
The 3rd Joint International Conference on Multibody System Dynamics
The 7th Asian Conference on Multibody Dynamics

June 30-July 3, 2014, BEXCO, Busan, Korea

A partitioning method for parallelization of large systems in realtime.

Claude Lacoursière∗, Fredrik Nordfeldth†, Mattias Linde+,

HPC2N/UMIT
University of Umeå

SE-901 87, Umeå, Sweden
∗ claude@hpc2n.umu.se

+ linde@cs.umu.se

Algoryx Simulation AB
SE-907 19, Umeå, Sweden

† fredrik.nordheldth@algoryx.se

We consider real-time simulation of multibody systems in the context of a virtual environment train-
ing simulator for sailors manipulating anchoring and tugging cables for stabilizing oil rigs. In such a
scenario, there can be several ships mounted with cranes and winches, one oil rig, and several cables
modeled with discrete elements [5]. Dry friction is also omnipresent is these systems. The scene used
to produce the data in Fig. 1 2 contained a nearly one thousand rigid bodies and elements, as well as
three thousand interactions which are either kinematic constraints or very stiff forces. Integrating the
Differential Algebraic Equations (DAE)s of motions of such a system requires the solution of sparse lin-
ear systems of equations up to ten thousand equations in as many unknowns. In the real-time context of
a 3D application running at the standard 60Hz rate, this means a computational budget of roughly 5ms,
leaving time for other parts of the application. The only reasonable solution to this is parallelization. This
is well understood and active field of research. However, the overhead of current techniques and libraries
is such that they are advantageous only for very large systems, and certainly not in the real-time context.
This goes both for graph analysis – METIS[2] can take more than 2ms on the problems we consider –
and plain factorization [4]. In addition, good load balancing graph analysis with METIS for instance
generally produces many fill-ins and offsets benefits of parallelism towards much larger problems.
We discuss two aspect of the solution to this problem. The first is a much simplified graph analysis which
takes some of the physics into account in the heuristics. The second is a matrix splitting which decouples
two subsystems in such a way that strong interactions are taken into account in a stable way, but at the
cost of accuracy.
The physics based heuristics assigns favorable cut weights only where bodies in a small clique are con-
nected with interactions that generate relatively low net forces, and which have low relative velocities
in the direction of the applied forces or kinematic constraints. In the present context, these conditions
are usually met for the elements of the cables which are linked with two and three body interactions for
stretch and bend deformations.
The other heuristic is the estimation of the cost of an “island” which is a group of connected bodies.
This cost is crucial for load balancing. However, one needs something like AMD[1] which is expensive.
Therefore, we compute the degree nb of each body–the number of interactions it participates in–and the
length li of all the interaction loops. We sum c = ∑b n2

b +∑i l for the approximate cost. This is the same
as the overall METIS algorithm but with extreme simplifications at each step.
At this point, we have the problem of splitting the cutting nodes. Consider a multibody system with
block diagonal mass matrix M, generalized positions x, and generalized velocities ẋ = v. This is subject
to constraints g(x) = 0 with Jacobians G= ∂g/∂x. We also include strong potentials U = (1/2ε)‖gs(s)‖2

with Gs = ∂gs/∂x. Our time-stepping algorithm which is a variant of RATTLE and the implicit midpoint
rule can be written in one of the two following formsM −GT −GT

s
G 0 0
Gs 0 T

vk+1
λ

λs

=

a
b
c

 , or
[
[M+GT

s T−1Gs] −GT

G 0

][
vk+1

λ

]
=

[
ã
b

]
. (1)

Here, T = O(ε) is a block diagonal matrix of compliance, so that T−1 is a stiffness matrix, a = Mvk+h fe

contains the external, non-stiff forces, and the details of vectors a and b depend on the discretization and
constraint stabilization scheme. Our choices are explained elsewhere [3].
Our two strategies are as follows. The “kinematic” version is to consider bodies that belong to island II
in Fig. 1 in the coupling block at the center, as kinematic as far as system I is concerned, and vice versa.
This leads to small jerks since any force that should propagate to the finite, but presumably large inertia
of the other system, is now absorbed by an infinite mass.
The second strategy is to replace some constraint equations in the vector g and move them instead in gs,
obtaining the second form in Eqn. (1), which gives the “added mass” from the GT T−1G term. This can



II

I

b
a

II

I

b
a

Figure 1: From left to right: the system matrix in full, the split matrix, the interaction graph, the cut
graph. In the matrix diagram, the shaded entries are nonzero.

Figure 2: On left panel on top is the spy diagram of the full system matrix. Below are the spy diagrams
of from AMD and METIS reordering the full system, left to right. Below, in the same order, and the
reordering after island separation and splitting. On the left are timing diagram with one horizontal line
per thread. The first picture is for the serial version, where the time for linear algebra is in blue and
purple. On the far right is the split version where the linear algebra time is in purple and green. This
shows that the load balance is good and that real-time is achieved with the splitting heuristics.

be done safely when gs is not too large, so that is used as a weight in our graph partitioning algorithm.
We then form the clique system, which is the central block in Fig. 1. When this is split, we make an
approximation of v̄(i)k+1 for each subsystem based on current velocities and forces. Using these techniques,
as shown in Fig. 2, we have managed good speedup on a single four core CPU with four threads per core,
and this made the application reach the real-time regime, leaving sufficient resources available for the
other tasks needed for the application. Strong, stable, and numerically inexpensive coupling is still an
issue and ideally, we would like to avoid this and rely solely on direct factorization, and this is something
we are working on.

Acknowledgments
This work was supported by Konsberg Maritime, Algoryx Simulations AB, and by the High Performance
Computing Center North (HPC2N).

References
[1] Patrick R. Amestoy, Enseeiht-Irit, Timothy A. Davis, and Iain S. Duff. Algorithm 837: AMD, an

approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381–388, 2004.
ISSN 0098-3500. doi: http://doi.acm.org/10.1145/1024074.1024081.

[2] Geroge Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graph. SIAM J. Sci. Comp., 20(1):359–392, 1998.

[3] Claude Lacoursière. Regularized, stabilized, variational methods for multibodies. In P. Bunus and
et. al., editors, SIMS 2007, pages 40–48. Linköping Univ. E. Press, Dec 2007.

[4] Claude Lacoursière, Mattias Linde, and Olof Sabelström. Direct sparse factorization of blocked
saddle point matrices. In PARA 2010, Part II, volume 7134 of LNCS, pages 324–335. Springer,
2012.

[5] Martin Servin, Claude Lacoursiere, Fredrik Nordfelth, and Kenneth Bodin. Hybrid, multi-resolution
wires with massless frictional contacts. IEEE TVGC, 17(7):970–982, 2011. ISSN 1077–2626.


