and particles. But the additional complexity of merge
and split conditions in articulated system is not covered here. For convenience
elementary rigid bodies are represented with the same notation as used for
aggregates, that is, capital index in square brackets [A].
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x[A]

v[A]

x[a]

v[a]

A

a

r[aA]

Figure 2: Illustration of a rigid aggregate of contacting particles and some free
particles.

2.6 Contacts

The set of contacts is denoted Nc. Integer n = 1, 2, . . . , Nc is used for contact
index and this is emphasized by round brackets, e.g., g(n). The gap function
δ(x) measure the magnitude of overlap between two contacting bodies. Contact
forces and velocities are sometimes decomposed in the directions of contact
normal, ~n and tangents, ~t1 and ~t2. The relative velocity at a contact n between

a particle a and a rigid body A can thus be written ~u(n) = ~v[a] + ~ω[a] × ~d
(n)
[a] −

~v[A]− ~ω[A]× ~d
(n)
[A] , where

~d
(n)
[a] is the position of the contact point relative to ~x[a]

and ~d
(n)
[A] relative to ~x[A].

3 Adaptive model order reduction

Let the following equations represent the full system of particles and elementary
rigid bodies coupled with constraints

Mẍ+ Ṁẋ = fext +GTλ, (14)

ελ+ ηg(x) + τGẋ = 0, (15)

having solution x ∈ R
n and λ ∈ R

m. The constraint equation (15) represent
the collection of both position and velocity constraints and it is assumed to be
appended with additional inequalities and complementarity conditions for the
multiplier. The full system, (14)-(15), is approximated with a reduced system
x̃ ∈ R

ñ and λ̃ ∈ R
m̃ with less degrees of freedom ñ < n and m̃ < m. The

reduced system belong to a subspace of the full system. We define the model
order reduction level as h = 1 − ñ/n. When h → 1 the system is maximally
reduced to one single rigid body and when h = 0 it is fully resolved in all free
particles. The approximate relation between the reduced and full system is
expressed using subspace transformation matrices P ∈ R

n×ñ and Q ∈ R
m×m̃
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such that

x ≈ Px̃, (16)

λ ≈ Qλ̃. (17)

Given a rigid aggregate, the transformation matrix P is easily constructed from
the rigid transformations in Eq. (11), that relate the positions of the aggregated
particles relative to the aggregate centre. In a rigid aggregate the inter-particle
constraints are redundant. The transformation matrix Q eliminate the redun-
dant equations when a rigid aggregate is substituted for a collection of particles.
The reduced multibody system become

M̃¨̃x = f̃e + G̃
T
λ̃, (18)

ελ̃+ ηg̃(x̃) + τG̃ ˙̃x = 0 (19)

with M̃ = PMPT , f̃e = Pfext− ˙̃
M ˙̃x, G̃ = QTGP, λ̃ = Qλ, g̃ = Qg. Note that

˙̃
M ˙̃x is included as an explicit force in f̃e as is common and often referred to as
the gyroscopic force. If the complexity of the reduced system is much smaller
than the original, ñ≪ n and m̃≪ m, the computational efficiency can increase
dramatically.

The reduced system can, however, expected to deviate more or less from the
original system. The model reduction may be applied adaptively to keep the
approximation error below a specified error tolerance. The approximation error
is defined

E(t) = x(t)−Px̃(t) (20)

and can be decomposed in two orthogonal terms E(t) = E⊥(t) + E‖(t), where

E⊥(t) =
[

1−PPT
]

x(t), (21)

E‖(t) = P
[

PTx(t)− x̃(t).
]

(22)

The orthogonal error, E⊥, arise when the trajectory of the full system is not
strictly within the subspace of the projection and do not move entirely like a
single rigid body. The error parallel to the projection, E‖, means that the motion
of the reduced system behave different from the original system although they
represent equivalent rigid systems, if E⊥ = 0. The parallel error can only be
computed a posteriori. This may be practically infeasible as it requires solving
both the full and reduced system and involve explicit projections between the
spaces. The orthogonal error, on the other hand, can be estimated a priori. By
substituting Eq. (15) into (14) and multiplying by P⊥ ≡ 1 −PPT one obtain
an evolution equation for the orthogonal approximation error

Ë⊥ = M
¯

−1
[

f
¯e
− η

ε
G
¯

Tg− τ

ε
G
¯
TG
¯
ẋ
¯

]

(23)

where M
¯

= P⊥MPT
⊥, f¯e

= P⊥fext − Ṁ
¯
ẋ
¯
and G

¯
= GP⊥. The rigid aggregate

is a good approximation only if the error is small. When the error is large, or
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growing rapidly, the reduced approximation should not be applied. When parti-
cles co-move rigidly, the third term vanishes, G

