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Abstract

In this master thesis a framework for control of mechanical systems is developed. The
framework is extended with possibilities to simulate mechanical systems in a virtual
environment. The virtual environment provides an easy way to experiment with high
level control algorithms for mechanical systems and human machine interfaces.

This work give a proposal on how the working cycle for an operator of a forwarder
crane can be simplified with automated tasks and how shared control between the oper-
ator and the automated tasks can be implemented. To evaluate and test the automated
tasks together with the shared control implementation a Valmet 830 forwarder is mod-
eled in the virtual environment.

The developed framework is an object oriented API (Application Programming In-
terface) written in C++ called atvs. The virtual environment extension is a dynamic
real time simulation based on the AgX physics engine [1] and the OpenSceneGraph 3D
graphics toolkit [2].
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Chapter 1

Introduction

There is a huge development of autonomous and semi-autonomous machines for the
industry. The mining industry already have autonomous loading and transportation of
resources that are supervised from a control room. There are also autonomous vehicle
applications for agriculture and personal cars [8].

Most of the autonomous machines operates in known environments and take advan-
tage of that. The autonomous machines that operate in the mine already know the
structure of the mine and what it can expect to run into. For machines that operates in
unknown environments the autonomous tasks becomes a great challenge. If the environ-
ment also is rough and complex the tasks becomes even more complicated. Completely
autonomous machines in these environments is very difficult to accomplish. Instead
semi-autonomous or manually operated machines are used in these environments. A
semi-autonomous machine have some tasks in its working cycle that are automated, but
still needs to be supervised by an operator.

Figure 1.1: Valmet 860.4 forwarder.

The forest environment is an example of an unknown, complex and rough envi-
ronment. Operators of forestry machines are faced with many fast decisions during a
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2 Chapter 1. Introduction

working cycle. Due to the environmental issues and all the fast decisions, the forest ma-
chines are almost completely manually controlled. Which, together with the fact that
the industry of forest machines are quite young, makes for huge development capabilities
in the autonomous field. Today the harvester have felling and logging tasks automated
[9] while the forwarder still is completely manually controlled. The automation of tasks
in a forest machines work cycle can decrease learning time, increase productivity, prevent
physical and mental strain [10], [11]. At Ume̊a university there are research on automa-
tion of forwarder and harvester cranes [12] and autonomous navigation for vehicles in
forest environments [8].

During an automated task the operator may want to adjust or control the automated
task without interrupt it. When an automatic control system work at the same time as
a human operator it is referred to as shared control. They do not necessary work at the
same task, but in the most common cases they do.

If shared control should be possible there must be smooth transitions between manual
and automatic control. This require that information about intentions is transferred in
both ways between operator and the automatic control system. Transferring intentions
from operator to automatic control system can be done with the same control interface
as the operator use in manual control, which for forest machines mainly are two joysticks.
But how should intentions from automatic control system to the operator be transferred?
This issue is addressed in [9] where force feedback in the operators joystick is proposed
as a solution. Intentions from the automatic control system can also be transferred by
graphical indications and sound. Graphical indications can be visualized on a computer
display or a HUD (Head Up Display) [9].

Figure 1.2: Valmet 830 forwarder in the virtual environment.

In this master thesis a simulation framework for mechanical systems called atvs is
developed. The purpose of atvs is to provide an easy way to test and experiment with
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high level control algorithms and human machine interface, especially in the shared
control field. The framework have support for ordinary gaming joysticks and force
feedback devices used in ordinary computer games.

A virtual environment for simulation of mechanical systems is connected to the sim-
ulation environment. The virtual environment API is called atvsVE and is implemented
with AgX multiphysics toolkit [1] and OpenSceneGraph [2]. Components for automation
of mechanical systems in a virtual environment have been developed around components
from the AgX multiphysics toolkit. The implemented components are mainly sensors,
actuators and PID controller.

This thesis is concentrated upon the forestry, especially hydraulically actuated cranes
on forest machines. Two mechanical systems are implemented for experiment with
shared control. A loading system that operates in two dimensions and is supplied with
a rotatable grapple. The loading system is used to load or unload logs from a vehicle.
Figure 7.1 shows the loading system. The other system is a complete Valmet 830 for-
warder with hydraulically actuated crane. A forwarder is a vehicle that collect felled
logs in a forest environment and transport them to a road where the logs are unloaded
to wait for a lumber car. Figure 1.1 shows a real forwarder and figure 1.2 shows a
forwarder in the virtual environment.

1.1 Participants

Short description of companies and organizations related to this thesis.

IFOR [13] With IFOR as a base, Ume̊a University, Skogforsk and SLU does research
and development in collaboration with the industry. IFOR is acronym for Intelli-
gent Off-Road Vehicles (in Swedish: Intelligenta Fordon Off-Road).

Ume̊a University [14] At Ume̊a University there is research in robotics, control system
and visual interactive simulation that is related to IFOR.

Oryx Simulations [4] A company that produce training simulators for forest machines
and other heavy machines. This thesis make use of 3D-models used in Oryx
simulators.

Algoryx Simulations [1] Develop the multiphysics engine AgX. The virtual environ-
ment in this thesis is based on the AgX engine.

Komatsu Forest [15] The machine manufacturer that develop Valmet forest machines.
Komatsu Forest have supplied with drawings and data for the forest machines.

1.2 Outline

Chapter 2 introduce virtual environments and the different control architectures from
manual control to semi-autonomous control. In chapter 3 a detailed description of the
problem is given. Section 3.4 briefly summarize previous work in the shared control
area.

Chapter 4 contains relevant theory for this thesis. Simulation of multibody dynamics
is covered in section 4.1. Section 4.2 deals with basic control theory, mainly PID control.
In section 4.3 the forward kinematics and inverse kinematics problems of a redundant
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manipulator are considered. If the reader is familiar with the contents in the sections of
chapter 4, they may be skipped.

In chapter 5 implementations of the software components are described. Chapter 6
gives proposals on how shared control can be implemented. Results are presented in
chapter 7.



Chapter 2

Background knowledge

This chapter introduce the reader to virtual environments and control architectures.

2.1 Virtual environments

The terms virtual environment and virtual reality are often used interchangeably with
the same meaning. The terms refer to a computer generated 3D world in which the
users can act, interact and perceive themselves to be in. Often a virtual environment
tries to simulate the reality, but there are also applications where that is not the case.
Computer games exemplifies both these categories, there are flight games, car racing
games, first person shooting games etc, that more or less tries to simulate the reality.

In the huge online multi player role-playing game “World of warcraft” [3] the players
is part of a world wide virtual society where they can interact with other players and
cooperate to carry out missions. A world in “World of warcraft” have large extension in
space and includes thousands of players that act in the world. It is based on the fantasy
Warcraft universe from the predecessor “Warcraft” strategy games.

Figure 2.1: Screen shots from the game “World of warcraft” [3].

Games often have very nice visual appearance that can be very near to reality, but
they usually lack in the dynamic simulation. To make the game playable with a good
feeling it may be necessary to make limitations in the dynamic simulation and allow cases
that is not allowed in the real world. With realistic dynamic simulations some games
tends to feel slow and can be difficult to control. This problem can be exemplified with

5



6 Chapter 2. Background knowledge

a car racing game with realistic dynamic simulation. The car would probably be very
difficult to control for a person playing the game at the first time and it would take
very long time learn to control the car. To make the game more responsively with easily
control of the car, modifications are done to the dynamic simulation that not accord
with the laws of physics. Computer games are most commonly run on a standard PC
and are visually experienced on a computer display. This type of virtual reality is called
desktop VR.

(a) Valmet 911 harvester in terrain. (b) Valmet 911 from inside.

Figure 2.2: Oryx Simulations training simulator for the Valmet 911 harvester [4].

Another application of virtual environments are training simulators. Training sim-
ulators have on the other hand very high demands on both visual appearance and the
dynamic simulation. Pilots, operators of heavy vehicles and even surgeons can all be
trained in simulators before the actual task is performed in the real world. Figure 2.2
shows a training simulator for a Valmet harvester from Oryx Simulations [4]. A simu-

(a) (b)

Figure 2.3: Operator environment in Valmet harvester simulator and motion platform
for the Volvo wheel loader simulator, both from Oryx simulations [4].

lation of the reality usually gets more realistic and increase the users presence the more
senses that can receive inputs from the virtual environment. The visual appearance is
very important for a virtual environment, if it is then completed with audio, haptics and
something that triggers the sense of balance the user can actually believe it is inside the



2.2. Control architectures 7

virtual environment. This phenomena is usually called virtual presence [16].
For vehicle training simulators the user’s experience and presence increase if the

user can act and interact in the virtual environment from an environment similar to
the environment in the vehicle. Figure 2.3a shows the operator environment for the
harvester simulator, which is identical to the cabin environment in a real harvester. In
figure 2.3b the operator environment for an Oryx Volvo wheel loader simulator is shown.
The wheel loader cabin is mounted on a motion platform, which makes it possible to
move the cabin according to the vehicle cabin in the virtual environment. The motion
platform is hydraulically actuated and have 6 degrees of freedom, which makes it possible
to create realistic movements of the cabin.

To further increase the users presence the information of motions from their head,
arms and legs can be tracked and used in the virtual environment. The motion of the
head can be used to manipulate the cameras view point. Motion of the arms can be
used to position virtual arms etc. The user can also be supplied with haptic equipment
that makes it possible for the user to feel objects in the virtual environment. Instead
of using a computer display as the visual medium a head mounted display can be used.
The head mounted display completely surrounds the user and makes it visually unaware
of the real world.

If some of the above mentioned techniques to increase the users presence does not
behave as expected by the user, for example the motion of the camera does not com-
pletely coincide with the motion of the head or the motion of the motion platform does
not coincide with the motion of the cabin in the virtual environment, the user can
feel unpleasant and even wambling. Head mounted displays can also give rise to this
unpleasant feeling, which is called simulator sickness and is very important to avoid.

Other areas where virtual environments are used are CAD, architectural models,
urban planning, movies etc.

