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ABSTRACT
We present an HDF5 layout specification to store and exchange the run-time kinematic data of
simulations of contacting multibody systems subject to dry friction in descriptor form. This is
intended to be used to test solvers on the incremental problem defined by one single configura-
tion, allowing any mathematical formulation and friction law, and compatible with any numerical
method. We also introduce metrics to measure the quality of a solution comprehensively. We
started a public web site with a collection of problems, from simple stacking to full vehicle dy-
namics as well as grasping robots. We provide software to manipulate the data, assemble matrices
needed for different formulations, interface with existing solvers, and to compute our metrics. As
this is written in MATLAB and OCTAVE we believe our contributions will allow anyone wanting to
write or test a solver to work with “real life” examples without any difficulty, and concentrate on
the numerical methods themselves, and get results before writing a code suitable for integration
with a full featured software package.

Keywords: multibody dynamics, benchmark, solvers, friction, complementarity, contact mechan-
ics, data representation.

1 INTRODUCTION
There is currently no entirely satisfactory solver for the computation of contact forces for multi-
body systems subject to dry friction laws. Issues include performance, stability, robustness, and
accuracy [see 2, implicitly stated]. There are also multiple physical models based either on points
or contacts for instance, multiple formulations of the mathematical problem [2] as Nonlinear or
Linear Complementarity Problems, Variational Inequalities [11], and optimization problems [10].
There are then numerous numerical methods such as stationary iterative ones, Krylov subspace
ones, pivoting ones, and non-smooth Newton ones [see 2, for a detailed list and references]. This
makes comparison difficult. As for testing a solver during development, reference cases are neces-
sary and should be easily accessible from a prototyping environment, where one can perform tests
on the incremental problem defined in discussed in Sec. 2 first. These issues have been discussed
previously [7, 9, 15]. But since there isn’t an exchange format yet, one is restricted to work on
simplistic examples, or random problems [9, 15], which is hardly representative of real scenarios.

Benchmarking of multibody dynamics simulation library is already being addressed [13, 19]. But
the focus in the latter studies and benchmark frameworks is to evaluate the global performance of
a numerical method on given problems defined by configuration, initial values, and scenario. The
test results are then affected by the overall formulation, the time integration algorithms, and the



numerical methods used for solving forces and accelerations as well. As useful as this is, this is,
we are consider with a different aspect of benchmarking.

Solver evaluation should be focused on the computation of forces and accelerations for the incre-
mental problem, needed at any one stage of a time integration method. It is thus useful to have
access to numerical kinematic data instead of having to write a simulation library or linking to one
to access realistic scenarios. This is a radical difference from the exchange mechanism described
in the last paragraph. With raw data, one can work with scripting languages and their libraries,
such as MATLAB, OCTAVE, or PYTHON to name but three. This is the strategy we present here.
Our datasets contain numerical values of mass matrices, Jacobians, velocities, forces, etc., for
the descriptor form of the equations of motion. This data can then be processed easily by the
aforementioned software tools without writing any interfacing code.

The interfaces to solver involve only matrices, vectors, and scalars, which are all naturally sup-
ported. This data can be rearranged and adapted to the need of any solver, existing ones in par-
ticular, which can then be used via plugins for the tools mentioned and others. Rearrangement
includes transforming to dense matrices from sparse ones, using row or column major matrices,
using saddle point formulations or computing the Delassus operator, for instance. The exchange
mechanism we chose is HDF5 since it is natively supported by a plethora of data analysis and
scripting software suitable for numerical computations.

A large collection of reference problem sets can then be generated easily with only a few simula-
tion libraries which can write in this format, or whose output files can be converted to same if all
the data is available. This is more general than declarative exchange formats at least for the incre-
mental problem, since it is irrelevant at the numerical level whether a given Jacobian corresponds
to a screw or tripode joint. Only numerical values are relevant for a solver.

By limiting the contact descriptions to points and normals, the user is free to choose the representa-
tion of contact manifolds. We believe that our datasets represent the lowest common denominator
from which any formulation of the contact problem and any friction law can be expressed, and the
data layout can be adapted to any type of solver designed for the descriptor form of the equations
of motion. This contrast with a similar effort FCLIB [1] which represents one specific problem
formulation in one specific matrix form. This is ill-suited for stationary iterative methods for
instance, as they need original contact information unavailable FCLIB.