¯
ẋ
¯
= 0, since the relative contact

velocity is zero. The first and second term cancel when force balance occur in
the subspace, f

¯e
= η

ε
G
¯

Tg. This is equivalent to zero relative acceleration in

the contact points, G
¯
ẍ
¯
= 0. Observe that M

¯
−1f
¯e

= 0 in the case of uniform
gravity, since this cause no relative acceleration. We thus identify the following
conditions for a rigid aggregate to be a good approximation

−ξ−v < G
¯
(n)ẋ

¯
< ξ+v (24)

and
∣

∣

∣
f
¯e[a]
− η

ε
G
¯

T
[a]g

∣

∣

∣

∣

∣

∣
f
¯e[a]

∣

∣

∣
+
∣

∣

∣

η
ε
G
¯
T
[a]g

∣

∣

∣

≤ ξf (25)

for each contact n and particle a of the aggregate with upper and lower thresh-
olds for relative contact velocity ξ±v and force balance bound ξf . The inequali-
ties in Eq. (24) should be understood component wise for normal, tangent and
rolling. The conditions (24) and (25) provide a starting point for adaptive model
order reduction and refinement by merging and splitting particles into and from
rigid aggregates. Identifying wether particles should merge is a simple exam-
ination of Eq. (24) and (25). Predicting if and which particle should split is
non-trivial since it requires some form of estimation of the unknown dynamics
of the fully resolved system.

An algorithm for numerical simulation of nonsmooth multibody systems of
the form of Eqs. (1)-(5) and with adaptive model reduction is given in Algorithm
1. The algorithm is based on the SPOOK stepper [18] using fix timestep, ∆t,
and involve solving a mixed complementarity problem (MCP) with matrix H,
vector b and regularization and stabilization matrices Σ and Υ that are found
in the Appendix. A popular choice of MCP solver for NDEM is the projected
Gauss-Seidel (PGS) method, which is also listed in the Appendix. It should be
straightforward to modify the algorithm to other time-integration schemes and
solver methods for nonsmooth dynamical systems. The test for model reduction
is done directly after the continuous MCP solve when the new velocities are
known. If this instead is placed after the position update, some contacts that
fulfil condition (24) may be lost due to infinitesimal geometric separation. This
would make the model reduction unnecessarily sensitive to solver truncation
errors. Particles with contacts that fulfil the test are merged. The test for model
refinement is done after contact detection and before solving the impact stage
MCP. This way the rigid aggregates can be split before the impact impulses are
computed and transferred. Otherwise the granular matter will behave overly
rigid. The merge and split processes are described in more detail below as well
as a number of methods for predicting model refinement.
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Algorithm 1 main algorithm

1: define constants and parameters
2: initialil state: (x0,v0)
3: for i = 0, 1, 2, . . . , t/∆t− 1 do ⊲ time-stepping
4: [g,Nc] = contact detection(xi,vi)
5: [G,Σ,Υ] = compute contact data(xi,vi,Nc)
6: split(xi,vi,g,G,Nc) ⊲ model refinement
7: H = compute H(M,G,Σ)
8: b− = compute b (G,vi, e)
9: [v+

i ,λ
+
i ] = mcp(H,b−) ⊲ impact stage MCP

10: b = compute b(g,G,v+
i , fext,Υ)

11: [vi+1,λi+1] = mcp(H,b) ⊲ continuous stage MCP
12: vi+1 = co-move(xi,vi+1) ⊲ update aggregate particles
13: merge(xi,vi,g,G,Nc) ⊲ model reduction
14: xi+1 = xi +∆tvi+1 ⊲ position update
15: end for

3.1 Merge

The model reduction test consist of traversing the contact network Nc and
testing the condition for rigid motion in Eq. (24). The condition is divided into

G
(n)
n[aA]v ∈ [−ξi-mrg

nv , ξs-mrg
nv ], (26)

G
(t)
t[aA]v ∈ [−ξmrg

tv , ξmrg
tv ], (27)

G
(r)
r[aA]v ∈ [−ξmrg

rv , ξmrg
rv ], (28)

where we separate between incident and separating normal velocity thresholds,
ξi-mrg
nv and ξs-mrg

nv , and use symmetric tangential and rolling velocity thresholds
ξmrg
tv and ξmrg

rv . The test result in a set of disconnected networks representing
rigidly co-moving bodies. Each such network is merged into rigid aggregates.
Both particles and elementary rigid bodies are allowed to merge into aggregates.
All bodies that are merged into an aggregate body are changed from being a
dynamic body to a kinematic body co-moving with the new aggregate body. The
aggregate variables m[A], ~x[A], ~v[A],~I[A], ~ω[A] are computed by Eq. (6)-(10). The
total mass and momentum is preserved when bodies are merged. The merge
procedure is illustrated in Fig. 3. It should be emphasized that the contact
network need not a force network, which would require solving Eq. (1)-(5), but
merely a connectivity network, and is automatically produced by the contact
detection algorithm.