2.2 Control architectures

Systems that includes a human that control a robot device is called master-slave systems,
where the operator and the instruments used to control the robot device is the master
side and the controlled robot device is the slave side. Between the master and slave
sides there is a communication interface which makes it possible to separate the master
from the slave. If the master and slave are at different locations it is referred to as
teleoperation. If the slave can transmit forces as feedback to the masters controlling
device the slave is said to be bilaterally controlled. The master and slave sides can also
be at the same location, they can even be at the same device. Machines with operator
controlled manipulators, such as wheel loaders, excavators and forest machines, can be
master-slave systems where both sides resides at the same machine.

In figure 2.4 a teleoperation system form the master-slave system where the operator
is at master side and the robot device are at the slave side. The interface between them
is some kind of information media that allows information to be transferred between
them.

The control architectures direct control, shared control and supervisory control are
related to responsibility of control and level of control for the master and slave as shown
in figure 2.5. The figure shows a teleoperation scenario where the human operator is the
master and the teleoperator is the slave [5].
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Figure 2.4: A teleoperation system where the operator site is the master and the remote
site is the slave. Figure from [5]

2.2.1 Direct control

Direct control does not have any local control loop on the slave side. The operator
on the master side directly controls the individual parameters on the slave side. For
example the operator controls each joint in a manipulator separately.

Figure 2.5: Control architectures. Figure from [5]

2.2.2 Shared control

The shared control architecture allows an operator on the master side and an au-
tonomous control loop on the slave side to control the same task. With a shared task
space the operator can control the slave with high-level commands to autonomously
execute tasks but still have the possibility to affect the tasks at the same time as the
slave operates on the task. This is done without interrupting the slave.

It is also possible for the slave to perform calculations based on sensor inputs in the
control loop and inputs from the operator to generate control signals. This method can
be used to hide complicated control algorithms in the slaves control loop and provide
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a simple interface to the master. When the slave is responsible for force control while
the operator is responsible for control of the motions is one example. Another example
is velocity/position end effector control of redundant manipulators [10, 17], where the
operator gives commands in the Cartesian coordinate space and the slave transforms it
to control signals in the joint space. Shared control can consist of varying degrees of
combinations of both direct control and supervisory control. Shared control is illustrated
in the middle of figure 2.5.

2.2.3 Supervisory control

A semi-autonomous machine, which have tasks automated but is controlled by an opera-
tor goes under this control architecture. The supervisory control architecture has a local
autonomous control loop on the slave side that is controlled with high-level commands
from the master side. The human operator on the master side is provided with state
and model information from the slave, from this information the operator supervise the
autonomous slave. This is illustrated to the right in figure 2.5.
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Chapter 3

Problem description

As established in chapter 1 it is difficult to create autonomous machines that operates
in unknown and rough environments with a lot of fast decisions included in the working
cycle. Therefore direct controlled or semi-autonomous machines are used instead. A
semi-autonomous machine have some of its tasks automated. During the execution of
an autonomous task it can be necessary for the operator to interact with the task. This
is referred to as shared control. This master thesis should develop virtual environment
software tools for experiments on machines with semi-autonomous tasks and shared
control.

3.1 Purpose

The purpose of this project is to

– Provide tools for experimentation in virtual environments for interfaces between
a human operator and a machine with semi-autonomous control.

– Give proposal on how shared control can be realized on a forest machine supplied
with a semi-autonomous hydraulically actuated crane.

– Increase the understanding of the transfer (both ways) of control and automation
strategies and system models between virtual environments, engineering and real
machines.

3.2 Objectives

This project should result in the following

– Algorithms and software tools for experimentation of shared control of terrain
vehicles in virtual environments based on the AgX physics engine.

– Demonstration of shared control with force-feedback joysticks. Proposal for further
studies in simulator and field.

– Test and development of computational methods for inverse kinematics and shared
control suitable for virtual environments.

11
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Assume any high precision sensor- and vision data are available, the above objectives
arise some questions. What kind of tasks should be automated and how should this be
done? How can a machine and a human operator share control over the vehicle? What
methods for shared control are there? How can transition of the control between the
human operator and the machine be done in a smooth way? How can the system aid
the operator in controlling the machine? How should the operators input signals be
combined with the machines input signals?

With the simulation environment resulting from this project, various approaches for
semi-autonomous machines with shared control and force feedback can be evaluated to
find answers to the above questions.

3.3 Components

Mechanical systems in the virtual environment should be simulated with AgX physics
engine and be modeled with rigid bodies and constraints. Figure 3.1 shows how the
Valmet forwarder in this thesis is modeled. Actuators of hinge- and linear motor type
should be implemented for the virtual environment, as well as PID control. The term
actuator will be used interchangeably with the term motor throughout this text.

Rigid bodies and collision geometries

A rigid body is a representation of a finite solid body that can not be deformed. The
rigid body have a position in space, translational- and rotational velocities and mass
properties. Its physical behavior is determined from the mass properties.
To be able to perform collision detection one or several collision geometries must be
attached to the rigid body. A collision geometry is a shape that defines the body’s
extension in space. In figure 3.1 collision geometries appears as green shapes while the
center of mass for the rigid body appears as a small blue sphere.

Figure 3.1: Valmet 830 forwarder modeled with rigid bodies and constraints.

The AgX physics engine allows several collision geometries to be associated with a
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rigid body, the rigid body’s mass properties are then determined from the size and form
of the collision geometries.

Constraints

A constraint remove degrees of freedom for a rigid body. Constraints can be used to
connect two rigid bodies by remove degrees of freedom between them. Two important
constraints are hinge- and translational constraints, also called revolute- and prismatic
constraints. The hinge constraint let two bodies rotate relative to each other around
an axis. The translational constraint let two bodies move relative to each other along
an axis. Hinge and prismatic constraints as well as several other types of constraints
are included the AgX toolkit. In figure 3.1 constraints appears as yellow spheres, the
constraint axis is shown with a yellow line.

Actuators, Sensors and PID control

It should be possible for simulated actuators to be connected to the hinge and transla-
tional constraints. The actuators should be simulated with a motor function that applies
torques or forces to participating bodies.

For the hinge and prismatic constraint a position and speed sensor should be imple-
mented. For hinge constraints the position sensor should measure the angle in radians
and the speed sensor should measure the the magnitude of the rotational velocity in the
hinge. For the translational constraint the position sensor measure the displacement
between the two participating bodies along the constraint axis and the speed sensor
measure the magnitude of the displacement velocity. To be able to control the mechan-
ical system a PID control algorithm should be implemented.

Note that it is possible to let the constraint solver in AgX control velocity and angle
in a constraint, but this should not be used. Instead a more realistic behavior, where
the actuator is controlled with a control signal to generate forces or torques is desired.

Inverse kinematic algorithm

To simplify high level control commands for a robot arm an inverse kinematic algorithm
must be implemented. Inverse kinematic makes it possible to calculate joint velocities
for a given end effector velocity or joint positions for a given end effector position. This
should be done for a forwarder crane, which is a redundant manipulator. The forwarder
crane is redundant because it have four joints, excluded the grapple with rotator, but
only operates in three dimensions. Consequently it have one joint more than needed and
there typically exists infinitely many joint configurations for one position of the crane
tip.

3.4 Related work

The teleoperation field has a huge part in the development of the control architectures
described in section 2.2. Underwater applications that force the operator to control
the applications from above the water surface, space applications where the operator
resides in a control room back on earth are examples of teleoperation systems that
have contributed to the development of the control architectures. Also teleoperation
applications for high radioactive areas have contributed to the development. Delays
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between the operator and the application, as in space applications, have favored the
development of semi-autonomous systems and systems with shared control and force
feedback. In [5] an historical review of teleoperation and applications that have favored
the development in the field are given.

In [18] a bilateral shard control architecture is developed to control a machine. An
experiment setup where a virtual car is controlled with a haptic steering wheel, which
aids the operator in path following tasks, is used to evaluate the architecture. Results
from the experiment shows that the haptic steering wheel decrease the demands on visual
feedback, increase the path following performance and improves the reaction time.

End effector velocity control with stiffness force feedback calculated at the end ef-
fector for an excavator is examined in [19].

In [20, 21] a commercial wheelchair, the NavChair, is equipped with a shared control
navigation system where the human and machine shares the control over the wheelchair
in the way that the wheelchair can automatically adapt to human behaviors. The
NavChair is built on an obstacle avoidance algorithm specifically developed to meet the
systems shared control needs.

In [22] the force control of a contour following manipulator is automatically controlled
by the slave while velocity and direction is controlled by a human operator.

A very similar rigid body dynamic simulation framework is developed and used in [6].
It is used mainly for robot motion planning in rough terrain and also have an interface to
simulink [23]. It is a MathWorks software for modeling and simulating dynamic systems
based on the Matlab environment.



Chapter 4

Related theory

This chapter introduce theory that are related to this thesis. In section 4.1 dynamic
simulations with multiple rigid bodies and constraints are briefly described. Basic theory
for control systems and PID control are introduced in section 4.2.
Section 4.3 discuss forward and inverse kinematics. If these topics already are familiar
to the reader, the reader can continue to chapter 5.

4.1 Simulation of multibody dynamics

This section briefly describes the basics of simulating multibody dynamics, see [24] for
a more detailed study. The term multibody dynamics refer to the physics of multiple
rigid- or deformable bodies that may be connected to each other. Here only rigid bodies
are considered.

To simulate multibody dynamics, ordinary differential equations (ODE) together
with algebraic constraints forms differential algebraic equations (DAE) describing mo-
tion of bodies. These have to be time–discretized and solved, which is referred to as
time integration. The motion of the bodies depends on external forces and constraint
forces that emerges from contacts and joints.

Collision detection determine contact information between penetrating bodies, which
then is used for solving collisions and contacts. Solving for collisions and contacts as
well as constraint forces exerted from the joints typically involves to solve a large sparse
matrix system. There are specialized software libraries available to solve these sparse
systems, one of those are UMFPACK [25].

A system of linear equations can be solved with direct or iterative methods. If
a solution exists a direct method finds the solution in a finite number of operations.
Iterative methods improves the solution each iteration, but they typically converge very
slowly. Therefore iterative methods often are rejected. But an iterative method typically
produce an enough accurate solution very fast, which makes it to a pleasant choice for
simulation of multibody dynamics. Iterative methods are also efficient in solving large
sparse matrix systems.

