Volume xx200y), Number z, pp. 1-12

Massless Cable for Real-time Simulation

M. Servint and C. Lacoursiéfe

1Department of Physic§HPC2N/VRIab and Dept. of Computing Science
Umea University, SE-901 87 Umed, SWEDEN

Abstract

A technique for real-time simulation of hoisting cable eyst based on a multibody non-ideal constraint is pre-
sented. The hoisting cable constraint is derived from th#ecmternal energies for stretching and twisting. Each
hoisting cable introduces two constraint equations, omesfaetching and one for torsion, which include all the
rigid bodies attached by the same cable. The computatiodyzes the global tension and torsion in the cable as
well as the resulting forces and torques on each attached.bidie complexity of the computation grows linearly
with the number of bodies attached to a given cable and is lyeakipled to the rest of the simulation. The non-
ideal constraint formulation allows stable simulationscables over wide ranges of linear and torsional stiffness,
including the rigid limit. This contrasts with lumped eleméormulations including the cable internal degrees
of freedom in which computational complexity grows at ldiastarly with the number of cable elements—usually
proportional to cable length—and where numerical stapiig sensitive to the mass ratio between the load and the
lumped elements.

Categories and Subject Descript@ascording to ACM CCS) 1.3.5 [Computer Graphics]: Physically based modeling
1.3.7 [Computer Graphics]: Virtual reality

1. Introduction geometric effect of dynamics on short time and length scales
that is intractable to simulate directly. A hinge consttéan
instance replaces much detailed contact physics with a sim-
ple kinematic condition on a pair of rigid bodies.

Stable and fast numerical integration of mechanical system
is an essential component of interactive, physics driven si
ulator systems, which are widely used in virtual environtnen
heavy machinery operator tral_nln_g applications. Current ' When the constraint forces are solved for explicitly us-
search and development in this field focuses on developing . . . L :

; . ing a first order linear approximation as done for instance
physical models that are well adapted to the required ldvel o . R

. s . . in[Bar96] and [WGW90], constraint violation never exactly
detail of these applications, and the corresponding nuwaleri

. : . : - vanishes. At best, if a robust stabilization method is used,
methods suitable for the real-time requirements in stabili R o N -
constraint violation exhibitslamped oscillationUsing the
speed, and accuracy.

physics-based stabilization scheme described in [Laa)6] f
Real-time numerical integration of systems of constrained instance, constraint relaxation dynamics can be used to ex-
and contacting rigid bodies has reached some level of ma- tend rigid multibody modeling in the flexible regime. In
turity and optimized software libraries are widely avaieab ~ what follows, we use the regularized integration scheme
for this problem. See Ref. [ESHDO05] for an overview. Rigid of [Lac06] in conjunction with a novel constraint definition
multibody models are sufficient for a number of applications to model the effect of a massless cable under tension joining
ranging from vehicle dynamics to bio-mechanical systems a set of rigid bodies. The result is a model of a hoisting ca-
for instance. Constraints enforcing restrictions on tHa-re  ble which connects a set of rigid bodies—which may also be
tive motion of a set of the rigid elements, are essential for otherwise constrained-viafature defined as a reference
producing useful models. Typical constraint librarieseofi frame rigidly attached to a body. The constraint preserves
whole range, from simple ball joints to a car-wheel assembly the total length of the cable defined as the sum of the Eu-
including suspension and steering. Constraints modeldhe n  clidean distance between the attachment points. In additio
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2 M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation

by including the geometry of the fixture in the computation, 2.2. Previous work
the constraint can be extended to preserve total torsion be-
tween the endpoint. The resulting constraint is relaxed as
described in [Lac06] to model the cable elasticity for both
overall stretching and torsion. That is, we map the condtrai
stabilization parameters to physical parameters. Thdtresu
is two constraint equations generating constraint foroes a
torques on the set of connected rigid bodies. In these models, the cable is represented by segments, each
modeled using either a point particle or a rigid body. Each
The rest of this article is organized as follows. Sectton  adjacent pair of bodies is connected with a spring and
provides a brief review of requirements and previous work. damper system, a more general force, or with a pairwise con-
Specific contributions of this paper are summarized in sec- straint. A system of particles with spring-damper forces wa
tion 3. The constraint based elastic cable model is presented applied to surgical thread simulation in [LMGCO02] and to
in section4 along with background material on elasticity the-  virtual prototyping of assembly tasks in [LS01]. A pendu-
ory, rigid multibody systems, and integration methods. Va- |lum based on constrained rigid bodies forming a chain is
lidity of the model and associated numerical method is inves presented in [RGLO5]. The lumped element model is intu-
tigated and final results are presented in sediddummary itively clear and relatively simple and may be realized mak-
and conclusions are found in sectién ing use of existing optimized multibody dynamics code, in-
cluding routines for geometric collision detection. Withits
able model for the segment forces the cable will produce ac-
curate dynamics, that may include elastic deformations. A
cable made of a simple chain pérticleswith nearest and

There are several approaches to cable simulation at inter-
active rate. We begin by listing different cable models with
their advantages and disadvantages.

