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Abstract
After more than twenty years spent on the development of simulation models and integration algorithms, there is no convenient
way to compare the performance of the many algorithms that solve the Complementarity Problem (CP) in an unbiased manner.
The constraint models in multibody systems naturally take the form of CPs and the current methods for the formulations lead
to singular CPs which are difficult to solve. Since the underlying models are nonsmooth and nonlinear, mathematical theory
supporting the design of simulation methods is sparse. For these reasons, we find that an important tool in the field of physical
simulation will be a benchmark database that facilitates the fair comparison of solver algorithms. In any field where theory is
limited, sound empirical methods must be used to measure progress and set future research directions. We present an HDF5
database, which provides a standard interface for the capture of data needed to reconstruct the time-stepping subproblem
from any open-source physics engine e.g. Bullet, ODE, Gazebo, ChronoEngine etc. Timing data, as well as unilateral and
bilateral constraint information is collected at the time-step level. This dataset may then be accessed later to reformulate
the subproblem using different dynamics models. Applying different solvers to the CPs provides a comparison of solver
performance and error analysis. This standard software interface provides a convenient and fair way to compare the solvers in
the different physics engines as well as customized algorithms for multibody systems.
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1. Introduction

The dynamics of the multibody system is nonsmooth and non-
linear because of the discontinuous nature of nonpenetration
and stick-slip friction constraints. There are linearized models
to approximate the nonlinear constraints, which introduce more
constraint equations than the nonlinear formulations, making
the simulation slow for large number of contacts. Currently,
solution methods in popular physics engines like Bullet, ODE,
Gazebo, Solfec, etc, fall into two categories: one involves solv-
ing the dynamics directly, and the other involves solving a
linearized approximation of the model. Despite the importance
of solver choice, little has been done to analyze their differ-
ences, particularly with respect to solution of data from “real”
simulation. In this paper, we provide an standard interface to
make such comparisons using data collected from simulation
experiments in any physics engine. In doing so, we hope to
provide insight into simulator design choices, including better
understanding of the tradeoff between speed and accuracy for
various purposes of simulation.

In the following sections, we first introduce the Complemen-
tarity Problem from the constraints, then the standard HDF5
interface is presented. The results of comparison between dif-

ferent time-stepping formulations and solvers are analyzed in
the last section.

2. Previous Work
The methods to solve the Complementarity Problems fall into
two main categories: direct method and iterative method [1] [2].
The methods of Lemke and Dantzig are direct methods based on
simplex pivoting [2], which are faster and more accurate when
solving systems with few contacts. But when it comes to large
system with hundreds of contacts, they have a tendency to fail.
Iterative methods include Projected Gauss-Seidel (PGS), pro-
jected Jacobi, fixed-point [3], and generalized Newton methods.
PGS has been popular as a parallel solver, but because of the
zeros in the diagonal entries of the matrix that characterizes the
system’s dynamics, the blocked PGS has been more popular.

For the time-stepping subproblem, the mixed linear Com-
plementarity Problem (MLCP) and Linear Complementarity
Problem (LCP) are popular and available in most of physics
engines. Lemke and PATH [4] have been widely used in solving
the LCPs and MLCPs, respectively. The other time-stepping
subproblem formulation is the Nonlinar Complementarity Prob-
lem (NCP), which fully models the system’s nonlinar and nons-
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mooth nature [5]. A popular method to solve the NCP problems
is to rewrite the NCP constraint equations into an equivalent
function such as the Fischer-Burmeister NCP function [6], or
Alart-Curnier function [7]. Chen et al. [8] have modified the
Fischer-Burmeister function by adding a new term to the origi-
nal function to improve performance. After we write the NCP
functions, we may solve the nonlinear system of equations with
a generalized Newton method or convert it to an optimization
problem [3].

3. Complementarity Problems
In this section, the complementarity condition will be built
based on the physical constraints which occur in the simulation
of multibody dynamics.