4.1.1 Simulator paradigms

Three commonly occurring simulator paradigms are Penalty-based methods, constraint-
based methods, impulse-based methods. Then there also exists hybrids among simulator
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paradigms.

Penalty-based methods

Penalty-based methods models physical behavior with springs and dampers. For exam-
ple when rigid bodies penetrate each other, the penetration is penalized with a force
computed by a spring and damper system. The penalty-based method can also easily
be extended to handle soft bodies.

In contrast to the constraint-based and impulse-based methods the penalty-based
methods allows for penetration of bodies. Deep penetrations may cause stiff ODEs,
which means that a numerical method for solving the equation can be unstable, except
for very small time steps. Therefore penalty-based methods require small time steps to
avoid numerical instability and to keep penetrations minimal [24, 26].

Impulse-based methods

An impulse based method model the physics with collision impulses and do not allow
for penetrations. A static contact is modeled with very small high frequent occurring
collision impulses. Impulses is applied at the closest points between two colliding objects,
and therefore contact determination is not needed. The method is computationally
effective except for static contacts and is often a good choice for real time simulators
[24, 26].

Constraint-based methods

The constraint-based methods does not allow for penetration and handles static and
continues contacts very well. Contact forces are generated with non-holonomic unilateral
constraints

Ψ(s) ≥ 0 (4.1)

where s is the generalized position vector described in 4.1.4. As with holonomic con-
straints, see section 4.1.4 for a more detailed description of the following, a kinematic
constraint is achieved by differentiate with respect to time

JΨ u ≥ 0, (4.2)

where JΨ is the Jacobian matrix. The constraint forces are then

fΨ = JTΨ λΨ, (4.3)

in the same way as for holonomic constraints, where λΨ is a vector of Lagrange multipli-
ers and the superscript T denotes the transpose. When solve for collisions an additional
impulse is included besides the constraint.

Hybrids

The benefits of several methods can be combined into hybrids of the simulator paradigms.
An advantage from one paradigm can be used to replace a drawback in another paradigm
to form a hybrid.
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4.1.2 Rigid bodies

A rigid body is a solid body that can not be deformed. This is, any particles in the
rigid body always have the same distance between them. A rigid body’s center of mass
can both be translated and rotated, thus it have 6 degrees of freedom. The properties
of a rigid body is determined from its inertia tensor and mass. The inertia tensor is the
rotational equivalence of the total mass. It contains information about the body’s mass
distribution and is used for determining the body’s rotation velocity around any given
axis [24].

Equations of motion for a rigid body

From the Newton-Euler equations of motion,

m v̇cm = f
ẋcm = vcm
I ω̇cm = τ cm + ω × I ω
q̇ = 1

2 ω q

, (4.4)

the differential equation for integrating the rigid body’s motion is derived

d

dt


xcm
q

vcm
ω

 =


vcm
1
2 ω q
m−1 f

I−1( τ cm + ω × I ω )

 . (4.5)

The dot notation corresponds to the derivative of the variable. Here the quaternion q
is the body’s orientation, xcm and vcm is the position and velocity respectively of the
rigid body’s center of mass. Forth ω is the rotational velocity, τ cm is the torque, f is
the total force acting on the body’s center of mass, m is the mass of the body and I is
its inertia tensor. The subscript cm means that parameters are applied to the body’s
center of mass. The formulation in equation 4.5 is called the Lagrangian formulation
[24].

4.1.3 Time integration

The motion of a rigid body’s center of mass can be described as an ordinary differential
equation (ODE) on the form

Ẏ = f(Y), (4.6)

where Y is the body’s state, including its position, velocity, orientation and rotational
velocity. If time is discretized, Taylors theorem gives

Y(t+ h) = Y(t) + Ẏ(t)h+ 1
2 Ÿ(t)h2 + . . .

⇒ Y(t+ h) = Y(t) + ft h +O(h2)
(4.7)

where t is the current time, h is the size of the time step, ft is the force acting on
the body’s center of mass at time t and O(h2) is the rest of the terms in the Taylor
expansion which can be disregarded for small time steps. From equations 4.7 and 4.5
Euler’s method for numerically solving ODEs can be derived and used for integrating
the motion of the body. From initial conditions for the position x0 and the velocity v0

Euler’s method calculate the position and velocity for the next point in time, t+h, from
the acceleration a = f m−1 [27].
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Explicit Euler

xt+h = xt + hvt
vt+h = vt + hat

, (4.8)

The algorithm calculates the new velocity, vt+h, from the acceleration, at, at current
time t and the new position, xt+h, from the velocity at current time t. Forth h is the
size of the time step. Explicit Euler has an error of size O(h2) that is accumulated in
each iteration. For large time step h it is unstable and not very accurate. Explicit Euler
should be avoided in multibody dynamic simulations [24].

Implicit Euler

xt+h = xt + hvt+h
vt+h = vt + hat+h

. (4.9)

The new velocity, vt+h, is calculated from the acceleration, at+h, at time t+ h and the
new position, xt+h, is calculated from the velocity at time t + h. The size of the time
step is denoted with h. This gives a system of coupled equations. Implicit Euler is stable
regardless the size of h, but it is dissipative which is usually not good in simulation of
multibody dynamics [24, 27].

Symplectic Euler

xt+h = xt + hvt+h
vt+h = vt + hat

, (4.10)

In symplectic Euler the new velocity, vt+h, is calculated from the acceleration, at, at
time t while the new position, xt+h, is calculated from the velocity at time t+ 1. Forth
h is the size of the time step. This algorithm has good stability in a wide parameter
range and suits very well for multibody dynamic simulations [27].

4.1.4 Constraints

As established in section 4.1.2 a rigid body have 6 degrees of freedom. Consider two
rigid bodies, i and j, which together have 12 degrees of freedom, these bodies can then
be articulated into joints by removing degrees of freedom between the two bodies. The
removing of degrees of freedom is done with time independent equality constraints, which
are called bilateral holonomic constraints. The two bodies position and orientation form
the generalized position vector s =

[
xi, qi,xj , qj

]
, the constraint

Φ1(s) = 0
Φ2(s) = 0

...
Φm(s) = 0

, (4.11)

removes m degrees of freedom between bodies i and j.
For example, a ball and socket joint removes all translational degrees of freedom

between the bodies i and j, this is shown in equation 4.12.

Φ1(s) = xi − xj = 0
Φ2(s) = yi − yj = 0
Φ3(s) = zi − zj = 0

, (4.12)



4.2. Control theory 19

where x, y and z are the components of a body’s position vector x.
A holonomic constraint can be differentiated into a kinematic constraint,

d

dt
Φ(s) =

∂Φ
∂ s

d s
dt

=
∂ Φ
∂ s

S u = JΦ u, (4.13)

where u =
[
vi, ωi,vj , ωj

]
, S is a transformation matrix that transforms u into the

derivative, ṡ, of the s vector. JΦ = ∂ Φ
∂ s S ∈ Rmx12 is the Jacobian matrix with m number

of holonomic constraints. The Jacobian matrix describes how the degrees of freedom
are reduced [27]. From the principle of virtual work it follows that the constraint forces
can be written as

fΦ = JTΦ λΦ, (4.14)

where λΦ ∈ Rm is a vector of Lagrange multipliers and the superscript T denotes the
transpose [24].

Figure 4.1: Three different types of joints, from left: ball and socket joint, hinge (revo-
lute) joint and prismatic (translational) joint. Figure from [6].

Joint types

Three common joint types are ball and socket joint, hinge joint and prismatic joint.
The ball and socket joint is previously described, an illustration of the ball and socket
constraint is shown to the left in figure 4.1. A hinge, or revolute, joint allows a relative
rotation between the bodies around a joint axis. The hinge joint is illustrated in the
middle of figure 4.1. The prismatic, or translational, joint is illustrated to the right in
figure 4.1. It allows a relative translation between the bodies along a joint axis.

4.2 Control theory

A dynamical system is a system that change its behavior over time, often due to external
manipulations. Control theory is the theory of controlling the behavior of a dynamical
system. A control system is a system that controls another system. A system can
consist of one or several devices. In this case automatic control systems are considered.
The term “control system” can also be applied to systems that need manual control to
control another system. For example, an operator use a control system for opening and
closing a valve in a hydraulic system.
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If system A is a controller for system B, then if system A is provided with feedback
from the output of system B, the total system is called a closed loop system. If there
are no feedback from the output of system B, the total system is called an open loop
system [7], this is illustrated in figure 4.2.

(a) Open loop. (b) Closed loop.

Figure 4.2: Open loop and closed loop systems.

For a closed loop system the feedback from the output can be used to compensate for
controlling errors. In an open loop system the value of the output can not influence the
control signal. Most control systems is closed loop systems. A system with feedback can
correct for external disturbances and variations in it’s internal components. Feedback
also introduce some disadvantages, it may cause oscillations or infinite values in the
system output. The use of feedback requires sensors for the feedback term, the sensors
can then introduce noise in the system. Therefore it’s important to filter these signals.

Some classical control principles are: On-off control, Proportional control, Integral
control, PI control, PD control and PID control. This thesis will only consider PID
control, see [28, 7] for the other principles.

4.2.1 PID control

PID control is a technique to control a parameter in a system or a process. For example
in a temperature regulating system the controlled parameter is the temperature, in a
speed control system for a car, the speed is the controlled parameter. PID is acronym
for Proportional, Integral and Derivative. These terms refer to how the parameter is
controlled, the terms are e further described in this section.

The reference value (or set point), denoted r, is the desired value on the controlled
parameter. The current value of the controlled parameter is denoted y and is in this
text mentioned as system output. The system output is measured with a sensor. The
difference r− y constitute the control error denoted e. From the control error e the PID
control algorithm calculates a control signal u for the actuator that attempt to regulate
the controlled parameter towards the reference value r.

The control law for a basic PID controller can be expressed mathematically [7] as

u(t) = up(t) + ui(t) + ud(t) = kpe(t) + ki

∫ t

0

e(t) dt+ kd
de(t)

dt
, (4.15)

where e(t), kp, ki, kd is the error at time t, the proportional gain, integral gain and
derivative gain respectively. The gains are constants while the error is calculated as the
difference between the reference value and the system output, r(t)−y(t), at time t. This
control law consider the error from the past, with the integral term, the present, with
the proportional term, and the future with the derivative term.
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Figure 4.3: PID control consider the past, present and future. Figure from [7].