3.2 Split

There are a number of ways to predict if and how the reduced model should
be refined by splitting the rigid aggregates into smaller aggregates and free

10



Figure 3: Illustration the merge procedure: detection of contacts involving
two aggregates and 11 free particles (left), identification of two disconnected
networks fulfilling the merge conditions (middle), creating two new aggregates
(right). The colour intensity codes velocity.

particles. One strategy is to rely on contact events, that is, trigger splitting
by impacts and separations. Another strategy is to do a fast trial solve in
the background, using a more resolved model, and decide splitting from the
outcome. A third, more heuristic approach, is to add split sensors in the system.
The placement of the sensors can be made automatic, after a posteriori analysis
of previous simulations of the same or similar system, or manually, based on
experience or perspicacity. The split methods can also be used in combination
with each other. The different methods, illustrated in Fig. 4, are outlined in
further detail below and tested in numerical experiments. Observe that the split
process does not affect on the total mass or momentum. The process of splitting

Figure 4: Illustration of different split methods: contact split (left), trial solve
split (middle) and sensor split (right). Blue particles have impacting or sepa-
rating contacts. Red particles are aggregate particles that are to be split from
the aggregate. The dashed grey box represent a split sensor.

an aggregate is the same irrespective of the method used for the prediction. The
split particles are made dynamic and the new aggregates are determined and
created as in the merge process, by analysing the contact network after removing
the split particles and applying Eq. (6)-(10).
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3.2.1 Contact split

Contacts are either impacting, continuous or separating depending on the sign
and magnitude of the relative velocity. For each contact n ∈ Nc, between
particle a and aggregate A, the following conditions for normal, tangential and
rolling motion are tested

G
(n)
n[aA]v /∈ [−ξi-cnv , ξ

s-c
nv ], (29)

G
(n)
t[aA]v /∈ [−ξctv, ξctv], (30)

G
(n)
r[aA]v /∈ [−ξcrv, ξcrv], (31)

with impact split threshold denoted with i-c and separation split threshold with
s-c. If either of the relative contact velocities are found to be outside the valid
domain, the aggregate is refined by splitting off particles at the contact node
n. The split may be applied to some split depth Nc-spl ∈ N along the contact
network from the impact (or separation) node in order to capture shock prop-
agation phenomena. Observe that the split action is merely a redefinition of
which particles are free and which are kinematically bound to aggregate bodies.
This does not immediately alter the position or velocity of any particle. The
split is then proceeded with solving the impact stage MCP and the continuous
stage MCP, see Algorithm 1. There is therefore no risk, other than unnecessary
computations, of splitting too many particles. These will be merged back with
the aggregate if the merge condition is fulfilled after solving the impact and con-
tinuous MCP. The numerical experiments presented in this paper is limited to
splitting aggregate particles that are triggered by impact or separation directly
and their contact neighbours, i.e., Nc-spl = 2. Impacts between two aggregates
are treated the same way.

3.2.2 Trial solve split

A trial solver is run in the background to estimate the dynamics of the full
system. The background system state is initialized by projecting the reduced
sub-space system back to the full resolution space of Eq. (11)-(13). The purpose
of the background solve is not to do precise integration of the particle positions
and velocities but to provide sufficient estimate for if and how to split rigid ag-
gregates. Assuming that the state of the reduced system from previous timestep
was a good approximation of the full system it is conjectured that doing a PGS
solve of the full system MCP with low number of iterations N tr

it will suffice for
this, although the error of such a simulation would increase rapidly over time.
Other alternatives can be imagined, e.g., doing the background computation
using other solvers or on a partially resolved system. The background trial so-
lution is tested for the following conditions for relative velocity of each contact
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n ∈ Nc

G
(n)
n[aA]v /∈ [−ξi-trnv , ξs-trnv ], (32)

G
(n)
t[aA]v /∈ [−ξtrtv, ξtrtv], (33)

G
(n)
r[aA]v /∈ [−ξtrrv, ξtrrv], (34)

and the following conditions for force and torque balance are tested separately
for each aggregated particle a

|~fe[a] −GT
f [a]λ|

|~fe[a]|+ |GT
f [a]λ|

< ξtrf , (35)

|~τe[a] −GT
τ [a]λ|

|~τe[a]|+ |GT
τ [a]λ|

< ξtrτ . (36)

where GT
f [a]λ and GT

τ [a]λ are the force and torque components of the sum of

generalized contact forces acting on particle a, GT
[a]λ =

∑

b∈Na
c

GT
[ab]λ. The

Jacobians are the blocks for linear and rotational degrees of freedom GT
[a] =

[GT
f [a],G

T
τ [a]]. Observe that λ has replaced η

ε
g in the force balance condition

(25). This is a stronger test as it can detect also acceleration due to impulse force
propagation through the system that has not yet resulted in relative contact
velocity or particle displacements. The particles that are indicated by the tests
are eliminated from the aggregate body and activated as a dynamic particle. In
the numerical implementation a small perturbation is added to the denominators
to avoid numerical round-off errors.

