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ABSTRACT
The underlying dynamic model of multibody systems takes

the form of a differential Complementarity Problem (dCP),
which is nonsmooth and thus challenging to integrate. The dCP
is typically solved by discretizing it in time, thus converting the
simulation problem into the problem of solving a sequence of
complementarity problems (CPs). Because the CPs are difficult
to solve, many modelling options that affect the dCPs and CPs
have been tested, and some reformulation and relaxation options
affecting the properties of the CPs and solvers have been studied
in the hopes to find the “best” simulation method. One challenge
within the existing literature is that there is no standard set of
benchmark simulations.

In this paper, we propose a framework of Benchmark Prob-
lems for Multibody Dynamics (BPMD) to support the fair testing
of various simulation algorithms. We designed and constructed
a BPMD database and collected an initial set of solution algo-
rithms for testing. The data stored for each simulation problem is
sufficient to construct the CPs corresponding to several different
simulation design decisions. Once the CPs are constructed from
the data, there are several solver options including the PATH
solver, nonsmooth Newton methods, fixed-point iteration meth-
ods for nonlinear problems, and Lemke’s algorithm for linear
problems. Additionally, a user-friendly interface is provided to

∗Address all correspondence to this author.

add customized models and solvers.
As an example benchmark comparison, we use data from

physical planar grasping experiments. Using the input from a
physical experiment to drive the simulation, uncertain model pa-
rameters such as friction coefficients are determined. This is re-
peated for different simulation methods and the parameter esti-
mation error serves as a measure of the suitability of each method
to predict the observed physical behavior.

NOMENCLATURE
q Generalized positions of all the bodies
ν, q̇ Generalized velocities of all the bodies
λn Normal contact forces in the local frame
λf Frictional contact forces in the local frame
λt, λo Orthogonal decomposition of λf on the frictional plane

in the local frame,
ut Frictional contact velocity in the local frame
uo Frictional contact velocity in the local frame, orthogonal to

ut

Gn Jacobian matrix that transforms the normal contact force
from local frame to the world frame

Gf Jacobian matrix that transforms the tangential contact force
from local frame to the world frame

1 Copyright c© 2014 by ASME



G Jacobian matrix that transforms contact force from local
frame to the world frame

U Diagonal matrix with its diagonal entry equal to frictional
coefficient of each contact

ψn Normal gap distance between two bodies that form contacts
M Generalized mass inertia matrix
λapp Generalized externally applied force
s Sliding speed at contact points
φ(x) NCP reformulation functions
⊥ Denotes orthogonality, where a,b ∈ Rn, and a ⊥ b means

aTb = 0
◦ Denotes the Hadamard product: where a,b ∈ Rn, and a ◦

b =


a1b1
a2b2

...
anbn



INTRODUCTION
Simulation of multibody systems is important for analy-

sis and design in a number of areas in science and engineer-
ing. Roboticists have used it to plan complex robot behaviors
such as grasping and manipulation [1, 2], to study the locomo-
tion of sand-swimming lizards [3], and the motion of 3-D snake
robots [4]. Engineers have used it to predict the performance of
complex devices such as car engines [5] and scientists have used
it to study rock slides [6]. The main reasons that rigid body sim-
ulation has not yet been widely embraced (beyond physics-based
computer games) are inadequate speed and unproven accuracy.
There is limited theoretical guidance for the design of solution
algorithms for the type of CPs that must be solved at each time
step. When the matrix A in the linearized CPs (LCP) is symmet-
ric and positive semi-definite (SPSD), the vector b in the LCP [7]
lies in the column space of the matrix in the CPs and there are
good optimization-based polynomial time algorithms for solving
them [7]. While LCPs with SPSD matrix A are known to have
solutions [8,9], the matrix A in multibody system usually doesn’t
have such good properties.

Lemke’s algorithm [7], the PATH solver [10], nonsmooth
Newton method [11–14], PGS method [15], fixed-point iteration
method [16], projected Jacobi method [7, 15], implicit nonlinear
method [17], and two stage methods using combinations [18–20]
have not been thoroughly and fairly compared. Testing of these
numerical methods is usually conducted with a small number of
synthetic CPs generated to have similar properties as CPs as they
would arise in simulation, but it is difficult to do this accurately.
What is needed is a large set of a wide range of benchmark prob-
lems of various sizes and properties.