Performance metrics are needed to develop better solvers but are currently deficient. These must
match computed solutions against the chosen physical model in a detailed and comprehensive
way. Metrics are also needed provide a global statistical picture of the quality and performance of
a solver on a large number of problems, and visualization tools or templates are needed to present
this information.

The rest of the paper covers the definition of the incremental problem in Sec. 2, and the specifi-
cation of the datasets in Sec. 3. The analysis pipeline is introduced in Sec. 4, with simple usage
examples. Quality metrics are defined in Sec. 5. We present experimental results using our tools
in Sec. 6 with discussion in Sec. 7 and conclusions in Sec. 8.

2 Problem definition
We consider the incremental problem of computing constraints and contact forces for a planar
or spatial multibody system subject to dry frictional contacts. This is solved at any stage of a
numerical time integration method. We concentrate on the spatial case in what follows for brevity.



In descriptor form, this can be formulated as follows:

Mv̄ = GT
λ +NT

ν +DT
β +a

Gv̄ = b,
Nv̄≥ c, ν ≥ 0, and ν · (Nv̄− c) = 0,

F (v̄,ν ,β ) = true.

(1)

Bold face is used for vectors and matrices, the latter in upper case, (·)T is the transpose operator.
Definitions follow.

The unknowns are the increment velocity vector v̄, the multipliers λ , ν , and β correspond to
constraint, normal and tangent forces, respectively, according to GT λ , NT ν and DT β , respectively.
The unknowns are to be computed so they satisfy a chosen friction law, F (v̄,ν ,β ) = true, with
any numerical method chosen by the user of the dataset.

Quantities contained in or derived from the datasets are as follows.

The system’s mass matrix M(q) is in represented in inertial frame, including inertia tensors, and
depends on the generalized coordinates q which include quaternions for rotations. They are related
nonlinearly to the generalized velocities v via a matrix E(q) so that q̇ = E(q)v. The generalized
velocity v is expressed in Cartesian coordinates, and includes translational and angular compo-
nents.

The Jacobian matrix G corresponds to linearized equality constraints g(q) = 0 so that ġ(q) = Gv.
The constraint definition is irrelevant for the computation of the incremental problem, but we do
provide the value of g(q) in the data file, allowing for constraint violation.

Vectors a,b, and c depend on the chosen time discretization and stepping model, and are computed
from the stored velocities, gaps and other information in the dataset according to the chosen model.

Matrix N projects the generalized velocities onto the normal bundle of the manifold χ(q) = 0, and
D projects to the tangent bundle of same. The definition of the manifold is left to the user using the
point-wise contact information found in the dataset. This means that the two matrices, N and D are
not included in the files. The definition of N must satisfy χ̇ = Nv, meaning that the incremented
gap would then be χ̄ = χ(q)+hNv̄, where h is the time increment.

The complementarity condition on the third line of Eqn. (1), where inequalities are understood
component-wise, means that separating contacts corresponds to components χ ( j)(q) > 0, j =
1,2, . . . ,ncontacts have zero normal forces. Other contacts have positive normals. Since penetra-
tion χ ( j)(q) can occur due to numerical errors, the vector c is included for generality, and would
be computed and used to adjust for penetration error according to a given stepping scheme.

The friction law is represented by a function F (v̄,ν ,β ) and its definition is left to the user.

We believe that the incremental problem defined in Eqn. (1) covers all models expressed in the
descriptor form, for linearized constraints.

We left out joint friction and rheonomic constraints in Eqn. (1) for brevity but these are supported
by the dataset specification.

Friction models based on position projection such as the Paoli-Schatzman scheme [22, 23, 24] are
based on three step recurrences

qk+1←Φ(qk,qk−1), (2)

where k is the discrete time and Φ is a mapping. This is also compatible as long as it is possible
to invert the mapping Φ using the coordinates qk and velocities vk. The datasets contain enough
information to represent these as well.
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Figure 1: The layout of the HDF5 specification, excluding optional data.