3.2.3 Sensor split

The split sensor is simply a geometrical shape that triggers model refinement of
aggregate bodies that overlap with the sensor geometry. The splitting is applied
only to the aggregate particles that overlap the sensor. Observe that the sensors
are physically transparent and do not produce any contact forces. Split sensors
is a useful tool for when it can be anticipated where model refinement is required
without doing a background trial solve. The sensor must be given a size, shape
and position, either manually or automated based on data from simulations,
models or experiments.

4 Numerical experiments

The described method for adaptive model order reduction is investigated in
numerical experiments. The test systems are a conveyor with a continuous for-
mation of a pile on one end and discharge at the other end, a granular collapse
and granular flow in a slowly rotating drum. The granular dynamics from using
model reduction is compared with reference simulations run in full resolution.
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Table 1: Model and NDEM parameters
d 13, 10 mm
ρ 3700 kg/m3

kn 3 kN/m
e 0.18
µt 0.91
µr 0.32
∆t 5 ms
Np 4− 90 · 103
Nit 150
N ref

it 150, 500

The achieved model order reduction level, h(t) = 1 − Ñp(t)/Np, is monitored.
The systems are selected to represent different types of flow and transitions
between static and dynamic states. Model reduction can be expected to work
well for the formation of piles where the dynamics mainly occur in the surface
layers. For granular discharge and collapse there is high risk of approximation
errors by to predict when and where the aggregate should split and flow. In a
slowly rotating drum the granular flow separate in one layer of rapid flowing
material (shear zone) on top of a plug zone that co-rotate with the drum. The
plug zone does not rotate as an ideal rigid body, however, but has a small creep
shear [20] that may render model reduction into rigid aggregates problematic.
The simulations are made using the simulation software AgX Dynamics [21]
with a prototype implementation of the adaptive model reduction algorithms in
Lua scripts [22]. The prototype implementation is not optimized for speed and
memory and the tests are therefore limited to relatively small systems ranging
between Np = 4− 90 · 103 particles. The model and NDEM simulation param-
eters are listed in Table 1 and the adaptive model order reduction parameters
in Table 2. A linear contact model is used, with normal stiffness kn, and may
easily be replaced by the nonlinear Hertz contact law. Mono-sized spherical
particles are used, except in the granular collapse where bi-disperse spheres are
used. Gravity acceleration is 9.81 m/s2. Videos from simulations are available
as supplementary material at http://umit.cs.umu.se/modelreduction/.

The pile formation is performed by emitting particles at a rate of 1000 s−1

from 0.1 m above a planar conveyor surface moving with horizontal speed 0.1
m/s. The emitter surface is 15d× 4d, in which the particle positions are chosen
randomly. The particles quickly come to relative rest on the conveyor, forming
an elongated pile, roughly 10d high and with static angle repose θconv. The
angle of repose is computed as the average inclination of the pile surface defined
by the surface particles in the mid section of the conveyor, neglecting particles
resting directly on the conveyor surface, see Fig. 5. The discharge take place
on the end of the 50d long conveyor, where the material loose support and flow
over the edge. The cross sectional flow distribution in the horizontal plane is
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Table 2: Model order reduction parameters
parameter value

ξi-mrg
nv 2.5 mm/s
ξs-mrg
nv 2.5 mm/s
ξmrg
tv 2.5 mm/s
ξmrg
rv 0.5 rad/s
ξi-mrg
na 5 m/s2

ξs-mrg
na 5 m/s2

ξmrg
ta 5 m/s2

ξmrg
ra ∞ rad/s
Nc-spl 2
ξi-cnv 0.15 m/s
ξs-cnv ∞ m/s
ξctv 0.15 m/s
ξcrv ∞ rad/s
N tr

it 50, 100
ξi-trnv 2.6 m/s
ξs-trnv 0.26 m/s
ξtrtv 0.26 m/s
ξtrrv ∞ rad/s
ξtrf 0.15, 0.25

ξtrτ ∞

15



measured 15d below the conveying surface and the geometric centre of the flow
is computed, (xc, yc). The result is time averaged over 6 s. The conveyor system
involves 90 · 103 particles when the conveyor is filled.