Good benchmarking has been used for many years to assess
the performance of computers and software tools. However, only
recently have researchers in multibody dynamics and robotics

begun to develop suites of benchmark problems [21–25]. M.
Gonzalez et al [22] proposed a benchmarking system for multi-
body system (MBS) simulation tools to compare the performance
of the different available simulation methods. A collaborative
benchmarking framework is provided by [23] with an online
repository of test problems with reference solutions and stan-
dardized procedures and a prototype implementation of a web-
based application to share the results from different methods. It
aims to compare the performance of various simulators through
full multi-step simulations in order to discover the best combi-
nations of formulation, integration method, and implementation.
However, little information regarding the iterative level results
of a solver is provided in this framework, which prevents users
from making comparisons of performance of different solvers at
this low level.

Previous work on building a test suite for rigid body dynam-
ics problems was done by the Siconos group in 3DFCLib [24],
where benchmark problems were stored by saving the matrices
and vectors defining the specific CPs used in the Siconos simu-
lator. Although the data hierarchy is simple and clean, there is
not sufficient information from the database to reformulate the
problems except as LCPs. Therefore, there is no way to compare
the solvers applicable to Nonlinear CPs (NCPs).

The goal of this paper is to set forth a new framework for
fairly testing solution algorithms on a broader set of problems
extracted from experiments and simulations. In our Benchmark
Problems for Multibody Dynamics (BPMD) framework, we save
the data needed to construct any of the typical CPs in use. This
facilitates comparison of possible choices regarding modelling
coordinates, dynamics formulations, the integration schemes,
and the algorithms that solve the CPs. To ensure full coverage of
problems of interest to the community, the BPMD framework fa-
cilitates contributions to the benchmark problem set. We believe
that such a framework is critically important to the advancement
of the field of rigid body dynamic simulation, because of the need
of a fair way to compare performance of available solution algo-
rithms and the lack of theoretical results to guide further algo-
rithm development.

In the first section, we present an overview of choices re-
garding modelling coordinates, as well as dynamic formulations
for multibody dynamics. Next, we introduce the solvers available
in the BPMD framework along with the formulations to which
the solvers are applicable. These two parts define the platform
with which algorithms may be compared. The following section
describes the BPMD framework structure that we use to collect
data from physics engines and how to use the BPMD database
to import or export data from or to physics engines in a standard
way. Finally, the accuracy of the solvers are further validated
with the data from physical planar grasping experiments and the
results are displayed and analysed.
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FORMULATIONS AND SOLVERS
There are several formulations and solvers available in

BPMD framework, which are listed in Table 1. Of all the solves,
Lemke’s algorithm is a pivoting method and the others are itera-
tive.

TABLE 1: DYNAMIC FORMULATIONS WITH APPLICA-
BLE SOLVERS IN THE FRAMEWORK

Formulation Applicable Solvers

LCP

Lemke [7]

PGS [15]

nonsmooth Newton (FB) [15]

nonsmooth Newton (CCK) [13]

nonsmooth Newton (min) [15]

mLCP
PATH [10]

fixed-point (prox) [16]

NCP

fixed-point [16]

nonsmooth Newton(FB)

nonsmooth Newton (CCK)

implicit [17]

Convex model convex solvers [1]

MODELLING COORDINATES
Using minimal coordinates, or “reduced coordinates,” bilat-

eral constraints are implicitly constrained by using joint frames.
The constraints on positions, velocities, and accelerations are sat-
isfied during the numerical integration so that stabilization is not
required to correct any violations in the constraints [26, 27].

With maximal coordinates, we solve for constraint impulses
explicitly and then perform the integration using the solution of
the constraint impulses.

We chose to work with maximal coordinates in the remain-
der of this paper, but the data collected in the BPMD database
provides enough information to formulate both maximal and
minimal coordinates.

DYNAMIC FORMULATIONS
The complementarity problem takes the form of :

0 ≤ x ⊥ f(x) ≥ 0 (1)

where f(x) is a function of x. When f(x) is a linear function
of x, we call it Linearized Complementarity Problem (LCP). If
f(x) is a nonlinear function of x, it is named Nonlinear Comple-
mentarity Problem (NCP).