Proportional term

The proportional term in equation 4.15

up(t) = kpe(t) = kp(r(t)− y(t)) (4.16)

makes a compensation in the controlled parameter proportional to the error. The error
is r(t) - y(t) at time t, where r(t) and y(t) is the reference and system output respectively
at time t. The constant kp is a gain acting on the error term. A small gain will result
in a stable but slow system. If the gain is increased the system will respond faster,
but with to high gain it will be unstable. With pure proportional control there is no
guarantee for the controlled parameter to reach the reference value [7, 28].

Integral term

In equation 4.15 the integral term

ui(t) = ki

∫ t

0

e(t) dt, (4.17)

contributes to the control signal with the integral of the error e(t). A positive error will
increase the integral part, while a negative error will decrease it. The constant ki is the
integral gain, which corresponds to the integral contribution in the total control signal.
Due to the integral term a zero steady state error can be achieved [7, 28].

Derivative term

The derivative term in equation 4.15

ud(t) = kd
de(t)

dt
, (4.18)

tries to predict the error by the derivative of the error e(t). The derivative term will
contribute to the total signal only when the change in e(t) differ from zero. When the
error increase the derivative term will have the same sign as the proportional term, but
when the error decrease it will have the opposite sign to the proportional term. The
derivative term contribute with fast stabilization on disturbance, neutralize overshooting
and instability. But it is sensitive for high frequent disturbance [7], [28].
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4.2.2 Integral windup

The windup problem occurs with all integral controllers and comes from limitations
in the controlled actuator. If the controller output transcends a limit of the actuator
control signal the actuator will work at its limit and can not achieve the set point.
This cause an error between system output and the set point that is impossible for the
controller to compensate for. Which in turn cause a growing magnitude of the integral
term, which continue to accumulate from the error. The magnitude of the integral term
and the controller output can therefore be very large and still remain saturated when
the error changes. It can take long time before the integral term and controller output
come inside the saturation range again.

In [7] integrator windup is avoided by an extra feedback term that is constructed from
the difference between the controller output and the actuator output. Integrator windup
protection can easily be implemented with the differential PID control algorithm, see
section 4.2.5.

4.2.3 Derivative filtering

High frequent noise cause major problems in the derivative term because of its high am-
plitude gain for high frequencies. This results in large, unstructured and fast variations
in the control signal. This can be solved by a low pass filter on the derivative term. A
low pass filter only allows frequencies below a certain threshold. Another solution is a
low pass filter on the controller input signal [7] [28].

4.2.4 Discrete PID control

A computer is digital and have to convert everything thats in analog into a digital format.
The continuous PID control law have to be approximated with a discrete version if it
should be implemented in a computer. Equation 4.19 is an approximated discrete version
of equation 4.15.

u(t) = up(t) + ui(t) + ud(t) = kpe(t) + hki

t∑
i=1

e(i) + kd
e(t)− e(t− 1)

h
, (4.19)

where the constants are the same as in equation 4.15, t is the current time and h is the
size of the time step.

4.2.5 Discrete differential PID control

Equation 4.19 can be rewritten to

u(t) = u(t− 1) + ∆u, (4.20)

where
∆u = kp(e(t)− e(t− 1)) + kie(t) + kd(e(t) + e(t− 2)). (4.21)

This is the differential form of the discrete PID control law. The differential form have
some advantages over ordinary PID control, it is easier to implement protection against
integral windup and protection against bumps when the PID parameters are changed
online. But the differential control law does not work without integral action, then it can
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not keep a stationary system. In equation 4.22 the controller output signal is clamped
between min and max, which are the limits of the actuators control signal. This clamp
gives protection against integral windup [29].

u(t) = (u(t− 1) + ∆u)|maxmin , (4.22)

4.3 Forward and inverse kinematics

In robotics a manipulator consists of several links connected by joints to form a kinematic
chain [30]. The links are rigid bodies and a joint is a constraint between to two links.
There are several types of joints, but here the focus will be on revolute and prismatic
joints. For a revolute joint the attached bodies are allowed to rotate relative to each
other around an axis. For a revolute joint the rotation angle around the rotation axis
between the two participating bodies is denoted θ. For the prismatic joint the bodies
are allowed to move relative to each other along an axis. For prismatic joints the relative
displacement between the participating bodies along the joint axis is denoted d. θ and
d are called joint variables. A device at the end of the robot manipulator is called end
effector.

If a manipulator configuration can be minimally specified by n parameters it is said
to have n degrees of freedom. The number of joints is the degree of freedom for a
robotic manipulator. If a manipulator have more degrees of freedom than necessary to
accomplish its tasks, it is said to be a redundant manipulator.

This thesis will look closer to a forwarder crane, which have 4 degrees of freedom,
figure 4.4 shows the kinematics of a typical forwarder crane. Joint variables θ1 − θ3 are
revolute joints while the fourth joint is prismatic and denoted by d. The fact that it
have four joints but operates in 3 dimensions makes this manipulator redundant.

For the manipulator in figure 4.4 three kinematic problems are of interest for this
thesis, to find end effector position given the positions of the joints, find the end effector
velocity given the velocities of the joints and find velocities for the joints given the
velocity of the end effector. The first two is called forward or direct kinematics for
position and velocity, this problem is solved with simple trigonometry in the position
case. The third one is called inverse kinematics and is in general more difficult, especially
with a redundant manipulator. A redundant manipulator typically have infinitely many
solutions to the inverse problem.

In this text the assignment of frames to each link and the general transformation
between the frames are not considered, the focus will be on the forwarder crane only.
For more information of a general case, see [31]. This section will introduce forward
kinematics for both position and velocity and inverse kinematics for velocity. This is
done by deriving kinematic equations for the crane in figure 4.4, from which the position
of the end effector can be calculated. To be able to calculate the end effector velocity
the Jacobian matrix is derived from the kinematic equations. The Jacobian matrix is
then used to solve the inverse velocity problem.

4.3.1 Forward kinematics

Given the position or velocity for each joint of a manipulator the position or velocity
of the end effector should be calculated. For a forwarder crane the boom tip is the
manipulator end effector. To find the position of the boom tip is a trivial problem when
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Figure 4.4: Kinematics of a typical forwarder crane.

the dimensions of the crane is known. With the notations used in figure 4.4 the boom
tip position p is a function of the joint vector θ = [ θ1, θ2, θ3, d ]T

p = f(θ ), (4.23)

where f is a function from joint space to Cartesian space

f(θ) =
[
px, py, pz

]T =
[
cos θ1 r, sin θ1 r, h

]T
, (4.24)

where the extension of the boom tip, r, and its height, h, are

r = L2 cos θ2 −D1 sin θ2 + (L3 + d) cos (θ2 + θ3)−D2 sin (θ2 + θ3)
h = L1 + L2 sin θ2 +D1 cos θ2 + (L3 + d) sin(θ2 + θ3) +D2 sin(θ2 + θ3) .

The superscript T denotes the transpose.
The relation between joint velocities and the boom tip velocity are described by the

Jacobian relationship
ṗ = J θ̇ (4.25)

where ṗ is the unknown 3 × 1 velocity vector for the boom tip, θ̇ = [ θ̇1, θ̇2, θ̇3, ḋ ]T

is the 4 × 1 joint velocity vector and J is the 3 × 4 Jacobian. The Jacobian matrix
is a function of the joint position vector θ, its column entries for the i:th column are
determined from

Ji =
∂ p
∂ θi

= vi, if joint i is prismatic

Ji =
∂ p
∂ θi

= vi × (p− pi), if joint i is revolute
, (4.26)

where pi is the position of joint i, p is the boom tip position and vi is a unit vector
along the joint axis for joint i. From figure 4.4 we derive the Jacobian for the forwarder
crane as

J =
[
(v1 × (p− p1))T , (v2 × (p− p2))T , (v3 × (p− p3))T , vT4

]
(4.27)

The joint axises are

v1 = [ 0 0 1 ]T

v2 = v3 = [ sin θ1 − cos θ1 0 ]T

v4 = [ cos θ1 sinθ1 sin (θ2 − θ3) ]T
, (4.28)



4.3. Forward and inverse kinematics 25

and the joint positions for the revolute joints are

p1 = [ 0 0 0 ]T

p2 = [ 0 0 L1 ]T

p3 = [ cos θ1 rp3 , sin θ1 rp3 , hp3 ]T
(4.29)

where
rp3 = L2 cos θ2 −D1 sin θ2

hp3 = L1 + L2 sin θ2 +D1 cos θ2
,

are the extension and height respectively for p3. L1, L2, D1 and D2 are defined in figure
4.4.

The end effector position p is calculated with equation 4.23. From equations 4.23,
4.27, 4.28 and 4.29 the complete Jacobian matrix is formed

J =

−sθ1 λ −cθ1 γ −cθ1 ϑ cθ1
cθ1 λ −sθ1 γ −sθ1 ϑ sθ1

0 sθ1
2 λ+ cθ1

2 λ sθ1 ( sθ1 λ− sθ1 ζ ) + cθ1( cθ1 λ− cθ1 ζ ) sθ2−θ3

 (4.30)

where
sx = sin(x ), x ∈ R
cx = cos(x ), x ∈ R
ϑ = (L3 + d ) sin (θ2 + θ3) +D2 sin(θ2 + θ3)
γ = L2 sin(θ2) +D1 cos(θ2) + ϑ
ζ = (L2 cos (θ2)−D1 sin (θ2)
λ = ζ + (L3 + d ) cos (θ2 + θ3)−D2 sin (θ2 + θ3)

.

4.3.2 Inverse kinematics

A more challenging problem is that of find the joint velocities from a given end effector
velocity. There can be several solutions to this problem and with an redundant manipu-
lator there is typically an infinite number of solutions to any given end effector position.
The forwarder crane in figure 4.4 is a redundant manipulator because of the prismatic
joint d.

Equation 4.25 describes the velocity of the boom tip, ṗ, in terms of the joint velocity
vector θ̇. For the inverse problem, joint velocities in terms of the boom tip velocity are
desired

θ̇ = J−1 ṗ. (4.31)

But the Jacobian matrix J is not square for a redundant manipulator, and hence, not
invertible. There are several methods to solve the problem with the non invertible
Jacobian [32], this thesis will look at a pseudo inverse method [5, 10, 17, 32].