The granular collapse test is made with 4000 particles emitted randomly from
above into a frictionless cubic container with side length 15d. The particles are
left to comte to rest before model reduction is applied. One side-wall is raised
quickly and the particles are left to collapse by the new and unstable force
configuration. Since the side walls are frictionless the raising of the wall does
not disturb the particles other than the change in the confining pressure. The
granular collapse last for about 0.7 s, after which the particle have come to rest
in a semi-pile with well-defined angle of repose, θcollapse. The evolution of the
angle of repose is tracked by estimating the motion of the plane defined by the
particles on the top surface of the granular cube, discarding any particles that
disconnect from the main contact network. Images from simulations are shown
in Fig. 6.

The rotating drum has diameter D = 40d, width w = 7d and is run with
angular velocity Ω = 0.5 rad/s. The corresponding dimensionless Froude num-
ber is Fr ≡ DΩ2/2g ≈ 0.01, which is in the dense rolling flow regime. The
side walls are frictionless while the cylinder surface has the sama friction as be-
tween particles. A slow dense nearly stationary flow with Np = 4864 particles is
established within one drum revolution without applying model reduction and
starting from a regular particle distribution. An image from the simulations is
shown in Fig. 7. The particles have bi-disperse size distribution d1 = 13 mm
and d2 = 10 mm. The mass distribution and cross sectional flow velocity field
are measured and the dynamic angle of repose, θdrum, is computed by tracking
the a D/2 wide section of the surface around the drum centre. When using
sensor split, the sensor is placed around the estimated lift height.

5 Results

The simulation results are labeled either ref-500, ref-150, cs-150, tr-150-50-f or
ctr-150-50-fv, where the first prefix refer to reference simulation or the method
for model reduction, the first number is the number or PGS iterations and the
second number is the number iterations in the background trial solver (tr) using
force balance condition only (f) or in conjunction with velocity condition (fv).
It was found that separation splitting was very sensitive to parameters and
typically lead to either a propagation of splitting over the entire aggregates or
not enough splitting. Therefore it is not applied, i.e., ξs-cnv = ∞, and contact
splitting need to be combined with either sensors (cs) or with trial splitting
(ctr). The results are summarized in Table 3.

The resting angle of repose of the pile formed on the conveying surface is
found to be 40.3± 0.8◦ using contact splitting. This is in good agreement with
the references 41.5 ± 0.7◦ for Nit = 500 and 40.6 ± 0.5◦ for Nit = 150. The
discharge flow at the end of the conveyor is presented in Fig. 8. The cross-
sectional flow distribution is very similar in the three simulations. The model
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v [m/s]
0 0.75 1.50.50.25 1.0 1.25

Figure 5: Simulation test for pile formation and discharge on the ends of a
conveyor. The colour is coded by particle velocity relative to the conveyor
speed and ranges from 0 (blue) to 1.5 m/s or above (red).

Table 3: Simulation results

ref-500 ref-150 cs-150 tr-150-50-f tr-150-50-fv
θconv 41.5± 0.7◦ 40.6± 0.5◦ 40.3± 0.8◦

hmean
conv 0 % 0 % 85 %

θcollapse 36◦ 30◦ 38◦ 34◦

hcollapse 0 % 0 % 50− 100 % 50− 100 %
θdrum 44± 3◦ 43± 2◦ 49± 5◦ 44± 3◦ 45± 2◦

hmean
drum 0 % 0 % 70± 10 % 40± 10 % 40± 10 %
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t = 0 s

t = 0.1 s

t = 0.2 s

t = 0.6 s

t = 1.2 s

t = 0.6 s

Figure 6: Image sequence from granular collapse. The colour is coded by par-
ticle velocity ranging from 0 (blue) to 0.5 m/s or above (red). The top five
figures are reference simulation and the bottom figure uses model reduction
with background trial solve split.

18



|v - ω×r|
|ω×r|

0 0.10.05

Figure 7: Image from drum flow simulation. The colour is coded by particle
relative velocity to rigid co-motion with the drum, ranging from 0 (blue) to
10% or above (red). The top figure show the reference simulation, the middle
one uses model reduction with background trial solve split and the bottom one
contact event and sensor split.
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Figure 8: The discharge flow through a horizontal cross-section beneath the end
of the conveyor. The contour plots show the accumulated particles distribution
from the reference simulations Nit = 500 (left), Nit = 150 (right) and simulation
with model reduction using contact and sensor splitting (right). The crosses
mark the geometric centre of the particle distributions.

order reduction level was steady around h = 85 % during the simulation.
The distribution of particles after the granular collapse are displayed in

Fig. 9. The positions are measured at time t = 2 s. The angle of repose,
θcollapse, of the Nit = 500 reference pile is 36.2◦, to be compared with 29.9◦

for the Nit = 150 reference and 37.5◦ and 34◦ for model reduction with back-
ground trial solve with force (f) and force and velocity (fv) split conditions,
respectively. The evolution of the inclination angle of the top surface of the
collapsing cube is found in Fig. 10. The initial collapse is similar in all the
simulations except the tr-150-50-f that evolve somewhat slower initially. The
Nit = 150 reference simulation reach as highest 34◦ and then decrease gradually
due to insufficient sliding and rolling resistance with that number of iterations.
The model reduction simulation become rigid at its maximum angle and fail
to resolve the final relaxation of the slope through small avalanches, that are
present in the Nit = 500 reference simulation. The combination of contact split
and background trial split did not resolve this. The evolution of the model re-
duction level is found in Fig. 11. In the background trial solve split simulation
the reduction level varies between 50 and 100 %. This is close to the theoretical
maximum for the given thresholds, found by analysing the Nit = 500 reference
simulation.