3.1 Normal Constraints
Since the normal constraints differ for unilateral contacts and
bilateral joints, we present the following two cases:

Unilateral Contacts
An example of potential contact and the contact frame between
two spheres is depicted in figure 1. The two bodies are in contact
when the gap distance ψn is 0. An impulse is generated by the
collision between two bodies if and only if the gap distance
is 0. Because we consider the bodies ideally rigid, the gap

x

y
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j

n̂i

n̂ j
t̂i t̂ j

ψn

Figure 1. contact frame

distance should always be non-negative. Based on this, the
forces between the two bodies can only be repulsive forces to
push them apart when the distance between the two bodies is 0.
To write the constraints in a complementarity form:

0≤ ψn(q, t)⊥ λn ≥ 0 (1)

where ψn is the gap distance between the two bodies forming
the contact, and is a function of the generalized position q and
time t. The normal force λn is applied to each body in opposite
directions to prevent penetration. The ⊥ implies orthogonality,
which states that a contact force can only exist when the distance
between the two bodies is zero.

Bilateral Joints
For a bilateral joint such as a revolute or prismatic joint, the
contact points are constrained to coincide, which removes some

degrees of freedom from the system. The normal constraint
equation for a bilateral joint may be written:

φn(q, t) = 0 (2)

3.2 Frictional constraints
Coulomb’s dry friction law is used to build the friction model.
For a three-dimensional multibody system, we use [n̂, t̂, ô] to
represent the primary axes of the contact frame, where the
normal contact force is λn and the tangential friction force is:
[λt ,λo]. This defines a friction cone at the contact frame. There
are three physical cases for a potential contact at the friction
level.

• Detaching: The gap distance between the two bodies is
0. The normal force is 0, and the frictional force at this
contact will be [λt ,λo] = [0,0]. The relative tangential
velocity can be any arbitrary value.

• Sliding: The gap distance between the two bodies is 0, the
frictional force satisfies λ 2

t +λ 2
o = µ2λ 2

n , where µ is the
coefficient of friction. The relative sliding velocity in the
tangential direction at the contact point has the opposite
direction with the frictional force and the magnitude is
greater than 0.

• Sticking The gap distance between the two bodies is
0, the frictional force satisfies λ 2

t + λ 2
o < µ2λ 2

n . The
magnitude of relative tangential velocity at the contact
degenerates to 0.

u f

λn

λt

λo

u f

λ λn

λt

λo

λ

Detaching Sliding Sticking

Figure 2. Three friction cases

In figure 2, ν f is the relative velocity at the contact point. Here
we introduce some notation that will be used in the following
sections. The generalized position and velocity in the world
frame are q and ν = q̇. Gn and G f are the transformation matri-
ces dependent on position q and map the normal and frictional
forces from the contact frame to the world frame. Conversely,
GT

n and GT
f will transform the velocity from the world frame

to the contact frame to get the relative velocities. The normal
and tangential relative velocity are denoted as un = GT

n ν and
u f = GT

f ν .
Friction laws here satisfy the maximum dissipation principle

at each contact. For the ith contact:

(λit ,λio) ∈ argmax
(λ ′it ,λ

′
io)∈Fi

(
−(uitλ

′
it +uioλ

′
io)
)

(3)
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where Fi is the Coulomb friction cone at the ith contact point,
and Fi =

{
(λit ,λio) : (λit)

2 +(λio)
2 ≤ (µiλin)

2
}

. The maxi-
mum dissipation principle here can not be determined from
the Karush-Kuhn-Tucker (KKT) condition, so we apply the
Fritz-John conditions and arrive at the compact friction formu-
lation [9]

(Uλn)◦ut +λt ◦ s = 0 (4)
(Uλn)◦uo +λo ◦ s = 0 (5)