The NCP dynamics formulation for multibody system with
unilateral constraints can be written as follows (see [28] for de-
tailed derivations )

0 ≤ ψn(q, t) ⊥ λn ≥ 0 (2)
M(q)ν̇ = Gnλn + Gfλf + λapp (3)

0 = (Uλn) ◦ ut + λt ◦ s (4)
0 = (Uλn) ◦ uo + λo ◦ s (5)

0 ≤ (Uλn) ◦ (Uλn)− λt ◦ λt − λo ◦ λo ⊥ s ≥ 0 (6)

Next we describe four dynamics models available in the BPMD
framework: mNCP model, mLCP model, LCP model, and con-
vex contact model [1]. The BPMD database provides sufficient
information to construct any of the four formulations.

mNCP Formulation
Here “m” in “mNCP” stands for mixed, which is a system of

mixed equations and inequalities. Given an unknown vector x ∈
Rm and w ∈ Rn, known vector functions y(x,w) : Rm+n →
Rm and z(x,w) : Rm+n → Rn, find x that satisfies:

z(x,w) = 0 (7)
0 ≤ y(x,w) ⊥ x ≥ 0 (8)

mLCP Formulation
Given an unknown vector x ∈ Rm and w ∈ Rn, known

matrix C ∈ Rp×m, D ∈ Rp×n, A ∈ Rm×m and B ∈ Rm×n,
known vector c ∈ Rp and b ∈ Rm, find x that satisfies:

Cx + Dw + c = 0 (9)
0 ≤ Ax + Bw + b ⊥ x ≥ 0 (10)

LCP Formulation
Given an unknown vector x ∈ Rm, a known matrix A ∈

Rm×m, and a known vector b ∈ Rm, find x that satisfies:

0 ≤ Ax + b ⊥ x ≥ 0 (11)

Invertible Convex Formulation
This new convex, invertible model is proposed by Todorov

[1], which measures the magnitude of velocity in terms of ki-
netic energy. This yields a model based on a convex optimization
problem. For detailed derivation and formulation of this model,
please refer to [1].
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SOLVERS
The available solvers in the BPMD framework are listed in

table (1). The solvers are referenced as solver name (NCP refor-
mulation functions they are based on) , where the NCP functions
are defined below and they are equivalent with complementarity
conditions in equation (1) .

1. Fischer-Burmeister function (FB) [11]

φFBi(xi, yi) := xi + yi −
√
x2i + y2i (12)

φFB(xi, yi) can be stacked as a vector with φFBi(xi, yi) as
its i-th entry.

2. Chen-Chen-Kanzow function (CCK) [13]

φCCKi(xi, yi, λ) = λφiFB(xi, yi) + (1− λ)x+i y
+
i (13)

where λ is a user defined parameter, more details on how the
choice of λ will affect the function property can be found
in [13].

3. Minimum-map function (min) [15]

φmin(x,y) = min(x,y) = 0 (14)

where min function is element-wise.
4. proximal function (prox) [16]

φprox(x,y, r) = x− proxC(x− ry(x)) = 0 (15)

where r is a parameter that plays a vital role on the rate
of convergence, strategies on how to tune r can be found
here [29]

BPMD Database
A convention is required in order to store simulation data in

a standard way that will be useful when reconstructing various
problems for comparisons of solvers.

The proposed BPMD framework has been used to col-
lect data from three physics engines so far: Agx (http:
//www.algoryx.se/), ODE (http://www.ode.org/)
and the RPI-MATLAB-Simulator (http://code.google.
com/p/rpi-matlab-simulator/). With the collected
data sets, an HDF5 reader is used to import them into Octave or
MATLAB computing environment, so different algorithms can
been tested to compare their performance and analyse the pos-
sible factors that limit the computational efficiency of numerical
simulation in multibody dynamics [30].

In addition, we not only collect the basic information needed
to construct any formulations, including the mLCPs, mNCPs,
LCPs and convex, but also store the value of the error at each
iterative level of the solution algorithms, to compare solver per-
formance at a fine-grained level.

A high-level view of the BPMD database hierarchy is shown
in Figure 1. The frames 1 to n represent n formulations corre-
sponding to n simulation time steps (not necessarily consecu-
tive). Each frame contains the information about the bodies, the
joint constraints, the unilateral contacts (which are enough to set
up any desired formulation), the size of the time step, the original
solver’s error at each iteration, and the solution returned. The hi-
erarchy is shown in Table (2) with math notations, their sizes and
physical interpretations, where in the “Sizes” column, nb stands
for the number of bodies, nj stands for number of constraints, nc
denotes the number of contacts, iter is the number of iterations
for each time step, Type means the various types of constraints
(such as prismatic, revolute, spherical) with different degrees of
freedom, frames is the number of frames in the simulation.

bodies constraints contacts step solution

frame 1 · · · frame n

data set

FIGURE 1: SIMULATION DATA HIERARCHY

In the “bodies” class, the body “id” is a unique reference
to identify each body to update their positions and orientations
in the simulation. Each body experiences generalized forces,
which cause it to accelerate in a manner consistent with its
mass and inertia tensor. The pose of each body is stored as a
position vector and a unit quaternion, where the first element is
the real part of the quaternion. The last piece of the “bodies”
data structure is the generalized velocity.