Sample states from model reduction of drum flow simulations are presented
in Fig. 7. The evolution of the dynamic angle of repose is found in Fig. 12. The
time-averaged angle of repose for the reference Nit = 500 is θdrum = 44±3◦. The
background trial solve split method produces a flow with angle 44±3◦ while the
contact plus sensor split methods produces a flow with angle 49± 5◦ and with
notable artefacts appearing as structures with angle much larger than the angle
of repose and high lifting of material in the drum. This is also the reason for
the bigger variation on the averaged angle of repose. No thresholds were found
for the contact split method alone that showed any significant model reduction
but did not produce large approximation errors (overly rigid). No thresholds
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Figure 9: The final particle distribution in the granular collapse simulations:
(a) Nit = 500 reference; (b) Nit = 150 reference; (c) model reduction tr-15-50-
f; (d) model reduction tr-15-50-fv. The blue line indicate the angle of repose
computed from the surface defined by the red particles.
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Figure 10: Evolution of the top surface angle during granular collapse.
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Figure 11: Model reduction level as function of time in granular collapse.
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Figure 12: Evolution of the dynamic angle of repose in the rotating drum.
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Figure 13: Model reduction level h as function of time in the rotating drum.

were found for the contact split method alone that showed any significant model
reduction but did not produce large approximation errors (overly rigid). The
model reduction level over time is presented in Fig. 13. For the contact method
plus sensor split method it varies between 50−75 %. The background trial solve
split oscillate between 25 and 50%. No parameters were found that gave higher
level of reduction without increase of artifacts in the dynamics.

6 Computational acceleration

The potential computational acceleration of using model order reduction in
NDEM simulations is estimated and discussed in this section. The time required
for simulating treal seconds of evolution is the product of the number of time
steps and the computational time for each step

tcomp =
treal
∆t
· [tcoll + tmod + tsolve] (37)

with time serially separated in collision detection, tcoll, model order reduction,
tmod and solver time, tsolve. We define the computational speed-up from model
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order reduction as S ≡ t0comp/tcomp(h), where t0comp refer to a simulation of the
fully resolved system without adaptive model reduction, while tcomp(h) is the
time for a simulation with model reduction level h. It is characteristic for NDEM
simulations that tsolve ≫ tcoll, e.g., 88% of the total time was reported in [23].
We therefore discard collision detection time from here on. When using PGS,
the solve time can be estimated by tsolve = Kcpu · Nc · Nit/S‖, where Kcpu is

the computational time for doing a single contact constraint solve, Nc ∼ npÑp

is the number of contact constraints assuming on average 2np contacts per
particle, and S‖(Ncpu) is the parallel speed-up of Ncpu cores. Given a spatial
error tolerance, ǫ, the required number of iterations scale with the number of
particles as Nit = cÑγ

p /ǫ [19], for constant c ≈ 0.1 and exponent γ = 1/nD that
depend on the whether the system is close to a linear column (nD = 1) , 2D
plane (nD = 2) or a 3D volumetric system (nD = 3). The solve time can thus
be written

tsolve(h) = cKcpu [(1− h)Np]
1+γ /ǫS‖. (38)

The computational overhead for doing merge and refinement using contact or
sensor based splitting do not involve more than one pass through the contact net-
work. The computational time can thus be estimated by tmod = αKcpunpNp/S‖

for some constant α < 1, since the operations do not involve solving the local
contact problem. This imply the following speed-up

S ≈ 1

αN−γ
p + (1− h)1+γ

. (39)

Using background trial solve split for model reduction is more demanding.
If a PGS background solve can be limited to fraction β < 1 of the full system
and run with a larger error tolerance, ǫmod > ǫ, the computational overhead can
be estimated to tmod = cKcpu [βNp]

1+γ
/ǫmodS‖ and the speed-up become

S ≈ 1

β1+γ · ǫ/ǫmod + (1− h)1+γ
. (40)