Lumped Element Models

2. Motivation and Background next-nearest neighbor interactions can however not model
twisting resistance as the particles have no orientation, u
2.1. Requirements for hoisting cables less complicated forces involving distant neighbors are in

cluded. The disadvantage of lumped element based cables is
The focus of this paper is the real-time numerical integra- that it iscomputationally costlandunstable When the ca-
tion of mechanical systems involving hoisting cables sich a  ble is very stretchy (low spring constant) the computationa
cranes and lifts for instance. An overview on dynamics and cost increase linearly with the number of elements asxan
control of cranes is found in Ref. [ARNMO3]. Characteristi- plicit integrator can be used.
cally, these systems consist of several movable heavytsbjec
including a load, the crane base, and a movable arm, con-
nected via a light cable with high tension. For most purposes
in interactive simulations, the internal dynamics of thblea
itself is of less importance compared to the bulk motion of
the lifting assembly and load. The most important require-
ment on the simulated cable is that it shall affect the con-
nected bodies in agreement with the overall elastic behavio
described by its length, mass, Young, and torsion modulus
To increase usefulness in interactive simulations, theahod
should also incorporate the possibility of having the cable
sliding over wheels and pulleys, and to let a body slide along
the cable to model a ropeway trolley for instance. Finally, a
in the case of real hoisting cables, the free length must be
allowed to change interactively. This models the effect of a
winch. These requirements on the model are important for
generating realistic simulations including the many modes
of oscillations that hoisting systems may exhibit, and \whic
crane operators and designers must anticipate and cdntrol.
addition to the modeling requirements, the dynamics com-
putations should be stable and fast. Interactive apptioati
must drive graphics display at a rate of at least 60 Hz to min-
imize latencies and this leaves a time budget of less than 16
ms per frame for the entire simulation. On single CPU sys- One can use an implicit integration method such
tems, the numerical integration can only use a small fractio as [BW98], or replace the forces by constraints [Bar96] and
of this, usually of the order of 5 ms. abandon hope of modeling the stretch dynamics correctly. In

However, an explicit integration method quickly becomes
inadequate. A short computation for a chain of identical
point masses connected with identical springs of stiffness
k yields a Young modulus df, = k for the cable. There-
fore, if we choosen particles per unit lengtHp, the mass
of each particle isn = lpp/n and therefore if we keep to
Young modulus constant, the natural frequencies increase a
w(n) = v/ny/ky/(lop), wherep is the volumetric mass den-

" sity. Since the time step of an explicit method is usually-lim
ited by At < a/w, wherea is a scalar@ = 2 for the Verlet
integration scheme), this strategy is limited by both thi& bu
modulus and the particle density. Hoisting cables are very
stiff. For steel cables, for instance, the Young modulus ex-
ceeds 200 GPa, the strength is well above 1000 MPa, and the
mass density is around 8000 Kg per cubic meter. With these
numbers, the spring constant for a typical cable of one squar
centimeter are is near 20 MN and the mass length density is
0.8 Kg. With 10 particles per meters, say, this leads to os-
cillations frequencies of approximately 15000 Hz. Using an
explicit method such as the Verlet integrator, the time &ep
then limited to be less than 0.1 ms which means we need at
least 10-15 integration steps per frame.
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M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation 3

either case, making a time step involves the solving a ma- on the wire. This leads to one extra body and two two body
trix equation whose size is proportional to the number of constraints and the added computational cost is small.
segments in the cable. Of course, for cables, these matrices
are tightly banded around the main diagonal which speeds
things up.

When the cable is replaced by a set of distance constraints
or with just a few lumped masses, the computational require-
ment is independent of the cable length and the added cost

As we explained above, simulating a steel cable support- compared to a system without a cable is just one extra one di-
ing only its own weight is typically in itself a stiff problem mensional two body constraint for each simulated segment.
But in hoisting systems, the equations are even stiffefesinc  This contrasts with lumped or finite element cable models
cable segments are typically of much smaller mass than of which may add many 10s of extra degrees of freedom to
the load — mass ratios of the order 1/1000 is not uncommon. the system per unit cable length. Provided we have a robust
This increases the oscillation frequencies of the systetin an constrained dynamics solver, the bulk effect of the cabte ca

as a result, stability becomes difficult to achieve. be modeled stably and accurately. Without lumped masses,
' there is no longer an issue of mass ratio between the load
Continuum models and the cable, but only between the load and the supporting

Continuum models are based on partial differential equa- POy, i.e., the body the cable constraint is attached t@ It i
tions which are derived from solid mechanics. Stable com- €Xpected however that numerical stability becomes an issue
putational methods for these involve finite elements such When the lumped masses along the cable are much smaller
as the thin short rods with bending and twisting degrees of than the load or the supporting assembly.

freedom of the Cosserat modgl. Thls is d'escrlbed.des.crlbed The main problem with this approach is the loss of inter-
in [Rub00] and applied to surgical simulation by Pai[Pai02] ) dynamics and the ability to model collisions and con-

In Ref. [RNG99], spline objects based on a continuum model 4t Contacts with the cable can be simulated by relagatin

are simulated. These models have better theoretical ground the |ymped masses appropriately at or near the contacspoint
ing than the lumped element models and there are good nU- thqgh this was not done in [KMO04].