3 DATASET SPECIFICATION AND HANDLING
We previously described the layout of the required kinematic data in the Hierarchical Data Format
5 (HDF5) [18] and started to collect problem sets on our webpage [20]. An almost complete de-
scription of the hierarchical specification implemented with HDF5 is described in Fig. 1, excluding
optional, non-essential data. A more technical description is published on our website.

The Jacobian matrix G is stored explicitly in block-packed format, with two blocks per constraint,
one block per constrained body. The number of rows is the number of individual equations, e.g.,
three for a ball joint, five for a hinge. An extension in preparation will cover constraints with more
than two bodies. This contains no reference to the type of joint it is associated with.

Body variables such as mass, inertia tensor, position, velocity, angular velocities and forces are
stored body-wise. This means that assembly is necessary if one wants the corresponding system-
wide variables. The reason is that stationary iterative methods as well as Krylov subspace ones
operate directly on individual bodies and individual constraint Jacobian blocks or individual rows.
There lies one of the advantages of this specification when compared to that of FCLIB [1].

The normal and tangent Jacobians, N and D, are not stored at all in the data file as illustrated in
Fig. 1. Instead, the user constructs these from contact points and normals according to the chosen
representation of the contact manifold. This allows for point-wise or surface-wise models. One
can also polygonize the Coulomb friction cone[26], or include the Contensou effects [16]. The
contact data also allows for geometric analysis, for contact reduction for instance.

Optional contact information includes tangent vectors tu, tv which span the local contact surface
which can be used to model anisotropic friction, in which case additional friction coefficients can
be stored.

The generality of this specification is discussed further in Sec. 4.

The datasets comes from simulations which write “frames” – kinematic data – at selected time
steps. A file can contain datasets from any number simulations, and each simulation containing any
number of frames, each frame containing the data for one time step. The datasets are then loaded in
the analysis environment and assembled in suitable form to be processed by a solver. Also included
is a “manifest” for each simulation which describes the origin of said, along with any information
relevant to reproduce same, though only a few descriptive words are required. An image can and
should also be inserted. We are now defining keywords which should be present for use in plotting.
This layout makes it easy to curate datasets since few files are involved and since they are self-
describing. The format allows for any extension so that one could, for instance, include solutions
in the datasets themselves so that with good management, these files could accumulate a wealth of
information.

Instrumenting an existing simulation library is relatively simple. We provide a minimal C++ in-
terface to HDF5 which hides the complexity of the standard HDF5 API for the needs at hand. We



also provide a plugin for ODE [25]. Since ODE is integrated in Gazebo [12], widely used for
robotics simulations, and is also integrated with V-Rep, also designed for robotics, a multitude of
datasets can be generated with very little effort. Datasets can also be produced with AgX, a com-
mercial multibody dynamics code[5], as well as the RPI-Matlab Simulator [27]. Other libraries
can presumably store this kinematic data in which case conversion to our format requires straight
forward scripting. We understand that introducing HDF5 write functionality in an existing library
is intrusive, be it easy. In the worst case scenario, one would use an sufficiently expressive in-
strumented simulation library to obtain data for an example of interest, and this connects with the
other benchmark efforts [13].

4 ANALYSIS PIPELINE
Using the information in the dataset described in Sec. 3 it is possible to assemble the matrices
needed to solve any of the formulations of the dry friction problem [3]. We provide scripts to
construct the most commonly used ones. From that point, any solver which has an interface
for or is written in MATLAB can be immediately tested using our toolchain. The same goes
for OCTAVE. For instance, we wrote scripts to produce GAMS files using the GDXMRW util-
ities, and this alone opens the door to a large number of solvers designed for general problems in
mathematical programming. We wrote plugin code to link solvers found in the Siconos platform
http://tinyurl.com/siconos, as well as for the Lemke [17] solver found in MOBY [8]. We
also provide script versions of solvers we wrote ourselves. All the software we wrote for this
project is posted on our website. Python offers extensive HDF5 support so it should be easy to do
the same.

As a usage example, one can, for instance, construct the LCP corresponding to the polygonized
friction cone [26] from the dataset found in a frame shown in Fig. 1, with a simple command:

[A, d] = h5_build_stap_reduced (frame , n_polygon_sides);

yielding a matrix A and a vector d corresponding to the LCP

0≤ z⊥ Az+b≥ 0. (3)

What the function does is construct all matrices in Eqn. (1) but with a special definition of N and D
which is related to the polygonization, compute Schur complements, and assemble A in a suitable
form.