The computational speed-up, depending on model reduction level h and
overhead factor δ = αN−γ

p or δ = β1+γ · ǫ/ǫmod, is plotted in Fig. 14 for
the case of 3D volumetric systems (γ = 1/3). A significant speed-up of a
factor 5 can be achived even at the modest model reduction level h = 0.7.
The speed-up can reach up to 50 at h = 0.95 and overhead δ = 0.01. The
potential speed-up is lost almost entirely if the computational overhead cannot
be made lower than δ = 0.1. This should be easy to accomplish in the case of
contact and sensor based splitting, especially for large systems where δ ∝ N−γ

p .
Achieving a significant speed-up from background trial solve split thus relies on
β1+γ · ǫ/ǫmod . 0.1. This can be reached if it is sufficient to apply background
solve on a fraction of β = 0.2 of the full system or use a background error
tolerance ǫmod = 10 · ǫ. Combining the two possibilities, an overhead of about
0.1 can be reached by β = 0.5 and ǫmod = 4 · ǫ. The prototype implementation
do not scale sufficiently well for large systems to verify these estimates. To
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Figure 14: The computational speed-up depending on model reduction level and
computational overhead.

ease prototyping and experimentation with different algorithms and parameters
for model order reduction these routines were implemented in a Lua scripting
framework which lead to an unnecessary amount of data copying of states.

7 Conclusion and discussion

A method for adaptive model order reduction for nonsmooth discrete element
simulation has been developed and analysed. In the reduced model rigid ag-
gregate bodies are substituted for collections of contacting particles collectively
moving as rigid bodies. Conditions for model reduction and refinement are de-
rived from a model approximation error. The scaling analysis show that the
computational performance may be increased by 5 − 50 times for a model re-
duction level between 70− 95 % given that the computational overhead do not
exceed the given scaling conditions. The method is highly applicable for gran-
ular systems with large regions in resting or rigidly co-moving state over long
periods. It is less efficient and harder to parametrize for systems with sudden
and frequent transitions between rigid to liquid or gaseous regime and it is di-
rectly inappropriate for systems dominated by shear motion. Furthermore, the
presented method is fully compatible with rigid multibody dynamics and can
support particles merging with articulated mechanisms, such as the excavator
in Fig. 1.

A number of observations were made in the numerical experiments. When
doing model refinement based on contact events, it is in general insufficient to
split only particles that are impacted directly. The refinement typically need to
propagate further into the contact network. The refinement depth N spl

c = 2 was
used in the experiments. Refinement based on contact separation events was
found to be particularly difficult to parametrize and was eventually not used
at all. Small changes in the separation threshold easily altered the behaviour
from non-responding to splitting propagating throughout the contact network.
As an effect, contact event based refinement is not reliable for simulating quasi-
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stable configurations and gravity driven flow. In the absence of impacts, rigid
aggregates remain rigid indefinitely. Split sensors can be used to remedy this
when there is knowledge on where to place such sensors to guarantee refinement.

When using background trial solve it was found that the force balance con-
dition alone give reliable prediction for model refinement. No improvement was
found by adding torque balance or contact velocity conditions. Using back-
ground solve, velocity condition alone led to higher fluctuations in the model
order reduction level than using both force and velocity conditions.

To increase the applicability of adaptive model order reduction for discrete
element methods further, the reduced model need to be extended beyond rigid
aggregates to elastic and shearing modes. The application of model order re-
duction to conventional smooth DEM is also an interesting question to address.

Appendix

A. Numerical integration of NDEM

The numerical time integration scheme is based on the SPOOK stepper [18]
derived from discrete variational principle for the augmented system (x,v,λ, λ̇)
and applying a semi-implicit discretization. The stepper is linearly stable and
O(∆t2) accurate for constraint violations [18]. Stepping the system position and
velocity, (xi,vi) → (xi+1,vi+1), from time ti to ti+1 = ti + ∆t involve solving
a mixed complementarity problem (MCP) [24]. For a NDEM system the MCP
take the following form

Hz+ b = wl −wu

0 ≤ z − l ⊥ wl ≥ 0

0 ≤ u − z ⊥ wu ≥ 0

(41)

where

H =









M −GT
n −GT

t −GT
r

Gn Σn 0 0
Gt 0 Σt 0
Gr 0 0 Σr









, (42)

z =









vi+1

λn,i+1

λt,i+1

λr,i+1









, b =









−Mvi −∆tM−1fext
4
∆t

Υngn −ΥnGnvi

0
0









, (43)

and the solution vector z contains the new velocities and the Lagrange multipli-
ers λn, λt and λr. For notational convenience, a factor ∆t has been absorbed
in the multipliers such that the constraint force reads GTλ/∆t. The upper and
lower limits, u and l in Eq. (41), follow from Signorini-Coulomb and rolling re-
sistance law with the friction and rolling resistance coefficients µt and µr. Since
the limits depend on the solution this is a partially nonlinear complementarity
problem. wl and wu are temporary slack variables. Each contact n between
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body a and b add contributions to the constraint vector and normal, friction
and rolling Jacobians according to

g(n) = ~nT
(n)(~x[a] + ~d

(n)