merical methods for them, at least in simple cases of a cable
with fixed endpoints as illustrated in [Pai02]. In such cases
the computational cost scales linearly with the cable lengt
and has the benefit of accurately modeling the detailed vi- From the brief survey presented above, we conclude that
brational, torsional, and bending dynamics. However, £ase there is currently no method for simulating cable for hoigti
with contacts, anchor points, and other boundary condition of heavy objects with satisfactory trade-off between compu
at locations other than the end point have not been tack- tational speed, stability and accuracy, and modeling flexib
led satisfactorily yet. It is expected that these modelfesuf  ity. When full cable dynamics is simulated using lumped or
equally from instability when the mass ratios between the finite element, the computational cost is high and stability

Background summary

elements and the loads are high. under heavy loading is marginal. We note that no one has
demonstrated capability of suspending heavy objects with
Constraint based systems particle or rigid body based cables in real-time. Constsain

Kinematic constraints express restrictions in the retatio- can do a good job of capturing the essence of cable, i.e.,
tion of physical objects. For instance, a body attached with !INking heavy objects together and making stable simutatio
ball and socket joint at its center of mass can be modeled ©f N0isting systems possible. But the constraint model pre-

by the constraintx(t) = x(0), wherex(t) is the Cartesian sented so far are completely rigid and the possibility of ex-
coordinates of the center of mass. tending constrained dynamics to include stiff elastic ésrc

! o o ~ has been overlooked.
At first approximation, the net effect on a hoisting wire is

to maintain a maximum distance between the the load and
the supporting assembly. For the simplest case of a rigid 3. Contributions of this Paper
body attached at the center of mass by a cable of fixed length
| at a fixed anchor poiry, the kinematic constraint is just:

| —|Ix—y|| > 0. This is done in [KLM99] for instance where
various types of gantry cranes and cables using a Lagrangian
formulation which includes pulleys and drivers. Note that
the method described in [KLM9%ompletelyremoves ca-

ble stretching, in contrast with the model we propose.

The aim here is to construct a method for simulating hoist-
ing cable which is both computationally cheap and capable
of modeling the stiff elastic deformations. Because of the
small mass ratio between cable and load mass it is reason-
able to treat the cables as entirely massless and to replace i
with a kinematic constraint. However, the simple two body
distance constraint is now replaced withraltibody con-

Of course, some internal dynamics can be restored by di- straintimposing that theumof all length segments between
viding a cable in segments and connecting these via lumped designated body fixed attachment frames add up to the cable
masses. This is the strategy taken in [KM04] where a sin- length. This departure is significant as one can then measure
gle lumped mass other than the load is introduced halfway the pressure exerted by the cable on pulleys which change
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4 M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation
4. Theory

In this section we first describe the theoretical background
from elasticity theory and multibody dynamics and then
present a constraint based cable that models the intemactio
of a system of rigid bodies coupled by an elastic massless
cable.

4.1. Elasticity theory for cables

Solid mechanics [FTO1] provides a theoretical basis for
modeling general deformable objects and a specialization
to elastic bodies, those which never suffer permanent de-
formations and the only type we consider here, is covered
in [LL86]. Elasticity theory relates geometric deformatio

the strain—, with internal force—the stress. Concentgabin
ideal, homogeneous and isotropic materials, in the limit of
locally small deformation, the stress-strain relationngér

or Hookean, and only depends on two parameters, namely,
Young’s modulusY and the Poisson ratio. These are eas-

ily determined by direct measurements on real materials and
can be found listed in many texts on elasticity.

Figure 1: An illustration of a cable configuration connect-
ing three rigid bodies. The cable has three straight line-seg
ments. Dark circles are cable attachment points and the ca-
ble is free to slide over the intermediate points marked with
bright circles.

Solid mechanics provides us with dynamical equations
that determines the time evolution of a deformable material
for given initial conditions, boundary conditions and exte

the direction of the cable for instance. This is not possible nal forces. Simulations can be built directly from this gen-
with models which impose length constraints individually —eral theory. Alternatively, one can derive specialized eted
on each segment. The idea is illustrated in Fij.wthere a for elastic solids of specific geometries, such as thin rods.
single cable connects three bodies. If the attachmentgoint One example of this is Cosserat theory of thin solids [Rub00]
on the rigid bodies also carry an orientation, it becomes als With Timoshenko beams as a particular case.

possible to measure the total twist between the end bodies ) .

and to compute a restoring torque on these. This is done by The types of deformation for a thin beam can be

imposing a zero net twist between the end points. Bodies are grouped |nto:3tr$tch|ng-tanger:&a’ll ) deformatlor:js—:)end-
free to slide along the cable as the constraint only imposes 'Ng-curvature deformations—,amorsion-twisting deforma-
conservation of total length. tions. See Fig.3) for an illustration. A general deforma-

tion is a linear combination of these. The internal ener-
The second part of the model is the inclusion of cable gies [LL86] associated with these deformations of a cylin-

elasticity by applying a physics based constraint regzdari drical rod of length_ and radiug are

tion and stabilization scheme. The theory behind condtrain

regularization is presented in [Lac06]. Using that techgiq Us = 5csdx (1)
with the right choice of numerical integrator, it is possibl 12