If equation 4.31 is solved with
θ̇ = J† ṗ, (4.32)

where J† is the Moore-Penrose pseudo inverse Jacobian matrix

J† = JT (JJT )−1. (4.33)

Equation 4.33 gives the best possible solution to equation 4.31 by minimize a cost
function [32]

C = θ̇
T
θ̇ = θ̇2

1 + θ̇2
2 + θ̇2

3 + ḋ2. (4.34)
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J† is defined for all matrices J. In the cost function in equation 4.34 the three revolute
joints are treated as if they have the same dimension as the prismatic joint. This is not
the case, revolute joints are measured in radians while prismatic joints are measured in
meters. Therefore a positive definite weighting matrix is introduced [17]

W =


w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

 , (4.35)

where wi, i = 1, 2, 3, 4, are weights for the joints. By weighting the joints dimensions
inequalities between the joints can be compensated and some joints can be given higher
priority than other joints.

If the weighting matrix in equation 4.35 is included into equation 4.33 the result is
a pseudo inverse Jacobian,

Ĵ† = W JT [J W JT ]−1, (4.36)

that will solve equation 4.32 with respect to the joint weights. This results in the
following equation

θ̇ = Ĵ† ṗ. (4.37)

The matrix J W JT in equation 4.36 will always be a n × n matrix where n is the
number of manipulator joints. In the case with the forwarder crane the matrix is 3× 3,
its inverse can be expressed analytically by its elements. Because of the small matrix
size the analytical inverse is suitable for real time computations.



Chapter 5

The ATVS framework

ATVS is an object oriented framework written in C++ with functionality to control me-
chanical systems. Basically ATVS handles sensors, actuators, controllers and interaction
with the user. With a sensor and an actuator for a system parameter it is possible to
control the parameter with a controller. For example, if the angle in a hinge joint should
be controlled, the angle is the system parameter. So if a sensor for measuring the angle
and an actuator that can change the angle are supplied, the angle can be controlled by a
controller. In ATVS a PID control algorithm is supplied and can be used in a controller.
Sensors, actuators and controllers all have to be registered with a simulation which keep
track of updating them each simulation step. General joystick and force feedback devices
used in computer games are supported for interaction possibilities with the user.

A virtual environment is supplied in ATVS in which mechanical systems can be sim-
ulated. The virtual environment is developed with AgX multiphysics engine [1] and
OpenSceneGraph [2]. Sensors and Actuators are created around joint constraints in the
physics engine which makes it possible to control a joint in the virtual environment.
With this functionality it is possible to create mechanical systems in the virtual envi-
ronment and then provide sensors and actuators for the individual joints in the system.
Development and testing of control algorithms that includes interaction with an opera-
tor can then easily be done. As an example this thesis have created a Valmet forwarder
in the virtual environment and implemented a control algorithm to control the crane.
Figures 1.2 and 5.5 illustrates the forwarder in the virtual environment.

If the framework is extend with implementations that can read values from real
sensors and send signals to real actuators, a real system and a system simulated in the
virtual environment can be controlled with the same controller, given that the kinematics
of the systems are identical and the actuators response are the same. Otherwise the
controller have to be tuned for the new system, but the same algorithm can still be
used. The controller is supplied with sensors and actuators for the real system instead
of the simulated system, but the controller will not notice any difference.

The purpose of ATVS is to provide tools where it is easy to experiment with control
algorithms and investigate human machine interfaces for semi-autonomous mechanical
systems with shared control and force feedback in virtual environments. The ATVS
framework is a result of this master thesis. The development have mainly been done on
the Linux platform in a platform independent way. The code is also compiled for the
Windows platform with Visual studio 2008. To generate build files for different platforms
the CMake [33] software is used. At the moment force feedback is only supported for

27



28 Chapter 5. The ATVS framework

the Windows platform. This chapter describes the main structure of ATVS and some
implementation details.

5.1 System description

The ATVS framework have an abstract layer in the core atvs library. It includes interfaces
for sensors, actuators and controllers, functionality to update implementations of these
interfaces each simulation step and support for joystick and force feedback devices. It
also contains support for defining tasks that can be executed in the simulation loop and
an implementation of a differential PID control algorithm.

The library atvsVE contains the implementation of the virtual environment. Here
the interfaces in the atvs library are implemented to create sensors and actuators. As
an example figure 5.6 shows an inheritance diagram that shows how the sensor interface
is implemented to create sensors in the virtual environment. The term interface should
be theoretically interpreted. C++ do not have support for real interfaces in the same way
as Java. But similar functionality can be achieved with abstract base classes in C++.

The atvs::Simulation class is responsible for the updates of sensors, input system,
tasks, controllers and actuators. A detailed description of the class is given in section
5.1.1. Tasks are handled by the task manager which is described in section 5.1.3. Joystick
and force feedback support in ATVS are discussed in 5.1.4. Section 5.1.5 sum up utilities
available for math in ATVS. In 5.1.6 memory management with reference counters are
covered.

Figure 5.1: The main dataflow in the system.

5.1.1 The simulation class

Figure 5.1 shows a simplified view of the main flow of data in the simulation. Sensors,
controllers and actuators can be included in Tasks, which typically implements control
algorithms on a higher level. The dataflow from the operator can go either directly
to the controllers or via a task for processing before it reaches the controllers. The
operator can also directly control the actuators. The controllers are supplied with data
from sensors, other controllers and the operator. Typically the controllers implements
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a control algorithm that calculate control data for the actuators. Force feedback is
generated back to the operator to get a bilateral control architecture.

The simulation class is the heart in the ATVS framework. Each sensor, controller
and actuator that should be a part of the simulation must be registered with the sim-
ulation class. Tasks are added to a task library in the task manager, read more about
the task manager in section 5.1.3. It is possible to add subsystems that implements the
atvs::SubSystem interface to the simulation class. The task manager implements the
sub system interface and is registered with the simulation as a subsystem. The simula-
tion class also have to update the input system each simulation step, read more about
the input system in section 5.1.4. In each simulation step the simulation class updates
the objects registered with it in the following way:

1. Sensors – Read values from all sensors.

2. Input system – Update the input system, which extracts data from input devices.

3. Subsystems – Update registered subsystems. The task manager is ordered to
update its tasks here.

4. Controllers – Let the controllers calculate the control signals.

5. Actuators – Update the actuators with the new control signals.

The simulation class for the virtual environment

In the virtual environment the dynamical simulation is controlled by the AgX physics
engine [1]. AgX provide rendering with OpenSceneGraph [2], which is used by ATVS.
To cooperate with the dynamic- and rendering simulation in the virtual environment,
atvs::Simulation is extended in the atvsVE library and named atvsVE::Simulation.
The atvsVE::Simulation class gets a notification to take a simulation step before each
simulation step in the dynamic simulation is executed. The update of the rendering is
controlled in the dynamic simulation by AgX. Adding of rigid bodies, constraints and
graphical models to AgX and OpenSceneGraph are also handled by atvsVE::Simulation.

5.1.2 Simulation objects

Simulation objects are containers for sensors, controllers and actuators that are related
to each other. For example sensors, controllers and actuators of a mechanical system
can be stored in a simulation object. In this way all information about a mechanical
system can be stored in a single object and it will be easier to handle. In the virtual
environment also rigid bodies and constraints can be associated with a simulation object.

5.1.3 The task manager

The task manager handles tasks in ATVS. A task typically implements control algo-
rithms on a high level that includes several controllers implementing low level control
algorithms. A task manager have its own task library where it store tasks that is as-
sociated with the task manager. The tasks are identified with their names, they are
stored in a map in the library with the name as look up key. The task manager have
methods for adding tasks to the library, fetch tasks from the library, start execution
of tasks, stop tasks etc. A collaboration diagram for the task manager is provided in
figure 5.2. When the execution of a task is started, the task is put in an initializing
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Figure 5.2: Collaboration diagram for the task manager.

phase that is executed in a separate thread. When the initialization phase is done, the
thread is terminated and the task is put into an execution list in the task manager. The
task manager then updates the tasks in the execution list each simulation step. If a
task reach its stop criteria and is done, it is removed from the execution list. The task
manager implements the sub system interface and is registered with the simulation class
as a sub system. This means that the task manger get an update notification after the
sensors and input system is updated. The task can then be provided with new data
from sensors and operator.

5.1.4 Joystick and force feedback devices

The atvs library contains high level interfaces to receive inputs from general gaming
joysticks and actuate constant forces in general gaming force feedback devices. In figure
5.4 a joystick with force feedback support is shown. The implementations of these
interfaces are done with the help of existing software libraries, such as DirectX and
Simple DirectMedia Layer.

Joysticks

Input devices are handled by the singleton class atvs::InputSystem. Currently it only
supports joystick devices. The class wraps an implementation,
atvs::InputSystemImplementation, that handles the actual functionality of finding
input devices and receiving inputs from them. The fact that the implementation is
wrapped into another class makes it possible to have different implementations for dif-
ferent platforms and still provide the same interface to the user. Consequently the user is



5.1. System description 31

(a) SDL based implementation
of the input system.

(b) SDL based joystick implementation.

Figure 5.3: Collaboration diagrams for the SDL implementations of the input system
and the joystick.

unaware of the underlying implementation. At the moment there exists one implementa-

Figure 5.4: A gaming joystick with force feedback support from Saitek.

tion based on the Simple DirectMedia Layer (SDL) for handling joystick communication.
SDL is available to both Linux and Windows, so there is no need to have different im-
plementations for the two operating systems. Figure 5.3 shows a collaboration diagram
for the classes included in the SDL input system implementation.

An interface for joysticks, atvs::Joystick, makes it possible to get information
about a joystick device and also add listeners to the joystick. The interface methods
must be implemented by implementation specific joystick classes. Figure 5.3b shows
how the SDL specific implementation for joysticks inherit from the atvs::Joystick
interface. To receive input information from a joystick a listener have to be added to the
joystick. Joystick listeners have to implement the interface atvs::JoystickListener
which contains methods that are called when there is information available from the
joystick, for example when an axis is moved or when a button is pressed.
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Force feedback devices

The support for force feedback devices follows the same structure as for joysticks, see
figure 5.3 and section 5.1.4. The class atvs::ForceFeedbackSystem is a singleton that
wraps the actual implementation which handles the force feedback devices. An inter-
face for a force feedback device, atvs::ForceFeedbackDevice, makes it possible to set
constant forces on the x and y axises of the device. Of course it must be a device with
support for constant forces on the x and y axises.