A complete test an implementation of Lemke’s algorithm [17] on a simulation dataset would read
as follows.

pivots = []; metrics = cell();
p = load(’problems.h5’); %% file problems.h5 contains a dataset
for [ frame , key ] = p.simulation_00001;

[A, q] = h5_build_stap_reduced (frame , n_polygon_sides);
%% sol contains number of pivots and complementarity error
[sol] = my_lemke(A, q);
pivots = [pivots; sol.pivots ];
metric = coulomb_metrics(frame , sol , n_polygon_sides);
metrics{end+1} = metric;

end

If that implementation came from an existing library, the sparse matrix A would be processed in
the mex file my_lemke and formatted suitably. After this, the data goes back through the mex file,
information is packed into a struct. The coulom_metric script will then analyze the solution
and compute the different errors mentioned below in Sec. 5, as they apply this friction law. Other
statistics would be presumably extracted. This simple script would then provide data for a large
set of problems and potentially reveal anomalies not present in simple or random problems, but
which would appear later in situ, at which point they are hard to isolate and understand.



Generating datasets does require instrumented libraries or converters and this is admittedly a limit-
ing factor. But we have already produced very many of these covering a variety of configurations,
including systems with joints and simpler stacking ones. We believe that even if only a few li-
braries were instrumented, the amount of available datasets would cover more than sufficiently
many cases to stress test a solver, and detect any anomaly. Likewise, following a standard is al-
ways a challenge but since our goal is to maintain both the library and the supporting scripts, this
should not be an issue for the end users, those who write and analyze solvers. In essence, the model
we emulate here is that of the University of Florida Sparse Matrix Collection [6], a collection with
far more consumers, software developers, than application focused producers.

5 QUALITY METRICS AND STATISTICAL ANALYSIS
A good solution to a frictional problem should satisfy the friction law in all its details. The global
error reported by a solver is an average and provides too little information. For instance, if a
contact point is reported as sticking, the tangential velocity should be zero. The error for this
should be the residual tangential speed or creep, and should identified separately. For grasping
problems for instance, this is perhaps the most significant error. For a sliding contact, one needs
to know whether or not the friction force opposes the velocity. To our surprise, we found that
the computed friction forces are often aligned with the sliding velocity, corresponding to negative
friction. A measure of error here is the misalignment between the two. One also needs to know
whether or not the transition between stick and slip modes is captured properly. Penetration is
nearly inevitable and this too deserves its own measurement. This still leaves the question of
which norm to use, but we leave that open and stick to the two-norm herein.

It is also important to understand the difficulty of a given problem. It is our experience that
problems involving sliding contacts are more difficult to solve and so we measure both the total
number of resting contacts as well as the fraction of sliding ones.

We measure the following:

• total number of resting contacts

• number of sliding contacts

• global error as defined by a given solver

• nonpenetration error: ‖χ +hNv‖2 in the two norm, and h is the time step

• slide alignment error for each contact:
∣∣∣ t( j)·ṽ( j)

‖ṽ( j)‖‖t( j)‖ +1
∣∣∣, and the two norm of these

• stick residual velocity error for static contacts: ‖ṽ( j)‖

• cone satisfaction error: |min(0,µ ( j)ν ( j)−‖f( j)‖)|, and two norm of these

• anomalous friction:
∣∣max(f( j) · ṽ( j)‖,0)

∣∣, and two norm of these

Other metrics are related to the performance of different types of solvers as well as statistics for
global evaluation on very large sets of problems are not presented here but are forthcoming.

6 EXPERIMENTS
We chose only two experiments for illustrative purposes. Comprehensive analysis is beyond the
scope of the present article.

We extracted problems from a simulation in which logs are dropped and pile up on an inclined
plane at a sufficient angle to cause sliding. We also include results from a simulation of a wheel
loader shoveling rocks, as used in virtual reality based operator training systems. Performance is



Figure 2: Slanted log pile and wheel loader simulations.

critical for the latter case because of real-time constraints, and this begs the questions of which
type of errors are acceptable, which aren’t. Still frames are shown in Fig 2.