. ) ; Up = 5CuK 2
to produce fast and robust simulations over a wide range 1
of cable elasticity. It is also possible to include cable ve- Ut = 5aQ (3

locity constraints to model an engine controlling the rate

of change in total cable length and including cable veloc- wheredx is the elongationk is the curvature = R,

ity drag. The computational cost of this approach is modest with radius of curvatureR) and twist angleQ. The con-

as the complexity is only weakly related to the number of stants introduced here ame = AY/L, ¢, = AY r2L/4 and
bodies connected to the cable. Indeed, a cable only adds twoc; = AY/4L(1+ o), whereA = 1r? is the cross-section area.
extra constraints to an existing system including the rést o In the Timoshenko beam theory, valid when the characteris-
the crane. Since the bodies connected to the cable are pre-ic length scale of deformation—the radius of curvatieés
sumed to be already included in the simulation, as opposed much larger than the small radius of the beam, the total de-
to element based methods which add several extra bodies,formation energy is the sum of these contributions and the
the only significant computation is the coupling constraint force due to a general deformation is the sum of the corre-
force between the cable and the supporting assembly. sponding three deformation forces.
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4.3. Multibody dynamics

Here we summarize the main results of multibody dynam-
ics that are needed for us. We make extensive use of dense
matrix formulation. We refer to Baraff [Bar96] and Er-
leben [ESHDO5] for further reading on multibody dynamics
for visual interactive simulations.

We use the following notation. The state vec-
tor of the multibody system ofN rigid bodies is

_ _ _ (q",v/)T with respect to the global inertial frame.
Figure 2: The three types of deformation for a thin beam: T T2 T(N) T
stretching by a lengtbx, twisting by an angl@ and bending 9 = (@ d' ....a )"
with a radius of curvature R. coordinate vectors() = (x™" e ™\T | wherex() is the
center of mass position vector of bodj) and el is a
unit quaternion defining the orientation of the body. The

velocities are represented boy= (VT(l)va(2)7...7vT(N))T

where vi) = 7" oT™\T for body (i) and with the
angular velocity vector denoted hy(i). With these rep-
4.2. The massless cable approximation resentations we have the relatig) = T (g )vl"), where
T(q(i)) = diag(l ,'f(e<i>)), | is the 3x 3 identity matrix and

contains the generalized

A hoisting cable connects a lifting device, such as a crane,

with a load mas#1 which is typically much larger than the e -6 -6
cable massn. Mass ratioam/M = 1/1000 are not uncom- - 1 & &5 —-e
mon for steel wires. The massless cable approximation that T(e) = 2| —es & e (4)
we suggest consists of discarding cable mass and internal & -6 &

dynamics but incorporating the effect of coupling an arbi-

trary number of rigid bodies together. This preserves tthe ne The body massm') and body inertia tensoZ ) in
effect of cable tension accurately models elasticity ad.wel global frame are collected into the mass matkik) —
See Fig. {) for an example of a cable and rigid body sys-  diagm(1,z7()) and we form the system mass matrix as
tem. The cable is modeled with a constraint and the elagsticit M — (M(l>, M(z)’m’ M(N))_ In terms of the body frame in-
properties are simulated using properties is modeled using ) the inertia tensor with respect to the global
constraints and elasticity is modeled using constraingreg T R . ) o
larization and mapping the parameters to the cable internal inertial frame isz(!) = R(')Ié')RT<'), whereR() = R (V)
energies of Timoshenko beams. This is further developed in is the rotation matrix of bodyi).

the sections below. Bending deformations can be neglected
in hoisting cables as the corresponding forces are small in
comparison to the cable tension. In addition, for hoistiag c
ble supporting large masses, bending deformations are lo-
calized to a small region along the cable. Therefore this typ
of deformation is part of the cable internal dynamics and MV =Fy+F (5)

cannot be treated by this cable model that carries no local _ _ _
information. where we have introduced notation for the gyroscopic force

Fm = —Mv. For each rigid body(i) we can read off the

Some dynamics is lost in making the massless cable ap- equatioriv|<i>\'/<i> =Fyo) +FO whereFy,;) = MOV and
proximation.i) The cable inertia is neglected. The effect on Fi) — 1704y /aqT(i)
the motion of the load and crane is minute. The contribution '
of the cable mass to the time period of a swinging load is of
the order,/m/M and can be compensated for by increasing 4.3.1. Constrained dynamics
the load masdi) The cable’s internal dynamics is lost. Al-
though the light cable has vibrational modes, the frequnci
of these are facto{/M /m higher than that of the crane-load
system. This discrepancy in time scale results in that the ca
ble internal dynamics is only weakly coupled to the motion
of the crane and load. The gain of this approximation, onthe  We begin by considering kinematic constraints, i.e., con-
other hand, is a computationally efficient method that well straints for the generalized coordinatgsWe also restrict
describes dynamics of the load and crane. ourselves to holonomic constraints, i.e., constraints¢ha

ertia tensorzéi

Non-dissipative forces can be introduced by assigning
potential energy to the systefd,(q,t). The corresponding
force isF = —T'dU /aq". The equations of motion for the
multibody system are the Newton-Euler equation of motion