Simple DirectMedia Layer (SDL), which is used in the input system implementation,
currently lack support for force feedback devices. But in the next version (1.3) of
SDL there will probably be support for them. Therefore DirectInput, which is a part
of Microsoft’s DirectX library is used to implement the force feedback functionality.
The fact that DirectX are used in many games with force feedback support and that
it is rather well documented motivated the choice of DirectInput. Due to the use of
DirectInput force feedback is only available in the Windows version of ATVS.

5.1.5 Math utilities

ATVS use open source code from the OpenSceneGraph project [2] to provide a collection of
math functions and classes. There are classes for two, three and four dimensional vectors,
a 4x4 matrix and some basic utility functions such as clamping values etc. The vector
classes have implemented functionality for dot product, cross product, normalization,
length, squared length and basic arithmetic. The matrix class have functionality for
matrix multiplication, transpose, inverse and methods that easily make the matrix to a
translation-, scale-, or rotation matrix. It also have methods create common matrices
that appears in computer graphics, but these methods are not necessary for this project.

5.1.6 Memory management

To handle deallocation of allocated objects ATVS use open source code from the Open-
SceneGraph project [2]. The deallocation is handled with reference counting. This is a
technique that keeps track of how many pointers there are to an object, when the num-
ber of pointers decrease to zero the object will be deallocated. The reference counter is
kept in the object it self, so all classes that should have support for reference counting
should inherit a class that handles the reference counting functionality. When an object
is associated with a reference pointer the reference counter in the object is increased
with one, when the object is separated from a reference pointer the counter is decreased
with one.

Below is a simple example function to illustrate how reference pointers work. A
reference pointer, exampleRef, is associated with an allocated object of the fictional
class ExampleObject and the reference counter in the object is increased to be one.
When the function returns the reference pointer exampleRef goes out of scope and the
reference counter in the object is decreased to zero and the object will deallocate itself.
A more detail documentation on reference counting can be found in the OpenSceneGraph
project [2].

void function()
{

atvs::ref_ptr< atvs::ExampleObject > exampleRef = new ExampleObject;
}
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5.2 Implementation details

In this section some details about the implementation is described. The PID control
algorithm implemented in ATVS are described in section 5.2.1. Section 5.2.3 shows how
the Valmet forwarder is modeled with rigid bodies and constraints. The implementation
for velocity control of the boom tip on a forwarder crane is described in section 5.2.2.
How sensors and actuators are created in the virtual environment is covered in sections
5.2.4 and 5.2.5

5.2.1 PID control implementation

Section 4.2.5 on page 22 discuss differential PID control.
A differential pid control algorithm with anti windup protection and derivative filter is
implemented in ATVS. The ideal discrete form of the PID control algorithm

u(t) = up(t) + ui(t) + ud(t), (5.1)

where
up(t) = kp e(t)
ui(t) = ui(t− 1) + ki h e(t− 1)
ud(t) = Tf

Tf +hud(t− 1)− kd

Tf +h ( y(t)− y(t− 1) )
,

is rewritten into its differential form

u(t) = u(t− 1) +∆u(t) = u(t− 1) +∆up(t) +∆ui(t) +∆ud(t) (5.2)

where

∆up(t) = kp( e(t)− e(t− 1) )
∆ui(t) = ki h e(t− 1)
∆ud(t) = Tf

Tf +h ∆ud(t− 1)− kd

Tf +h ( y(t)− 2y(t− 1) + y(t− 2) )
.

h is the time step and Tf = (kd/k)/N is the filtering time, where N range from 2-20.
Integral windup protection is implemented by clamping u(t−1)+∆u(t) between the

actuator control signal limits. Clamping means that if the value is at the wrong side of
a limit, it is set to the value of the limit.

u(t) = ( u(t− 1) +∆u(t) ) |maxmin (5.3)

This PID control algorithm is implemented in the class atvs::PidControl.

5.2.2 Implementation of velocity control for the boom tip

Here the implementation of velocity control, including joint limit protection, for the
boom tip of a forwarder crane is presented. Sections 4.3.1 and 4.3.2 covers the relevant
theory, which builds on [17, 10], for velocity control of the boom tip. Recall equation
4.37 from section 4.3.2 on page 26

θ̇ = Ĵ† ṗ,

which use the Moore–Penrose pseudo inverse Jacobian, Ĵ†, to find the best possible
solution by minimizing the cost function in equation 4.34. Where θ̇ is the unknown
joint velocity vector and ṗ is the reference for the boom tip velocity. To avoid that



34 Chapter 5. The ATVS framework

joints are commanded to work outside the limits of their working range, they can be
weighted down when they approaching a limit. The pseudo inverse Jacobian Ĵ† includes
the weighting matrix W from equation 4.35. This weighting matrix can be modified to
achieve joint limit protection. If it appear that some of the joints are about to approach
a limit the weighting matrix from 4.35 is replaced with the matrix

Wρ (θ, ṗ) =


w1 ρ1(θ, ṗ) 0 0 0

0 w2 ρ2(θ, ṗ) 0 0
0 0 w3 ρ3(θ, ṗ) 0
0 0 0 w4 ρ4(θ, ṗ)

 , (5.4)

where ρi(θ, ṗ), i = 1, 2, 3, 4 are a protection weights that for each joint weights down the
joint if it approaches the limit of its working range. The protection weights are calculated
with algorithm 1. In algorithm 2 the new velocities for the joints are calculated.

Algorithm 1 Calculate protection weights ρ(θ, ṗ) to avoid joint limits
Require: θ, ṗ

Ensure:
ρi(θ, ṗ), i = 1, 2, 3, 4
θ̇∗

ρ1(θ, ṗ) = ρ2(θ, ṗ) = ρ3(θ, ṗ) = ρ4(θ, ṗ) = 1
ε = a small value.
Calculate θ̇∗ from equation 4.37 with the weighting matrix in equation 4.35.
for i = 1 to i = 4 do

θmaxi = maximum allowed value for θi
θmini = minimum allowed value for θi
δi < (θmaxi − θmini ) ε
if [(θmaxi − θi < δi) and (θ̇∗,i > 0)] or [(θi − θmini < δi) and (θ̇∗,i < 0)] then

ρi(θ, ṗ) = 0
end if

end for

Algorithm 2 Calculate new joint velocities
Require: θ, ṗ

Calculate ρ(θ, ṗ) and θ̇∗ according to algorithm 1.
if ρi(θ, ṗ) 6= 1 for i = 1, 2, 3, 4 then

θ̇ = Ĵ† ṗ, where Ĵ† is calculated with the weighting matrix in equation 5.4.
else

θ̇ = θ̇∗
end if
Update joint velocities according to θ̇.

5.2.3 Modeling of mechanical systems in the virtual environ-
ment

In the virtual environment a mechanical systems is constructed with rigid bodies and
constraints, where the constraints are used to connect rigid bodies to each other. Rigid
bodies and constraints are described in section 4.1. In ATVS there are sensors and



5.2. Implementation details 35

(a) Valmet 830. (b) Virtual environment. (c) Modeled with rigid bodies and
constraints.

Figure 5.5: How the Valmet 830 is modeled in the virtual environment.

actuators implemented for revolute and prismatic constraints. AgX also provide other
types of constraints, but these two types of constraints is enough to create complicated
mechanical systems.

When modeling a mechanical system typically very rough shapes are used to approx-
imate the shapes of the real system. This approximation is done to simplify calculations
in collision detection an contact determination. It is important that the dimensions of
the simulated system is identical to the dimensions of the real system, that is the mea-
surements between the joints should coincide in the two systems. It is also important
that masses are the same in the two systems. Material parameters can be changed in the
physics engine to create realistic behavior for the bodies in the simulation. For example
there are parameters to achieve the right friction properties.

When a mechanical system is modeled it is very important that it is in a valid initial
state. That is all rigid bodies must be positioned in a way that the real system allows.
That is no penetration of rigid bodies, the rigid bodies are not allowed to violate any
joint constraints. If the system is in an invalid initial state it will probably “explode”
when the simulation is started due to forces that arise from the invalid state.

In figure 5.5 a real Valmet 830 is shown together with the same machine in the
virtual environment and an illustration of how the forwarder is modeled with rigid
bodies and constraints. In the virtual environment the shape of the forwarder looks just
as the shape of the real forwarder, the rigid bodies who approximate the structure of
the forwarder are not visible. A rigid body’s shape is not visible, it is used for collision
detection in the physics engine and does not need to be as detailed as the visible 3D-
model. How the actual rigid bodies looks like is illustrated in figure 5.5c. As the figure
illustrates the wheels are approximated with cylinders, the links in the crane as well as
the machine body are approximated with rectangular boxes, the claws in the grapple
are approximated with cylinders etc.

A rigid body can consist of none, one or several collision geometries. The green shapes
in figure 5.5c are collision geometries, so every shape in the figure does not correspond
to a single rigid body. As stated before the collision geometries are used in collision
detection between bodies in the simulation. A rigid body without collision geometries
can not collide with other objects, which sometimes can be practical. The grapple
for example includes some rigid bodies without collision geometries, these bodies are
there for an internal mechanical function in the grapple, but does not need to generate
collisions with other objects. In figure 5.5c the constraints are illustrated with a yellow
sphere and a yellow line for the constraint axis. There are respectively around 25 rigid
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Figure 5.6: Inheritance diagram for the sensor interface.

bodies and constraint in the forwarder model.

5.2.4 Sensor implementation for the virtual environment

Speed sensors and angle/extension sensors are implemented for revolute and prismatic
constraints. In the AgX physics engine there are methods supplied for reading speed
and angle/extension on these constraints, so on each update the sensor implementation
in ATVS just read the value from the constraint. In figure 5.6 the inheritance diagram
illustrates how the sensor interface in the atvs library is implemented for sensors in the
virtual environment.