The data was collected from the AgX toolkit www.algoryx.se first. This uses a split solver,
where standard constraints and normal forces are computed with an block principal pivot LCP
solver [14], and friction are computed with PGS. This procedure is repeated a number of times to
approximate the Coulomb law.

We then used our framework to experiment with four different solvers on the slanted log pile. First
comes PGS, then a solver of Morales et al. [21] using a combination of subspace minimization
method and PGS, the non-smooth Newton method of Alart and Curnier [4], and the AgX solver
itself. These are labeled as “PGS”, “Morales”, “Alart-Curnier”, and “Block Pivot”, respectively,
and appear anticlockwise from the south-east corner in Fig. 3, on which the metrics of Sec. 5 are
plotted. We let the PGS solver reach a stagnation point which is around 200 iterations. For the
other solvers, we chose parameters so they would perform approximately the same amount of work
in terms of linear algebra. The solutions produced appear to be the best they can deliver according
to our experiments.

We arranged the results in such a way as to give a global picture of the solver’s performance
over many frames. The bar graphs are cumulative: the height corresponds to the total number
of contacts. The number of contacts with bad sliding direction appear at the bottom in black,
above, in light red is the number of sliding contacts with good alignment, and in dark red at the
top, the number of sticking contacts. The alignment error is the red line, creep is in pale blue,
and the friction cone violation is in black. There is one column and point on each curve for each
frame extracted from the simulation. Clearly, alignment errors are big and the number of cases of
“negative” friction is significant for all solvers and all configurations. Given that not all contacts
are sliding, this would not be noticed in the global error. Worthy of notice is that the total number
of contact varies between solvers, meaning that they identify different numbers of resting and
separating contacts. The Morales solver underestimates the former if the other three solvers are
any indication of the correct solution. The Alart-Curnier solver exhibits a number of anomalous
solutions, even though the problems are similar from frame to frame.

For the wheel loader simulation, we only present the result from the AgX solver in Fig. 4. The
PGS solver failed systematically on this problem. The Morales solver is not designed to handle
problems with both constraints and contacts. And the Alart-Curnier solver was too slow and
had too many failures. It is not clear if this is due to an implementation error, or because of
numerical issues such as ill-conditioning. What the graph demonstrates is that errors are consistent
throughout the simulation, a good thing for an operator training application, but the amount of
creep is significant, and so is the number of contacts with negative friction. This is problematic
for a vehicle as this causes the wheels to slip. This information can be used then to improve the
situation by testing parameters in the analysis environment, i.e., without running the simulation
again. This also begs the question of whether or not one should focus on producing a solver with
“hard” stiction, perhaps at the cost of introducing larger errors somewhere else.
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Figure 4: Performance statistics for the block pivot solver on the wheel-loader.

7 DISCUSSION
The paper is not an article about solvers and we present data only to show that the framework
can give extensive quantitative information about given numerical methods. Yet the data clearly
shows that at least four methods which are used routinely produce errors of the kind which, to
our knowledge, has never been reported before. Yet just these two examples make our point and
demonstrate our contribution. Our dataset specification and toolchain makes it easy to test and
compare solvers, and the metrics we introduced provide comprehensive information allowing for
deeper understanding.

8 CONCLUSION
We believe that the HDF5 layout specification, the metrics we introduced, along with the datasets
and software we published on our website can and will help analyzing and constructing new, better
and faster solvers, concentrating on algorithms instead of software development. From our own
experience in developing solvers, this type of infrastructure is in fact a necessity. Testing new
ideas from within a simulation library and running series of test cases is much more difficult, and
not necessarily more enlightening. There is already a lot of useful information in the solution of a
single incremental problem indeed.

The next stage is to collect datasets and perform extensive testing of existing solvers in order to
establish a more accurate picture of the state of the art in solving frictional contact problems.

We are developing a set of reference datasets which can be used to test the fundamental proper-



ties of a solver such as stick-slip transitions, isotropy and creep. But various issues only appear
when considering objects with different shapes, length scales and mass ratios. Ill-conditioning for
instance can make a solver fail. Datasets including more difficult problems must be included in a
comprehensive collection. We already provide large and complex examples and will continue to
produce datasets which allow to stress test solvers.

An extension to support minimal coordinates is being considered, though few solvers support that
at the moment.
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