0≤ (Uλn)◦ (Uλn)−λt ◦λt −λo ◦λo ⊥ s≥ 0 (6)

where s is the vector of sliding speed at the contact point, and U
is a diagonal matrix of the coefficients of friction. The operator
◦ denotes the Hadamard product:

u◦v =


u1
u2
...

un

◦


v1
v2
...

vn

=


u1v1
u2v2

...
unvn

 (7)

3.3 Discretized friction model
Since the friction constraints are nonlinear, LCP solvers like
Lemke and PATH cannot solve this model directly. An approx-
imation to the quadratic friction cone in the Coulomb friction
model is a polyhedron with nd facets in the tangent plane that
discretize the nonlinear model. The friction inside or on the
boundary of the friction cone defined as F will be approxi-
mated as the sum of the nd components. The linearized form of
the maximum dissipation conditions are:

αi ∈ argmax
0≤αi,eT αi≤µiλin

(
ν

T DT GT
f αi
)

(8)

where αi is a nd component vector where each non-negative
component represents a magnitude of the friction force in one
of the nd discrete friction directions. The sum of the nd compo-
nents is no larger than µiλin. The vector e is a column vector
with all 1s and length nd . D = [d1,d2, · · · ,dnd ], where

di =

cos
(
(i−1)

2π

nd

)
sin
(
(i−1)

2π

nd

)
 (9)

To keep consistent with the NCP model, we denote Gd = G f D.
Using this linearized model, the frictional constraints are:

0≤ α ⊥GT
d ν +Es+

∂ψ f

∂ t
≥ 0 (10)

0≤ s⊥ Uλn−ET
α︸ ︷︷ ︸

σ

≥ 0 (11)

where E is block diagonal matrix of elements e.

4. Time-Stepping Formulations
4.1 Newton-Euler Equation
The Newton-Euler Equation for the system is:

M(q)ν̇ = Gnλn +G f λ f +λapp (12)

where M is the generalized mass matrix with mass properties
for all the bodies. For the jth rigid body we have:

M j =

[
m jI3×3 0

0 I j

]
(13)

I j is the inertia matrix for the jth body and λapp is the applied
force i.e. gravity.

Since ν̇ ≈ (ν`+1−ν`)/h and the impulse p = λh, we apply
a backward Euler derivative formula to equation (12) to get the
following time-stepping model:

M(ν`+1−ν`) = G`+1
n p`+1

n +G`+1
f p`+1

f +p`
app (14)

4.2 NCP Formulation
Equations (1), (4), (5), (6), (14) form the system of equations
for the NCP formulation. One general method to solve the NCP
is to write the constraints into so-called NCP-functions, such as
the proximal (prox) function [10] or Fischer-Newton function.
Another method is to write them as an optimization problem
with an merit or objective function.

In this paper, The NCP constraints are written into an equiv-
alent prox function [11], and then solved using a fixed-point
variant of Gauss-Seidel.

A proximal point function maps a point to the closest point
in a feasible set C . The NCP condition in vector form 0≤ x⊥
y(x)≥ 0 can be rewritten as the following nonsmooth equation:

φ(x,y) = x−proxC (x− ry(x)) = 0 (15)

where r is a parameter that affects the convergence of the prob-
lem. For relatively large r, the problem is prone to diverge.
Inside the range of r which guarantees the convergence of the
problem, the larger r will converge faster while the smaller
ones will converge slower. There are some strategies mentioned
in [12] for choosing r effectively, but for larger problems it is
still an area that needs further exploration. For the prox func-
tion, when the term (x− ry(x)) is inside the feasible set, then
proxC (x− ry(x)) = x− ry(x) while when the term (x− ry(x))
falls outside the feasible set, it will be projected onto the nearest
point on the boundary of the set.