The constraints represent the net effect of the dynamics on
short time and length scales that is intractable to simualate
rectly. For reading on constrained multibody dynamics, see
Refs [Bar96] and [WGW9O].
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6 M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation

be expressed agq,t) = 0, but we allow them to be explic-  cable energies in Eqsl)¢(3) are of this form. The contribu-
itly time-dependent (rheonomic constraints). Given these tion to the generalized force of this potential takes thenfor
strictions we have excluded velocity constraints, likeén

and angular drivers, and contact constraints. In Seétidr3

we extend to include also velocity constraints. Fo= —G'e g

A constraint@(qg,t) = 0 specifies a surface in the gen-
eral coordinate space. The system coordingtase thus re-
stricted to always belong to this, possibly time-dependent
surface. The constraint force, acting to kegpn the sur-
face@(q,t) =0, isFc = G' A, whereG = (d¢/dq" )T (q) is
the constraint Jacobian aids the Lagrange multiplier. The
constraint force is directed orthogonal to the constraimt s
face and the magnitude depends on the shape of the con- q=T(qv (6)
straint surface at the present position, the velocity of the . T
bodies and the other forces acting on the system. The equa- MV—G'A=Fu+F Q)
tions of motion are appended with the equatigg, t) = 0. eA(g,t) = —q(q,t) (8)
With the inclusion of constraints the system is no longer an
ordinary differential equations (ODE), but instead, aetiff
ential algebraic equation (DAE). DAEs are more difficult to
integrate numerically — one common difficulty is to prevent
numerical drift of@ away from 0 and simultaneously pre-
serving the systems total energy.

If (q) =0 att = O, the solution converges uniformly, as
the diagonal termsjj — 0, towards the exactly constrained
solution wherep(q) = 0 fort > 0. Note that when the artifi-
cial variableA = —s_l(pis introduced the generalized force
can be writtenFy = G'\ and the equations of motion are
modified to

This particular form of the equations is useful when it comes

to discretizing the system and finding a stable integratbt. O

serve that if the constraint is formulated on the potentiatf

with a physically based potential energy, constraint regu-

larization automatically results in a physical forces amel t

stiffness of the force may be varied from highly soft (large
By differentiating the constrainp(g,t) = O with respect  €) to very stiff (smalle).

to time, we note that 8 ¢ = Gv+ d@/ot. The work done

by the constraint force on the system is the integral of: 4.3.3. Velocity constraints

Fd v=ATGv= —ATdip. When the constraint has no explicit

time-dependence the system is closed and the work exerted

by the constraint force is zero. In general, time-dependent

constraints result in non-zero work on the system by the con-

straint force, indicating that the system is non-closedterex

nal interactions are present. In our case, this could bela cab 0=T(g,vt) =JIv—w(t) 9)

where the total length is varied, e.g., by running a winch.

Itis useful to also include velocity constraints. Theselsan
used for modeling drivers. In our case a driver could be an
engine controlling the rate of change of cable length in the
system. The time derivative of a kinematic constraint iepli

where we denotev(t) = —d@/ot. We take this as our ve-
In a system withNc constraints we use the representa- locity constraint. The velocity constraint introduces a-se
tion o= (" 0 [2],4“.7(pT[N°])T, whereg! is the i:th con- ond Lagrange multipliep and constraint forcér = J'p.

Velocity constraints can be regularized by introducing a

straint, that may be of dimensiaii! = 1,2,....,6 and in- , straints . arized I :
Rayleigh’s dissipation functio® = 5" &~ T, whereg is

volve any number of bodies. The dimension @is thus > oo ) T
dim(¢) = ¥;dl! = dc. The dimension of the system Jacobian @ rea! positive diagonal matrix, such tigt=—0R/0v" =

Tr—1
is then dinfG) = dc x 6N and the dimension of the Lagrange 9 & I - Note thatt cannot be deduced from cable mate-
multiplier is dim(A) = de. rial parameters alone. It is a parameter that models the de-

sign of the driving engine and the friction in the system —
] ) parameterizing slipping of the cable that is connectedeo th

4.3.2. Constraints and strong potentials driver. The equations of motioB)-(8) are thus modified by
the contribution otJTp to the generalized force and the al-

Here we describe the relation between constraints and-poten ) X '
gebraic equation for the new varialpe

tials. This is useful in designing a real-time model for eshl
where the cable elasticity can range from very stiff to hjghl Ep=—T(q,vt) (10)
elastic and with stable integration of the motion. The tran-
sition from constraints to strong potentials is referrecso

) alifit 4.3.4. Numerical integration
constraint regularizatiorjLac06].

When it comes to time stepping of the system, stability and

Say that the system potential can be represented as speed of computation are more important than high accu-
U(q) = %(pT(q)e—l(p(q) racy. This leaves essentially three usable choices: fully e
plicit using the Verlet Leapfrog method, fully implicit us-

for somedc-dimensional vector functiop(q) and real pos- ing (linearized) backward Euler or the midpoint scheme,

itive diagonal matrixe of dimensiond; x dc. Note that the or semi-implicit time integration. Fully explicit Verletrhe
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stepping combined with moderate spring forces is the cheap-

7

an attachment point on a body indexed @y, such that

est choice. This technique has been popular for ropes andp; — x(V) +d;, whered; is a body fix vector giving the node

cloth. But for any mass-spring systems, there isupper
limit for the spring stiffnes$or each size of time step, as
explained in sectio?.2 Above this limit the simulation be-
comes unstable. Linearly implicit integration allows larg
stiffness and larger time steps. This involves solving edin

system of equations at each time step and depending on theQ _
configuration of the system, this can be a reasonable cost,

especially if iterative methods are used as in [BW98]. But
linearly implicit integration also introduces artificiaduchp-

ing that drains the energy from the system even to the ex-
tent that the force is significantly inaccurate both in sizé a
direction. For instance, a 2D pendulum with a stiff spring
integrated with linear implicit Euler do not swing at the-cor
rect rate under gravity because of this artificial dampieg, s
Ref. [Lac06]. The error, may be very large and depends on
time step and stiffness. Stability may instead be achieyed b
replacing the stiff forces by constraints in combinatiomhwi
explicit or semi-implicit integration. We follow this roet
Employing a Verlet-Leapfrog discretization of Eq$)-(8)

with the velocity constraint 10) included, and the Tay-

lor expansion®(X,1) = @Xn) + "‘gﬁ (X1 —Xn) + ...