In the “constraints” class, the information needed to enforce
the constraints imposed by the bilateral joints in systems mod-
elled in maximal coordinates is stored. The Jacobian matrix
which transforms from the joint frame to the world frame is saved
in the field of “jacobians.” For different kinds of joints, the size
of Jacobian matrix varies, so we use a “row” vector to record the
size of each Jacobian component for each joint. Joint limits, if
any, are stored in the field “bounds.” “Pairs” is the pair of body
ids of the two bodies that form the joint. Since we use maxi-
mal coordinates as default modelling coordinates in our frame-
work, the properties in “constraints” class here are used to con-
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TABLE 2: SIMULATION DATA STANDARD AND NOTATIONS

HDF5

Fields Names Math Notation Sizes Physical meaning

bodies (nb)

ids i nb × 1 body ids

masses M nb × 1 masses

forces λ =

f

τ

 6nb × 1 external forces

inertia I 3nb × 3 inertia

positions u =


x

y

z

 3nb × 1 positions

quaternion Q =

qreal

qimg

 4nb × 1 body orientation

velocities ν =

v

ω

 6nb × 1 generalized velocities

bilateral
constraints (nj)
(joints)

violations φ nj × 1 joint violations

jacobians J (nj × Type)× 3 Jacobians

pairs pair nj × 2 bodies that form the constraint

bounds bound nj × 2 joint limits

rows row Type× 3 joint wise Jacobian rows

unilateral
constraints (nc)
(contacts)

gap ψ nc × 1 gap distance

pairs pair nc × 2 bodies that form the contact

mu µ nc × 2 coefficients of friction

normals n̂ nc × 3 contact normals

points p̂ nc × 3 contact points

solutions

solution z 6nb × 1 solution

iterations iter frames× 1 solver iterations

total error totalError iter × 1 total errors

normal error normError iter × 1 normal errors

friction error fricError iter × 1 friction error

stick state iter × 1 state of contacts

struct maximal coordinates. When using minimal coordinates,
we don’t need to solve the constraint force explicitly, so the min-
imal coordinates formulation is constructed using the position
and orientation of the bodies that form the constraints.

For each contact, the signed gap distance between the two
bodies is saved in the field “gap,” with positive values being the
separation distance and negative values corresponding to pene-
tration depth. The coefficient of friction is saved in the field of

5 Copyright c© 2014 by ASME



“mu.” For unilateral contacts, we may reconstruct the Jacobian
matrix which transforms from the contact frame to the world
frame, so the fields of “normals” and “points” are saved. The
normals are the unit vector from the contact point and is perpen-
dicular to and away from the surface of the 1st body in the pair.
The points are represented by vectors from the center of mass of
the 1st body to the contact point on the body.

The “step” is a field containing the single value of time step
size in seconds. If a simulation employs changing time steps, this
field will be stored as a vector with its length equal to the total
number of frames in the simulation.

After solving the complementarity problems, the error and
iteration information are saved in the field of “solution.” Here
“z” is the solution to the complementarity problem. To compare
the solvers in a consistent way, we measure the total error using
a uniform standard objective function. The user can choose their
customized objective function as total error. There are two uni-
form standard objective functions ready to use in the framework.
One is based on the FB function in equation (12):

totalError =
1

2
φTFB(x,y(x))φFB(x,y(x)) (16)

The other is based on the CCK function in equation (13):

totalError =
1

2
φTCCK(x,y(x), λ)φCCK(x,y(x), λ) (17)

where x is the solution from each testing algorithm and λ is the
user defined parameter. We choose λ = 0.7 as default in this
error metric. The total error is measured by evaluation of the ob-
jective function. The normal error is the violation of the normal
complementarity condition, while the frictional error is evaluated
as the product of slip velocity and the frictional resultant force.
The number of iterations is also saved in this field. When the
solver employs a pivoting method, the number of pivots is saved.
To help analyse the simulation and state change between the dif-
ferent friction cases: we also saved “stick”, when “stick” is true,
then the state is sticking while when it is false, the state for cur-
rent contact is sliding.

RESULTS
Comparison of Different Algorithms

With the collected data sets, different algorithms were tested
to compare their performance and analyse the errors at the itera-
tion level. Initial results are published in [31].