Another popular NCP-function is Fischer-Burmeister func-
tion: Suppose we have the NCP condition in the vector form
0≤ x⊥ y(x)≥ 0, the Fischer-Burmeister function is

φiFB(xi,yi) := xi + yi−
√

x2
i + y2

i . (16)

This function has nice properties since it is smooth everywhere
except at the point (0,0). However, the Fischer-Burmeister still
has some drawbacks, for example it is too flat in the positive
orthant, which is the region we are most interested in for Com-
plementarity problems. A modified NCP-function is introduced
by Chen et al [8]:

φiλ (xi,yi) = λφiFB(xi,yi)+(1−λ )x+i y+i (17)

where λ ∈ (0,1) is an arbitrary parameter and the term x+i y+i
not only penalizes violations of the complementarity condition
but also makes the function continuously differentiable on IR2
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4.3 LCP Formulation
We substitute the linearized friction model into equation (14) to
get the following:

M(ν`+1−ν`) = G`+1
n p`+1

n +G`+1
d α

`+1 +p`
app (18)

Together with equations (1), (10), and (11), (18) defines an
MLCP formulation. We can solve equation (18) and substitute
the velocity into the other three equations to get the LCP form:

0≤


GT

n M−1Gn GT
n M−1Gd 0

GT
d M−1Gn GT

d M−1Gd E

U −ET 0


︸ ︷︷ ︸

A


pn

p f

s


︸ ︷︷ ︸

z

+


GT

n (ν +M−1papp)+
ψn

h
+

∂ψn

∂ t
GT

d (ν +M−1papp)+
∂ψ f

∂ t
0


︸ ︷︷ ︸

b

⊥


pn

p f

s


︸ ︷︷ ︸

z

≥ 0

(19)

Here we arrived at the standard LCP form which is 0≤ (Az+
b)⊥ z≥ 0, allowing us to call any LCP solver to solve for z.

5. Data Hierarchy
In order to compare different solver performance in solving the
CPs, we have developed a data format that utilizes the Hierar-
chical Data Format (HDF5). Timing data, body information,
and constraint violations at the simulation time-step level are
collected. We capture all the data needed to reconstruct the time-
stepping subproblem from any open-source physics engine and
save it into our standardized dataset. By loading data later, both
NCP and LCP formulations can be reconstructed and different
solvers may be used to solve each problem again in order to do
performance comparison and error analysis.

bodies constraints contacts step solution

frame 1 · · · frame n

data set

Figure 3. Simulation data hierarchy

A high-level view of the data hierarchy is shown in figure 3,
where the frames 1 to n represent the n simulation steps, each
including the results of collision detection, the original solver’s
solution, constraint forces, velocities, positions, etc as indepen-
dent modules. The class is defined in more detail in table 1 with
each column containing the lower level properties of figure 3. In
the “body” class, the external forces like gravity are saved under
“forces”. The body id is unique for each body and used to index

the bodies for reference. The inertia tensors for all bodies are
saved in the field “inertia”. Quaternions are stored to represent
the body orientations.

In the “constraints” class, the information related to the
bilateral joints are stored. The Jacobian matrix which transforms
from the joint frame to the world frame is saved in the filed of
“jacobian”. For different kinds of joints, the size of Jacobian
matrix varies, so we use a “row” vector to record the size of
each Jacobian component for each joint. For some bilateral
joints, there may be a joint limit, which is stored in the field
“bounds”. “Pairs” is the pair of body ids of the two bodies that
form the joint.

Table 1. Detail of the HDF5 standard interface

bodies constraints contacts solution
forces jacobian gap z

ids bounds mu total error
inertia pairs normals normal error
masses rows pairs friction error

positions violation points iterations
quaternions slide or stick
velocities

For each contact, the signed gap distance between the two
bodies is saved in the field of “gap”. The coefficient of friction
is saved in the field of “mu”. For unilateral contacts, we may
reconstruct the Jacobian matrix which transforms from the con-
tact frame to the world frame, so the fields of “normals” and
“points” are saved. The normals are the unit vector from the
contact point and is perpendicular to and away from the surface
of the 1st body in the pair. The points are represented by vectors
from the center of mass of the 1st body to the contact point on
the body. The “step” is a field containing the single value of
time step size in seconds.