¢ + AtGnvn1 gives after rearranging sonde factors

~
~

On+1 = On +AtT (0n)Vnt1 (11)
AnUn1 = bn (12)
with
M -Gl

Ap= ~ ~ 13

n ( Gn At_zs ) ( )

and G GaNT, & = diage,f), U =

T O\T T AT _ T T

At(Vni1,Ani1:Pni1)’  @nd bn = (Mvy + At(Fy +
Fun), —Ot o, —At~r1)T. Note that in this sys-

tem, the discrete value &f, pn are actuallyaveragevalues

over the time step, as is needed to avoid non-convergent high

frequencies in the limit of — 0. We solve this linear system
by first building the Schur compleme@M~1G" + At —2¢,

and solve for the Lagrange multiplier and then compute the
velocity and finally update the positions. Observe thateher
is no singularity fol€ = 0 — it can be taken arbitrarily small.
The velocity constraint (or the length and twist constpaint
can be left out by simply discarding the varialggor A)

and settings = G andg = ¢ (or G = J andg = £).

4.4. Cable constraint

We introduce massless cables in the model as a kinematic

constraint. The constraints are then relaxed and madécelast
The number of bodies connected by the constraint may be
arbitrary, but larger or equal to two. Say the cable is didide
into J segments of straight lines, each of length,, . ..., 1.

See Fig. B) for an illustration. The lines connect the ca-
ble nodesj = 1,2,....,J+ 1. The positions of the nodes

in world frame are denotefs,pp,....,pj+1- A node j is
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position relative to the center of mass of body. At the
first and last node the cable is held fixed relative to the body
(or to the world frame). The cable is free to slide and rotate
over the intermediate nodes. As a result, the individual seg
ment lengthd; may vary. We define the cable twist angle by

Efi) + QEE)H, where(a) and(b) are the body indexes

of the cable’s first and last attachment points élﬁjz] is the
angle of rotation of body(i) about the body fix vectod;,

see Fig. 8). As pointed out before, we discard from bend-
ing resistance as this is not applicable to hoisting systems
For anideally stiff cable, the constraint enforced by the ca-

Figure 3: A figure illustrating a massless cable connecting
four rigid bodies. The cable has four straight line segments
Colored circles mark the cable attachment points. The cable
is free to slide over the intermediate points marked withope
circles as long as the total length is maintained. The twist
angle is defined through the orientation of the bodies at the
start and end point of the cable about the body fix veatgrs
andds.

ble on the bodies is thahe sum of segment lengths should
equal the total cable length(t) and thatthe cable should
not be twistedin mathematical terms the cable constraint is

0=0¢= ((p-sr7(gT)T, with
J
=S 1j—L(t) 14)
2
a=0 (15)

Observe thatps and @ coincides withdx andQ in the ex-
pressions for the cable internal energies in E@jsa0d @).
The stretch constraint in Eqnl4) restricts the motion of
the bodies to preserve the total length of the cable).
This length may be interactively altered — corresponding
to releasing more cable, say from a winch. The no-twist
constraint, Eqn. 15), affects only the bodies connected to
the cable endpoints — if bodfa) is rotated an anglézg’l‘)
aboutd; body (b) must be rotated the opposite amount,
oY = —a@ aboutdy .

J 1

+1
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4.4.1. Jacobian

The cable constraint & ¢ = (!, @ )T has dimension 2.
The Jacobian i§ = (GZ,G{ )" = (dp/dq" )T and has di-
mension 2x 6N. We begin with deriving the Jacobian for
the stretch constraint. The time derivative takes the form
0= (ps = Gsv— L. We identify the explicit form of the Ja-
cobian by computing the time derivative of the constraint.
Note first that any segmerjthas length; = ||pj — pj1|.
with pj = x® 4+ d;j andp; 1 = x) +d;, 1 for bodies(a)
and(b) connected by the segment. The time derivativg of

is

I =kj- (V@ —v®) —(kj x dj) - 0@ + (kj x djy1) - 0P

wherekj = (pj —pj+1)/IIPj — Pj+1/l- The time derivative
of @ equals the sum of the segments lengthminusL. We
identify the Jacobian

J
zl<...,k,T,f(k,- xd),.. =k (k; del)T,...)
]:

(16)
where the positions in the Jacobian are thosev8f =
(VT(a> T(a))T andq(b>:(vT<b) T(b>)T

, ,

Next we derive the Jacobian for the twist constraint,
Eqgn. (L5). We identify the Jacobian from the time derivative
of the twist constraint, & cn = Gtv. To determine the angle
of rotation about the body fixed vectdr we convert from
quaternion to Euler angles. For the Euler angles Rd)|, (
Pitch ®) and Yaw @) we use the XYZ-convention such that
the rotation matrix readR(®, 0, W) = Rz(P)Ry(O)Rx(W).