5.2.5 Actuator implementation for the virtual environment

Two types of actuators are implemented for the virtual environment, a hinge motor and
a linear motor. The hinge motor is built upon a revolute constraint and the linear motor
is built upon a prismatic constraint.

Hinge Motor

The hinge motor implementation applies a torque on the bodies connected to the hinge
(revolute) constraint according to the function

fhm(u, ω) = sign(u) τmax e− δ(ω) (1− e− β(u) ), (5.5)

where
δ(ω) = |(|ω|−ωopt)|2

ω2
with

β(u) = |u|
ulin

.
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Where u is the motor control signal, ω is the angular velocity in the hinge constraint,
ulin is a constant for the slope of the function, ωopt is the optimal angular velocity for
the motor, ωwidth determines the width of the motor function, τmax is the maximal
torque that could be generated by the motor and sign(u) is a function that returns −1
for negative values of u and 1 for positive values of u. The torque calculated with the
function in equation 5.5 is applied with opposite signs on the two bodies in the constraint
according to the direction of the hinge axis. β(u) and δ(ω) are generally chosen and can
be replaced with more specific functions identified from a real systems. For example
friction models and delays for an actuator can be determined and implemented. Figure
5.7a shows how the torque varies according to the rotational velocity for some values of
u.

(a) Hinge motor function. u : 0→ 5 (b) Linear motor function. ulin = 5,fmax = 1000

Figure 5.7

Linear Motor

The linear motor implementation applies a force on the bodies connected to the prismatic
constraint according to the function

flm(u) = sign(u) fmax (1− e −β(u) ) (5.6)

where

β(u) =
|u|
ulin

,

along the prismatic axis. Here u is the motor control signal, fmax is the maximal force
that can be generated by the motor, ulin is a constant for the slope of the function and
sign(u) is a function that returns −1 for negative values of u and 1 for positive values
of u. The force calculated with the function in equation 5.6 is applied with opposite
signs on the two rigid bodies according to the prismatic axis. As for the hinge motor
β(u) can be replaced with a function identified from a real system. Figure 5.7b shows
the force generated by the linear motor function with ulin = 5 and fmax = 1000.
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Chapter 6

Proposals on shared control
architectures

Control architectures are briefly covered in section 2.2, and as described in section 2.2.2
shared control allows an operator and a control loop on the slave side to control the
same task. This chapter gives proposals on how shared control could be achieved on
different levels with sensors, PID controllers and actuators. For example the control can
be shared on a low control signal level or at a higher level where the operator interact
with a trajectory tracker or a motion planner.

A motion planner plans a motion for a mechanical system, this can be done as a pre
process before a task is started or in real time while the task is executed. The trajectory
tracker track the motion planned by the motion planner.

If the joints in a mechanical system are supplied with sensors and actuators, it is
then possible that for each joint use a PID control algorithm to control the joint. The
actuators can be hydraulic cylinders, DC-motors etc. The sensors can measure angle,
extension, translational- and rotational speed etc in the joints. The output from a PID
control algorithm depends on a reference value and the current value on the parameter
that should be controlled. The reference value is the desired value for the controlled
parameter. So if the angle in a joint is controlled with a PID control algorithm and
the desired angle is π radians, then the reference value should be set to π radians and
the PID control algorithm calculates a control signal to the joint actuator. The control
signal, which depends on the reference value and the current angle of the joint, should
make the actuator achieve the reference value. PID control is further described in section
4.2.1.

In section 6.1 two shared control architectures are proposed, the operator and the
local control loop in the slave shares the control of a task by interacting with the
reference values to the PID controllers. Section 6.2.1 give proposals on a shared control
architecture where the interaction between the operator and the local control loop in the
slave are done on the motion planning and trajectory tracking level. In the architectures
described in both these sections feedback from the slave to the operator (master) can
be achieved through force feedback in the operators controlling devices.
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6.1 Interact with reference values.

Shared control can be performed on a low level by interaction with the control signals
to a controller or actuator. A control architecture where the interaction are performed
at the control signals to the actuator were discarded. It was discarded because of the
fact that a PID controller is a feedback controller and will try to compensate for the
operators contribution in the actuator control signal. Instead an architecture where the
interaction is done at the reference signals to the PID controller was chosen. A PID
controller takes a reference value, also referred to as set point, as input and with the
help of sensor data it tries to achieve the reference value in the controlled parameter
with the help of an actuator. Here it is proposed that the reference signal produced by
the local control loop on the slave side is simply added to the reference signal from the
human operator.

6.1.1 Without control parameter feedback

Figure 6.1a shows the shared control architecture without feedback from the controlled
parameter available to the control algorithm in the slave. In the figure, “Automatic Sys-
tem” corresponds to the control algorithm that generates reference values to the PID
controllers. The operator can also contribute with a reference signal for the joint, the
operators reference signal and the control algorithm’s reference signal are then added
together before it reach the PID controller. Without feedback from the controlled pa-
rameter the automatic system is an open loop system and is therefore unaware of the
actions in the system caused by the operator. An example of this architecture is when
the control algorithm calculate a velocity reference for a joint, but it does not need
measurements on the joint for the calculation.

(a) Without feedback. (b) With feedback.

Figure 6.1: The shared control architecture where the master and the slave interact
through the reference signal to the PID controllers.

6.1.2 With control parameter feedback

In a shared control architecture with feedback from the controlled parameter, the control
algorithm in the slave typically use the feedback for calculating the reference values to
the PID controllers. The change caused by the human operator can then be perceived
as a disturbance by the control algorithm. Therefore the change caused by the human
operator can be notified to the control algorithm so it does not perceived the operator
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action as a disturbance. In figure 6.1b the “Automatic System” is the control algorithm
in the slave that generates reference values to the PID controllers. As illustrated the
control algorithm is provided with feedback from the sensor of the controlled parameter
and it is also provided with the operators reference signal. A case that illustrates this
shared control architecture is when the velocity references calculated for a joint depends
on the current velocity or position. The control algorithm are here aware of the operators
actions and can then include them in the reference signal calculations.

Gains can also be introduced to the reference signals from both the operator and the
control algorithm before they are added together. The gains can be selected according
to the operators actions to get smooth transitions between the operator and the control
algorithm. This is not illustrated in the figure.

6.2 Interaction on a higher level

In the previous section shared control at the PID controllers reference signals where
considered, this section propose shared control on a higher level, the control algorithm
level. This shared control architecture is illustrated in figure 6.2. The human operator
interact with the high level control algorithm which then regulate the PID controllers.

Figure 6.2: A high level shared control architecture.

A working cycle for an autonomous robot manipulator typically includes to follow
a trajectory, this trajectory can be pre calculated or calculated by a motion planner
online. High level shared control on a trajectory tracking level and the motion planner
level are discussed further here. Section 6.2.1 discuss shared control interaction with the
trajectory and the trajectory tracker. A shared control tracking algorithm is presented
in section 6.2.2. Section 6.2.3 discuss shared control interaction with the motion planner.

6.2.1 Interact with the trajectory and the trajectory tracker

The trajectory tracker’s task is to track a defined trajectory. A trajectory can be
defined in several ways, for shared control it is important to distinguish between time
independent and time dependent trajectories. Time dependent trajectories are defined
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by positions that should be reached at a certain time while time independent trajectories
only depends on the positions along the trajectory. For shared control it is easiest to
work with time independent trajectories because then there is no need to recalculate
the time dependency when the operator affect the motions.

If the trajectory is time independent and the trajectory tracker tracks the trajectory
by velocity references for the tip of the manipulator, further on called end effector, then
shared control can be achieved by merging velocity references from the operator and
the trajectory tracker. Section 6.2.2 presents an algorithm based on a time independent
trajectory and interaction through end effector velocity for a manipulator.

Another approach is that the operator interact with the trajectory by making changes
in the parameters that defines the part of the trajectory that is ahead of the end effector.
Also in this approach time dependent trajectories are complicated, changing the defining
parameters of the trajectory implies recalculation of the time dependency. Therefore
only time independent trajectories are considered further on.

6.2.2 A velocity based trajectory tracking algorithm with shared
control

This section introduce an algorithm that tracks the end effector of a robot manipulator
to a time independent trajectory and allows shared control between the the trajectory
tracker and the operator. The algorithm use velocity references and requires an inverse
kinematics algorithm for the manipulator to translate an end effector velocity to joint
velocities. The algorithm is based on an algorithm called Follow the carrot described in
[8]. With velocity references the algorithm makes the end effector strives towards a point

Figure 6.3: Follow the carrot trajectory tracking with shared control.

ahead of it along the trajectory, this point is called the carrot point, thereof the name
Follow the carrot. Figure 6.3 illustrates the algorithm. From the current end effector
position p, the closest point c on the trajectory is calculated. The end effector deviation
from the trajectory is used to calculate a look ahead distance, which is a measure on how
far ahead along the trajectory from the closest point, c, the carrot point c′ should be
located. The carrot point is the point that the algorithm aims the end effector velocity
at. The look ahead distance increase with increasing end effector deviation and decrease
with decreasing end effector deviation. So the distance between the carrot point, c′, and
the closest point, c, is a function of the end effector deviation. The final end effector
velocity v is calculated as a sum, weighted sum or a mean value of the commanded
velocity voperator from the operator and the velocity vp calculated from the current end
effector position and the carrot point. The operators velocity reference, voperator, will
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typically cause the end effector to deviate from the trajectory and make the look ahead
distance to increase. If the operator stops to contribute with velocity references the
end effector will smoothly return to the trajectory and the look ahead distance decrease.
The algorithm is described in algorithm 3.

Algorithm 3 Follow the carrot trajectory tracking with shared control
Require: A trajectory defined as line segments. Magnitude k of the tracking velocity

and the velocity contribution voperator commanded by the operator.
Ensure: An end effector velocity that makes the end effector follow the trajectory, the

end effector velocity can be affected by the operator.

1. Determine the current position p of the end effector.

2. Find the point c on the trajectory that is closest to the end effector position p.

3. Calculate the look ahead distance proportional to the end effectors deviation, ||c−
p||, from the trajectory. An increased deviation correspond to an increased look
ahead distance.

4. Find the carrot point c′. Which is at a look ahead distance from the closest point c
along the trajectory.

5. From the end effector position and the carrot point, calculate the velocity vector
vp = c′−p

||c′−p|| k.