After solving the complementarity problems, the error and
iteration information are saved in the field of “solution”. Here
“z” is the solution to the equation (19). We measure the total error
using a uniform standard objective function based on the Fischer-

Burmeister function in equation (16): ξ =
1
2

φ T
FBφFB. The total

error is measured by evaluation of the objective function. The
normal error is the violation of the normal complementarity
condition while the frictional error is evaluated by the sum
of magnitude error and the directional error. The magnitude
error is sT σ , which is the frictional complementarity condition
violation in equation (11). The directional error is measured by
taking the dot product of the corresponding frictional force and
the relative velocity, which is λ T

f ν f . The number of iterations
is also saved in this field. In the case of pivoting method, the
number of pivots is saved. To help analyse the simulation and
state change between the different friction cases: we also saved
the “slide or stick”, which stores whether the contact is sliding
or sticking at the current frame.

After we get the data in the standard format, we load the
data using our HDF5 reader into the RPI-MATLAB-Simulator,
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Table 2. Available dynamics formulations with their compatible solvers.
Dynamics Model Solvers

LCP Lemke [2] Fischer-Newton [13] PGS Minmap-Newton [13]
mLCP PATH [4] Fixed-point Minres [14] Jacobi
NCP PGS Fixed-point [5] Minres [14]

mNCP Fixed-point non-smooth Newton [13]

which is a physics engine with several dynamics formulations
and solvers available (table 2). We reconstruct the time-stepping
subproblem as an LCP or NCP, then pass the problem to each
solver and record performance.

6. Result and Analysis
6.1 Error analysis of data from Gazebo
Using the data hierarchy described in section 5, we generated
a dataset with problems simulated in Gazebo, which calls the
solver in ODE. We developed a simulation with the Atlas robot
[15] and a hose lying on the table. Figure 4 shows a frame in
which the hand has grasped the end of the hose. The results
of every time step in the simulation were saved in the HDF5
file and then the two most complex frames (measured by the
number of unilateral contacts) were imported into MATLAB for
testing.

Figure 4. The Atlas robot picking up the hose

We iterated over the two frames for 40 iterations of PGS.
Figure 5 shows the absolute value of the constraint violations
(interbody penetrations, friction model violations, etc.) across
the simulation. The errors after 40 iterations are mostly bounded
by 10−3 and 10−4. This is accurate enough for the simulation to
appear correct with no obvious interpenetrations and stay stable
for a long enough time.

To explore the effectiveness of additional iterations, we
studied the error distributions of the 10th and 40th iterates of
the PGS solver at each time step across the entire simulation.
We could see from figure 6 that the center of mass of the error
distribution for the 10th iterates is to the right of the distribution
of the 40th iterates.

With this observation, we could set the maximum iteration
number as 40, with which the error is mostly bounded by at

most 10−3. Then keep track of the solution with minimum
violations as the solution for this simulation step. If we set the
maximum number of iterations much bigger than 40, it will take
much longer time to do the iterations with only a minor reduce
in the error of violation.
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Figure 5. RMS constraint violation in absolute value with 40
iterations

Figure 6. Average error distribution at the 10th and 40th
iteartion when Atlas moving

6.2 Error analysis of data using RPI-MATLAB-Simulator
We ran an experiment of 15 spheres falling into a box from sep-
arate random initial positions. The box is defined by five faces:
one bottom and four sides. Figure 7 shows a step when all the
spheres have fallen onto the bottom and some of them are rolling
on the bottom of the box. We solved 10 continuous timesteps
using various solution methods and plot the convergence of the
solvers.