If we let the local body frame be defined such tlats
aligned to the x-axis, the rotation angle abauis given

by the Yaw angle¥. The twist angle should be allowed to
exceed one evolution. Thus we must also keep track of the
winding numbem. We then have the following expression
for the twist angle

inv.

a=a +of) =w@ y® 4 non

dys1
where W) = arctar{f()) and f = Rgy(e)/Rss(e) =
2(epe1 + e0€3)/[1— 2(€} + €3)]. By the chain rule it follows
that

(17

G0 — 4T 0

(18)
where (omitting the body indefi) temporarily)
_ Ry [0Rsz= ORss=
T1+f2 {aeT Tt T (19)
We identify the twist Jacobian as
Gt:(...A,OT,AT(a%“.70T,.AT<b),...A) (20)

with again the positions in the Jacobian being those Bf
andv(® inv.

It should be noted that the twist measure is not entirely
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free from singularities. Care should be taken wRgg— 0,

while it should be pointed out th&; remains finite although

f diverges. The only severe singularity occurs witebe-
comes co-aligned with cable, i.e., when the body centertpoin
lies on the connecting cable segment—a case that seldom oc-
curs for hoisting systems, and does not occur at all when
cable-body collision is taken into consideration.

4.4.2. Modeling elasticity with regularized constraints

We introduce elasticity in the system through constraigt re
ularization

¢—U = %‘PT(Q)E_1<P(Q)
with diag(e) = (cs'*, ¢ 1). With the constraint defined as in
Egs. (L4) and (5) this reproduces the cable internal energies
in Egs. @) and @). For appropriate values of the material pa-
rameters and geometrical dimensions this accurately rmodel
the stretching and torsional resistance of the cable. The ma
terial parameters for a steel cable, for instance, are tgugh
Y = 200- 10°Paando = 0.3. For a circular steel cable of di-
ameter 10nmend length 4m, the regularization parameters
arecs~ 7.8-10° N/mandc; ~ 19 Nm/rad?.

(21)

5. Results

We propose and investigate massless cable as an alternative
to dynamically modeled cable. The main results of this paper
are, besides the theoretical framework presented abole, va
idation tests and the computational efficiency and stabilit

of the method. We also demonstrate the method for a more
complex system and the feature of velocity driver.

5.1. Model validation

The physical model is the elastic deformation energies for
Timoshenko beams in Eqd)(@and @). To validate the model
we first consider a simple setup with two boxes and one ca-
ble, as demonstrated in Figd)( In the validation tests the
boxes are given an initial linear or angular velocity. Inall
the tests the boxes have the mass 1000 Kg, side length 2
the cable length is fhand the time step usedA$ = 0.01s.
Gravity is set to zero in the validation tests. Results of the
stretch tests, initialized with a linear velocity, are meted

in Fig. (5) for three different values ots: 10, 16 and
106N/m. The twist tests, initialized with a angular velocity,
are presented in Fig7) for three different values ad;: 10,

10° and 16Nm/rad?. Observe that the twist angle may ex-
ceed one evolution. The values @f (and@) are plotted as
functions of time together with the elastic forég = Gi s
normalized bycs (and torquefy, = G{ A\t normalized byct)

that is associated with the assigned energies. These defci
very well, confirming that the internal deformation enesgie
we have assumed for the system produces the elastic forces.
The oscillation time periods match the theoretically expéc
values: 44s, 4.4 sand 014 s (stretch tests) and 3§ 3.6 s

submitted to COMPUTER GRAPHICBrum (10/2006).



M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation 9

—— AL/L

(@
0 40 80120 t

—— ALIL

Figure 4: The validation system. We consider two rigid bod-
ies connected by a cable. The system is initialized witlatine
and angular velocities to validate the cable stretch andtwi
elasticity.

(b)

0 4 8 12 16 t

and 011 s (twist tests) except for very large constants, e.g., 0.04 —— ALL

¢t = 10°, where the motion is strongly damped. The damp- f

ing is clearly seen in the energy plots in Fig) &nd Fig. 6). 0.02

This is due to the numerical integration scheme we have

chosen. It should however be emphasized that the dissipa- 0

tion here affects only theibrational motion as opposed to \

using linearized implicit Euler integration of the dynaailic -0-020 02 1 ©

equations with the elastic forces included directly, whikh '

the more conventional approach and may daihpnotion Figure 5: Stretch validation tests displaying the variation in

It is from these results clear that elastic forces in theeabl cable lengthAL/L, and stretch force normalized by as a
follows the physical laws that we have imposed, apart from function of time and for different stretch resistance: t0
numerical damping and thereby slight shift in oscillatioet f (a), 10% (b) and10° (c).

quency for very stiff materials. The time stepping is clgarl

stable for these test setups.