[a] − ~x[b] − ~d
(n)

[b] )
eH
(α),

G
(n)
n[a] = eHg

eH−1
(α)

[

−~nT
(n) −(~d(n)

[a] × ~n(n))
T

]

,

G
(n)
n[b] = eHg

eH−1
(α)

[

~nT
(n) (~d

(n)

[b] × ~n(n))
T

]

, (44)

G
(n)
t[a] =





−~t(n)T1 −(~d(n)

[a] ×~t
(n)

1 )T

−~t(n)T2 −(~d(n)

[a] ×~t
(n)

2 )T



 ,

G
(n)
t[b] =





~t
(n)T

1 (~d
(n)

[b] ×~t
(n)

1 )T

~t
(n)T

2 (~d
(n)

[b] ×~t
(n)

2 )T



 ,

G
(n)
r[a] =







01×3 ~t
(n)T

1 01×3 −~t(n)T1

01×3 ~t
(n)T

2 01×3 −~t(n)T2

01×3 ~n(n)T
01×3 −~n(n)T






,

G
(n)
r[b] =







01×3 −~t(n)T1 01×3 ~t
(n)T

1

01×3 −~t(n)T2 01×3 ~t
(n)T

2

01×3 −n(n)T 01×3 ~n(n)T






,

where ~d
(n)

[a] and ~d
(n)

[b] are the positions of the contact point n relative to the
particle positions ~x[a] and ~x[b]. The orthonormal contact normal and tangent

vectors are ~n(n), ~t(n)1 and ~t(n)2 . For linear contact model eH = 1 and for the
nonlinear Hertz-Mindlin model eH = 5/4. The diagonal matrices Σn, Σt , Σr

and Υn contain the contact material parameters and are as follows

Σn =
4

∆t2
εn

1 + 4 τn
∆t

1Nc×Nc
,

Σt =
γt
∆t

12Nc×2Nc
,

Σr =
γr
∆t

13Nc×3Nc
, (45)

Υn =
1

1 + 4 τn
∆t

1Nc×Nc
.

The MCP parameters map to DEM material parameters by εn = eH/kn, γ
−1
n =

knc/e
2
H
and τn = max(ns∆t, εn/γn), with elastic stiffness coefficient kn and vis-

cosity c. For the Hertz-Mindlin contact law, kn = eHE
√
r∗/3(1 − ν2) where

r∗ = (ra + rb)/rarb is the effective radius, E is the Young’s modulus and ν is
the Poisson ratio. For small relative contact velocities the normal force approx-

imates G(n)T
n λ

(n)
n ≈ ε−1

n G(n)T
n g

(n)
n = ±kn

[

g2eH−1
n + cg

2(eH−1)
n ġn

]

n. High ingo-

ing velocities are treated as impacts and this is done post facto. After stepping
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the velocities and positions an impact stage follows. This include solving a MCP
similar to Eq. (41) but with the Newton impact law, G(n)

n v+ = −eG(n)
n v−, re-

placing the normal constraints for the contacts with normal velocity larger than
an impact velocity threshold vimp. The remaining constraints are maintained

by imposing G(n)v+ = 0. This can be expressed by a matrix multiplication
Gnv+ = −EGnv−, where the diagonal matrix E values alternate between e
and 0 for impacting and resting contacts, respectively. The MCP is solved us-
ing a projected Gauss-Seidel (PGS) algorithm, as described in Ref. [19]. The
algorithm is listed in Algorithm 2. The NDEMmethod with PGS solver is imple-
mented in the software AgX Dynamics [21]. In the present study γt = γr = 10−6,
ns = 2 was used and a linear contact model, eH = 1, for consistency with con-
tacts between elementary rigid bodies and aggregate bodies, for which linear
contact constraints are default in AgX.

Algorithm 2 PGS solver for the MCP

if impact stage then

bn = EGnv

else if continuous stage then

bn = (4/∆t)Υngn −ΥnGnv

pre-step v = v+∆tM−1fext
end if

q = [−bT
n , 0, 0]

T

for k = 1, . . . , Nit and while criteria(r) do
for each contact n = 0, 1, . . . , Nc − 1 do

for each constraint α of contact n do

r
(n)
α,k = −q(n)

α,k +G(n)
α v ⊲ residual

λ
(n)
α,k = λ

(n)
α,k−1 +D−1

α,(n)r
(n)
α,k ⊲ multiplier

λ
(n)
α,k ← projCµ

(λ
(n)
k ) ⊲ project

∆λ
(n)
α,k = λ

(n)
α,k − λ

(n)
α,k−1

v = v+M−1GT
α,(n)∆λ

(n)
α,k

end for

end for

end for
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