Figure 8 shows the results from the Lemke solver, which is a
direct method based on pivoting. The top plot is the average er-
ror after each pivot over all the 10 timesteps. We can see that the



Standard Interface for data analysis of solvers in multibody dynamics — 6/8

Lemke solver has a high accuracy since the error is on the order
of 10−10. However, it is worth pointing out that the frictional
error is on the order of 10−5, which is even larger than the total
error. This is possible due to the linearization of the friction
cone. When we evaluate the total error by using the objective
function, the discretized frictional forces are considered, but
when we compute the frictional force, it is the resultant force
along all the discretized directions.

Figure 7. A scene of 15 spheres falling into a box
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Figure 8. Lemke: performance with the detailed total, normal,
frictional error

Figure 9 is the Projected Gauss Seidel method with the
constrained force mixing (CFM) metric to make up for the zero
element in the diagonal position of the matrix by adding a small
number ε to the diagonal of the big matrix A in equation (19).
The PGS method converged to the order of 10−1, and afterwards,
the error doesn’t change with the increase of the solver iterations.
This can be explained in that we find a local minimum solution.
This trend is often seen in the PGS-type solver, which is one
reason for including a maximum number of iterations such as
in ODE.

6.3 Error analysis of data from Algoryx Simulation
This experiment is simulation on the stacking of forty identical
cylindrical logs. These logs fall from separated initial positions
and eventually pile up. Figure 10 shows a scene of the logs in
the process of piling up.
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Figure 9. PGS: solver convergence with total, normal,
frictional error

Figure 10. A scene of 40 cylindrical logs piling up

Figure 11 is the performance of Lemke solver on the Al-
goryx simulation. For the first 90 pivots, the complementarity
conditions are not satisfied in the system of equations, until after
about 92th pivots, the complementarity conditions are all satis-
fied and we arrived at the solution, then the error is in the order
of 10−20, which is effectively zero with machine precision. But
like we saw before in the falling spheres example, the frictional
error is still relatively large compared with the total error.

The Fischer-Newton method involves rewriting the Comple-
mentarity condition in the form of Fischer-Burmeister function
in equation (16), and then solving the nonlinear system of equa-
tions using the generalized Newton’s method. The performance
of Fischer-Newton method is shown in figure 12. We didn’t
see the quadratic convergence for the Newton method, but the
solution converged to the order of 10−5 in about 40 iterations.
From the bottom detailed error bar plot, the normal error is still
more accurate than the friction due to the approximation by
linearization. The main bottleneck with minimizing error lies in
determining how to solve the frictional force more effectively
and accurately.
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Figure 11. Lemke:performance with the detailed total,
normal, frictional error
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Figure 12. Fischer-Newton method: solver convergence and
total, normal, frictional error
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Figure 13. Interior-point method: solver convergence and
total, normal, frictional error

The interior-point method introduces a positive value γ to

ensure invariance of the complementarity conditions. So we
have the system of equations:

(Ax−y+b)i = 0 (20)
xiyi− γ = 0 (21)

xi ≥ 0; yi ≥ 0 (22)

where γ is a relaxed complimentarity measure [13]. Figure 13
shows the error drops to the order of 10−15 in about 30 itera-
tions. The frictional error is on the order of 10−7, which is also
accurate enough in the simulation.
Figure 14 is the method to rewrite the NCP formulation in the
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Figure 14. NCPprox method: solver convergence and total,
normal, frictional error

form of proximal function (15), in this method, the friction is
solved as the frictional cone rather than using the linearized ap-
proximation. Before solving the system of nonlinear nonsmooth
equations, we use quadratic programming to solve the normal
force first, and then use the solution as the initial value to start
the Gauss-Seidel-type iterative procedure. From the detailed
friction error on the bottom of figure 12, the friction error is on
the order of 10−5, which is more accurate than the LCP model.

7. Future Work
We currently have only one NCP solver, based on the proximal
function and solved in a Gauss-Seidel manner. More solvers
based on the NCP formulation will be added to our simulator.
We had implemented a write-interface for ODE in order to store
simulation data, and hope to extend the number of supported
open-source physics engines. This will make direct comparison
of solver performance possible in different physics engines.
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