Comparison With Physical Experiment
Besides comparison of different algorithms on problems col-

lected from “real” physics engines, we also evaluate the differ-
ent algorithms using physical experimental data. The set up of

FIGURE 2: THE EXPERIMENT SETUP OF 2D PLANAR
GRASPING TASKS

the experiment is in Figure 2. This experiment was completed
in Zhang’s work on comparison of simulated and experimental
planar grasping tasks [32], where she used the PATH solver in
the simulation. In this paper, we use the available solvers in the
BPMD framework to run the simulation and compare the simu-
lation results with the physical experimental data to understand
the validity of different algorithms.

For the detailed experimental setup, calibration and grasp
acquisition, please refer to [32,33]. Here we start with the exper-
imental database 2dGAD (http://grasp.robotics.cs.
rpi.edu/2dgad). The initial position q can be extracted di-
rectly from the database. Directly measurable properties such
as the mass and object and actuator geometries are known. To
reduce the complexity of this first testing procedure and fairly
compare all solvers, we choose an experiment where the object
is round and the actuator is square. The final configuration of
the experiment we used for comparison is shown in Figure 3. To
accurately simulate the same experiment and formulate the dy-
namics, we still need to identify some system parameters such as
coefficient of friction µ and the radius of the tripod Rtri [32]. In
this experiment, there are three unknown coefficients of friction:

1. µp: the friction coefficient between the object and pusher
2. µf : the friction coefficient between the object and fingers
3. µs: the friction coefficient between the object and surface

The fourth unknown parameter is tripod radius, which allows
for a simpler point-contact representative model of the contact
present between the object and the surface [32].

These parameters are calibrated iteratively using different
combinations of the sampling set with evenly distributed points
in their feasible regions. Here the frictional coefficients are sam-
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FIGURE 3: FINAL CONFIGURATION OF THE EXPERIMEN-
TAL RESULTS: THE OBJECT HAS ONE CONTACT WITH
THE PUSHER AND TWO CONTACTS WITH ONE OF THE
FIGURES (HERE IS THE GREEN ONE WITH ITS BOUND-
ARY AS BLACK)

pled within 0 to 1 with grid 0.1. The tripod radius is sampled
within 5 to 100 with grid 5 (the range of the radius was set follow-
ing the experience values in [32]). The set of parameters which
minimizes the error defined in equation (18) is chosen as opti-
mal [32].

E =
1

M

M∑
j=1

1

Nj
[(q0

j−q̄0
j )

T (q0
j−q̄0

j )]+

Nj∑
`=1

[(q`
j−q̄`

j)
T (q`

j−q̄`
j)]

(18)
where q` is the object position in simulation at `-th simulation
step while q̄` is that measured in the experiment. M denotes the
total number of experiments used for calibration. In our compari-
son, M is equal to 10. Nj denotes the total number of simulation
frames in the j-th experiment. We obtain the optimal parameters
by applying this process on each solver separately. Results of
this step are given in Table 3. This process was run on a 3 GHz
Intel Core i7 processor running 64-bit Ubuntu 12.04. The param-
eter identification process takes around 8 to 10 hours to solve the
optimization problem minE, where E is defined in equation 18.

With the calibrated parameters, we choose another experi-
ment different from the previous M experiments used for cal-
ibration to predict an “unknown” experiment and compare the
simulation results with experimental trajectory. In doing this, we
could analyse how accurate the solver is in devise strategies for
reliable autonomous manipulation tasks. Figure 5 6 7 shows the
simulation and experimental trajectory of x coordinate, y coor-

TABLE 3: OPTIMAL PARAMETERS FOR EACH SOLVERS

Solvers µp µf µs Rtri

Nonsmooth Newton(FB) 0.1 0.8 0.1 25

Nonsmooth Newton(CCK) 0.4 0.2 0.6 45

Nonsmooth Newton(min) 0.6 0.3 0.1 45

Interior-point 0.2 0.6 0.1 15

Lemke 0.1 0.1 0.3 65

PATH 0.2 0.4 0.1 65

dinate of the object center and orientation of the object, respec-
tively.
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FIGURE 4: THE NUMBER OF ACTIVE CONTACT POINTS:
SUCH AS CONTACT BETWEEN OBJECT AND PUSHER,
OBJECT AND FIGURES VS TIME STEP