The result is similar when it comes to adding a cable to an
already constrained system, e.g., a crane constructign. Sa
What is the computational cost for massless cables and how that the system not including the cable has constraints-of to
does this scale with the number of bodies? In each time step tal dimension summing tdc, e.g., ball constraints, hinges
the constraint force is computed by first solving a linear sys  etc. Computing the constraint forces involves solving a ma-

5.2. Computational efficiency

tem involving the Schur complement afin Egn. (L3). For trix equation involving the Schur complement matrix of di-
simplicity we exclude the cable velocity constraint, héier. mensionde x dc. Adding amassless cabl® this system in-

a system involving no other constraints but a single mass- creases the matrix size (dc +2) x (dc+2) whereas adding
less cable the Schur compleme@®M~1G' + At~%¢, has arigid body based cabl@ncreases the matrix size foc +

dimension 2< 2 and is inverted at virtually no cost. Ob-  cable) X (dc + deable)- The computational cost for solving
serve that this holdsrespectively of the number of bodies ~ the matrix equation scales as betwe{{dc + dcaple)) to
connected to the cahléor any reasonable system, mass- O((dc + deanle)®) depending on the sparsity pattern of the
less cables will not be a computational bottle neck and we Schur complement and solver strategy. Typicaliypie > 2
therefore do not present any timing results. Massless cable and it is not unreasonable to expegipe > dc.

should be compared to the alternative — rigid body (or parti-
cle) based cables, whelk bodies, pairwise connected with
in total Ns — 1 constraints each of dimension between 3 to
6, make up the cable. To this number we should also add We also consider a more complex system to demonstrate
n constraints connecting the cable with the other bodies in how the massless cable constraint can be utilized, see
the system resulting idggpie = 3(Ns — 1+ n). The result- Fig. (9). This example consists of four cables and six rigid
ing size of the Schur complement for rigid body based cable bodies with masses ranging between 100 Kg, gravity

IS dcaple X deaple: CoNtrary to massless cable. this has po- g=10 m/sz, cable elasticitys between 18— 10" and with
tential of being the most computationally costly part of the cable lengths between 1-30 m. The two smaller boxes are
simulation, especially since the integration is compédaty connected by a single cable that slides freely over twolattac
stability issues due to the small cable-load mass ratio. ment points on the larger box above, like a pulley. The ca-

5.3. Demonstration
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Figure 6: Energy variation in the stretch validation tests as
a function of time and for different stretch resistance: 10
(a),10° (b) and10° (C). W is the total energy, i.e., the sum of
kinetic energy ), potential energy i (e.g., due to gravity)
and constraint energy §J

ble twist resistance couples the orientation of the two kmal

boxes and forces them to rotate in opposite directions, but

with some elasticity. The torsional elasticityis here set to
10. The wider body on top slides freely along the two hor-

M. Servin & C. Lacourisiére / Massless Cable for Real-timaBation

©

0 0.1 t

Figure 7: Twist validation tests displaying the twist angle,
Q, and cable torque normalized by as a function of time
and for different twist resistance;:c10 (a), 10° (b) and10°

(c). Observe that the twist may exceed one revolution, see
figure (a).

during the lifting of the box to overcome the cable slipping.
In this simulation the length velocity constraint is theyonl
cable constraint that is included.

izontal cables. Two static boxes are connected to the world 6. Summary and Conclusions

by a lock constraint. The system is integrated with time step
At = 0.05 s and shows stable behavior with slight energy
dissipation in the cable oscillations. This system wouldeha
been difficult to simulate in real-time using any lumped ele-

ment model for the cable as. Such a simulation would require
considerably more than the six elements already included
and, besides performance the issue, there would have been

difficulties with smooth cable sliding and problems with ob-
taining stability despite large mass ratios in the system.

The velocity constraint is demonstrated by Fit0)(from
a simulation where a box of mass 1 Kg and initially is tossed
away from a rod of mass.02 Kg with one point nailed at
height 12m by a spherical constraint. By setting a driving
velocity on the cable connecting the objects the box is then
re-winded. The friction and driving cable velocity has #re
different values during the simulatiob= 10 andw = 0 dur-
ing the toss¢ = 0.1 andw = —0.2 during the rewinding and
larger friction and driving velocitg = 0.05 andw = —0.5

We have presented a technique for efficient and stable simu-
lation of hoisting cable. The idea is to use, instead of gostl
dynamically simulated cable, a cable model free of inter-
nal dynamics but capable of connecting several bodies under
stiff elastic length and twist forces.

In Eg. (14) and (L5) we present a constraint representing
asinglemassless cable that connectsaaitrary number of
bodies The cable constraint preserves the total length of the
cable, that may be interactively varied, and the cable twist
angle. The resulting constraint Jacobian is given in Ef) (
and @0). By constraint regularization based on the internal
energies of an elastic cable it is possible to make stable rea
time simulation of complex hoisting systems with cable elas
ticity ranging from highly elastic to very stiff and with lge
load masses.

The computational cost is negligible for any reasonable
system, and is in particular much cheaper than dynamically
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Figure 9: Snapshot from a simulation of a more complex

system involving four cables. The two smaller boxes are con-
(®) nected b ingl | i

t y a single cable running through the box above

them, like a pulley. The twist resistance enforces the two

200

T Bk smaller boxes to rotate in opposite directions. The larger
300 a Up body on top slides freely along the two horizontal cables.
Tt
200 —_
v . - .
100 N be inserted at the collision point. These cable nodes should
0 (c) not be fixed to the body but move along the surface of the
0 0.1 t body, always taking the position that minimizes the cable

Figure 8: Energy variation in the twist validation tests as a length.

function of time and for different twist resistance: ¢0 (a),
10° (b) and1CP (c). W is the total energy, i.e., the sum of 7. Acknowledgments
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