Figure 4 is the number of active contact points versus the
simulation time step. Figure 5 shows the comparison of simu-
lated and experimental results of the x coordinate at body cen-
ter. Seven of the eight solvers match well with the experimen-
tal trends, the exception being the interior-point method which
deviates from the experimental trajectory. Looking at Table 3,
we notice that the optimal tripod radius for interior-point method
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FIGURE 5: SIMULATION VS EXPERIMENT FOR X-
COORDINATE AT OBJECT CENTER, WHERE THE THICK
BLUE LINE IS THE TRAJECTORY FROM THE EX-
PERIMENT, EXTRACTED FROM THE DATABASE, THE
OTHER LINES ARE TRAJECTORIES FROM SIMULATION
WITH DIFFERENT SOLVERS TO SOLVE THE CPS CON-
STRUCTED

was determined to be 15, much lower than optima for the other
solvers at 25, 45, 65. Since the grid of the sampling points for
frictional coefficients is 0.1, which is relative large and rough,
we may be failing to find an accurate optimal parameter for the
interior point method. This can be one of the reasons that the
trajectory by interior-point method deviates from experimental
trajectory. Moreover, at around the 200th step, the trajectories
from the seven solvers starts to get further away with the experi-
mental trajectory, which is due to the appearance of the 3rd con-
tact. This is reflected in Figure 4. Then error from computation
of the normal and frictional forces will result in a not so accurate
trajectory, compared with those with no or fewer contacts.

From the final configuration of the experiment in Figure 3,
the pusher is along the y coordinate in world frame. The force ap-
plied on the object by the pusher is always along the y direction.
Therefore, in Figure 6, the y coordinate of the object generated
by all the eight solvers matches well with the experimental re-
sult. At around the 230th second, we see in Figure 6 that the min
based nonsmooth Newton solver deviate. This is the time that
the object makes contact with one of the fingers, and when the
contact force is not accurately solved by this method.
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FIGURE 6: SIMULATION VS EXPERIMENT FOR Y-
COORDINATE AT OBJECT CENTER, WHERE THE THICK
BLUE LINE IS THE TRAJECTORY FROM THE EX-
PERIMENT, EXTRACTED FROM THE DATABASE, THE
OTHER LINES ARE TRAJECTORIES FROM SIMULATION
WITH DIFFERENT SOLVERS TO SOLVE THE CPS CON-
STRUCTED

Orientation is related to the friction between the object and
the surface, which exists from the very beginning of the simula-
tion. Frictional force has been one of the most difficult part of
simulation because of the nonsmooth and nonlinear nature of the
friction model. Here the nonsmooth Newton (CCK) and nons-
mooth Newton (FB) use the accurate friction cone model where
the others use the approximate polyhedral friction model. From
Figure 7, the nonsmooth Newton based on FB or CCK functions
have relatively good coherence with the experimental data. As
mentioned before, the frictional force between the object and
surface exists at the beginning of the simulation, which means
the difference between the simulation and experiment can be ac-
cumulated and result in a much larger error at the final configu-
ration. Friction plays an important role in multibody simulation
and how accurately it is solved is a good criterion to measure the
accuracy of the dynamics formulation and numerical algorithms.
Another reason that the orientation deviates from the experimen-
tal results is that the parameter estimation procedure needs to be
refined to get more accurate parameters since the four parameters
are all relevant to the frictional forces.
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FIGURE 7: SIMULATION VS EXPERIMENT FOR OBJECT
ORIENTATION, WHERE THE THICK BLUE LINE IS THE
TRAJECTORY FROM THE EXPERIMENT, EXTRACTED
FROM THE DATABASE, THE OTHER LINES ARE TRAJEC-
TORIES FROM SIMULATION WITH DIFFERENT SOLVERS
TO SOLVE THE CPS CONSTRUCTED

CONCLUSIONS AND FUTURE WORK

From the BPMD framework perspective, more benchmark-
ing problem sets need to be collected. Once we have the number
of problem sets large enough, we could compare all available
solvers by running on all the problem sets to conclude on which
solver works best for a certain types of problems. For exam-
ple, comparisons may be made specifically regarding solution
of small or large problems, problems based on closed or open
chain systems, problems with maximal or minimal coordinates,
or problems with piling spheres or stacking boxes.

From the physical experimental point of view, sampling
points have to be refined in the parameter calibration process to
get more accurate optimal values, even though this is still a lo-
cal optimal. Another promising direction is the invertible model,
which we could utilize to solve the parameters directly. We have
to keep the forward and inverse model consistent, which leads
to the uncertainty of the accuracy, but an invertible model makes
parameter calibration more efficient.
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