6. Calculate the final velocity vector v = vp + voperator

7. Calculate joint velocities from the final end effector velocity v.

6.2.3 Interact with the motion planner

The motion planner generates a trajectory that the trajectory tracker should follow. If
the trajectory can be generated at the same time as the tracker tracks the trajectory
or if the generation of a complete trajectory is fast enough to be generated in one
simulation step, it is called online generation. If the complete trajectory is generated
as a pre process independent of the simulation steps, it is called offline generation. In
both cases time independent trajectories defined with as few points as possible, without
modifying the original shape of the trajectory, is faster to generate than time dependent
trajectories which typically includes a point for every time step of the tracking task.

The operator can interact with the motion planner instead of interacting with the
trajectory or the trajectory tracker. Typically the motion planner have information
about obstacles and from that it plans a trajectory from the current position of the end
effector to a goal position.

For the case when the trajectory is generated online the operators input signals can
be used to introduce a way point between the current end effector position and the goal
position that the trajectory must pass through. The motion is then planned from the
start point to the way point, from the way point to the end point.

With offline trajectory generation the trajectory have to be regenerated during sev-
eral time steps when there is input from the operator. So its very important that the
trajectory can be generated fast enough so the end effector motion is minimal during
the generation. Time dependent trajectories should therefore be avoided in this case in
favor for simpler time independent trajectories.



44 Chapter 6. Proposals on shared control architectures

6.3 Force feedback

In figures 6.1 and 6.2 force feedback is illustrated as a dotted arrow from the slave to
the master. This is an abstract illustration showing that there can be force feedback
from the slave to the master, but it does not say anything of how this is done. That is
because force feedback does not have to be included in the control algorithm.

Force feedback can depend on sensor measurements that is not included in the control
algorithm. For example one could imagine that sensors measuring the pressure of the oil
current in a hydraulic system can be used to determine the load in joints and with force
feedback illustrates for the operator which motions that requires a higher respectively
lower pressure of the oil current. This can cause many combinations of systems that
includes different types of force feedback, therefore force feedback is just abstractly
illustrated in the figures.

Force feedback could also be used to guide the operator in its movements. For
example forces in the operators control devices that comport with the movements of
following a trajectory can be generated. Force feedback can also be used to avoid that
the operator runs the system into an obstacle or notify when joint limits are reached.



Chapter 7

Test results

This chapter demonstrates how ATVS can be used to simulate semi-autonomous mechan-
ical systems with shared control in the virtual environment. Two mechanical systems
is considered, a simple loading system that operates in two dimensions and a Valmet
830 forwarder. Some of the shared control architectures proposed in chapter 6 are
implemented, tested and very briefly evaluated.

7.1 Loading system

The loading system operates in two dimensions and is equipped with a rotatable grapple,
the system is illustrated in figure 7.1. Systems of this type can be used to unload or
load cargo from one vehicle to another, move cargo from the vehicle to a cargo store etc.
The system in figure 7.1 moves logs from one store to another. Typically algorithms
are easier to implement for two dimensions than for three dimensions, so a simple two
dimensional system like this makes it possible to easy implement and test shared control
approaches.

The grapple can be regulated in height and moved between the two stores, this is
done with prismatic joints. The grapple can also be rotated, which is done with a hinge
joint. The grapple and the mechanism for the grapple claws are modeled with one
prismatic joint and several hinge joints in the same way as a real grapple. There are
sensors for measuring the angle or extension on the joints in the system. Linear motors
are connected to the prismatic joints that moves the grapple and to the prismatic joint
that actuates the claws in the grapple. A hinge motor controls the rotation of the
grapple. PID controllers are tuned for velocity control of the joints, so to control a joint
the operator gives a velocity reference to the PID controller of that joint. The operator
use two joysticks of the same type as in figure 5.4 to control the velocity references.

7.1.1 Shared control tests

Chapter 6 propose some shared control architectures for systems with PID controllers,
actuators and sensors. Some of these are implemented for this loading system and are
briefly described and evaluated in this section.
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Figure 7.1: The loading system developed to test shared control.

Reference interaction without feedback

Section 6.1.1 describes a shared control architecture where reference values from the
operator and the slave’s local control algorithm are merged together. Further the de-
scribed architecture lacks grapple position feedback for the local slave control algorithm.
A variant of that architecture are here tested with the loading system.

An automated task takes the grapple from one of the log–stores to the other while
the grapple is rotated to fit in the target log–store. The automated task is started by
pushing a button on one of the joysticks, the automated task can be interrupted by
pushing another button on one of the joysticks. There are three different states that
the automated task can take: go up from current store, move to the target store and
go down in the target store. The automated task gives velocity references to the joints
depending on the state of the task and the state of the task is changed when the grapple
pass through predefined way points. For example, when the grapple is located above
a certain height limit at the same time as it is above the starting log–store, the state
is move to the target store. When the grapple then reaches the target log–store the
state is changed to go down in the target store. When the grapple approaches the target
position the task smoothly slows down the velocity.

During execution of the task the operator can then contribute to the velocity ref-
erence values, practically the human operator contribute to the velocity references by
moving the joysticks in the same way as in manual control. The fact that the control
algorithm does not have any feedback about the current velocity at the joints will make
it to blindly give velocity references according to the state of the task. The velocity
contribution from the operator will not affect the control algorithm. To get smooth
interaction between the operator and the control algorithm gains on their respectively
velocity reference can be introduced. These gains can depend on the magnitude of the
operators joystick movements.

Figure 7.1 shows the loading system in the beginning of the task, the state of the
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task is go up from current store. To the left in figure 7.1 the velocity reference for each
joint, from both the operator and the control algorithm, are illustrated. In the figure
the control algorithm moves the grapple upwards, which is the result of the velocity
reference shown in blue for Link 1. The operator does not give any velocity references
in this figure.

With the automated tasks that moves the grapple from one log-store to the other,
the operator gets micro–pauses in the workload and the level of mental stress may be
decreased. If the operator need to adjust the movements of the automated task, the
task would not notice that. For example, if the logs are about to collide with the poles
that surrounds each log–store the operator can slow down the movements of the grapple
and if it is needed raise the grapple to rotate the logs to fit into the log–store. Then
the operator let the task move down the grapple into the log–store while the operator
smoothly take over the control to do manual unload.

The interaction between the operator and the control algorithm feels very natural
and the transitions between manual control and autonomous control at the beginning
and end of the task goes smoothly due to the shared control implementation.

Reference interaction with trajectory tracking

A shared control architecture where interaction occurs at the level of PID controller
reference values that also includes trajectory tracking can be viewed as a hybrid among
the architectures described in sections 6.1.1, 6.1.2 and 6.2.1. The same loading system as
described previously is still used but with a different control architecture. As previously

Figure 7.2: Trajectory tracking with shared control.

a task moves the grapple from the current log–store to the other log–store. But the
difference is that now a trajectory is generated and tracked by a velocity based trajectory
tracker. The trajectory tracker use algorithm 3 described in section 6.2.2, but the
algorithm is slightly modified to fit the case where the interaction between the operator
and the control algorithm are at the reference level. The difference from algorithm 3
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is that the velocity voperator from the operator is excluded from the algorithm and the
velocity vp is the reference value from the control algorithms to the PID controller.

The interaction with the operator is then at a velocity reference level before the PID
controllers, where the velocity references from the operator and the control algorithm is
merged together. Inputs from the operator will result in a grapple deviation from the
trajectory, the control algorithm then strives to return the grapple to the trajectory. To
tune the algorithm for smoother interaction between the operator and the control algo-
rithm, gains on the velocity references that depends on either the end effector deviation
or the operators velocity reference can be considered. The control algorithm do not
use the joint velocity as feedback term, instead the feedback to the control algorithm
is the position of the grapple, which determine the deviation from the trajectory. The
trajectory tracker smoothly accelerate the tracking at the beginning of the trajectory
and smoothly slows down the tracking at the end of the trajectory.

Figure 7.2 shows the loading system with shared control at the velocity reference level
and trajectory tracking. In the figure the trajectory is denoted with a red line, the small
red sphere on the trajectory is the point on the trajectory that is closest to the grapple
and the larger blue sphere is the carrot point. The carrot point is described in section
6.2.2. The control algorithm strives the grapple towards the red sphere, the distance
between the red and the blue sphere on the trajectory increase with increased deviation
of the grapple. That is to get a smooth return to the trajectory when the operators
velocity reference decrease. To the left in figure 7.2 contributions to the reference values
from both the operator and the control algorithm is shown. It can be seen that both
the operator and the control algorithm contributes with reference values to the joints.

As previously mentioned the operators mental strain may decrease when autonomous
tasks introduce small pauses in the operators work cycle. The above described inter-
action technique gives a smooth and natural interaction between the operator and the
autonomous task. A drawback with this method is that the visual indications of the
trajectory are very important for the interaction. With lack of the visual indicators the
interaction feedback is lost and the interaction does not become as intuitive as before.
Without visual feedback the feedback have to be replaced with some other feedback,
here force feedback in the operators joysticks are a natural solution. But this is not
explored in this thesis and left for future work.

Regeneration of the trajectory

In section 6.2.3 a high level shared control architecture that interact with the motion
planner is described. This architecture is explored with the loading system. As before
a trajectory is planned and generated. The trajectory is tracked in the same way as in
section “Reference interaction with trajectory tracking”. But now the operators input
generates new trajectories. For example when the operator moves the joystick a start
point is predicted from the current position of the grapple and the input from the
operator. A new trajectory is then generated from the predicted starting point and the
tracker then tracks the new trajectory.

This is illustrated in figure 7.3 where it can be seen that the trajectory is changed
compared to the original trajectory. The original trajectory is the same as the trajectory
in figure 7.2. The interaction between the operator and the control algorithm is at least
as good as for the previous cases, except for when the operators input coincide with the
direction of the trajectory. The trajectory is tracked with a velocity based algorithm,
when the operators input creates new starting points that lies on the trajectory, this
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Figure 7.3: Motion planner interaction.

means that the new trajectory is the same as the old trajectory. The operator must
create new trajectories that deviates from the current trajectory, also start points for new
trajectory’s that are created behind the grapple will have no effect, because the tracking
algorithm never look backwards. Motion planning interaction is also dependent on the
motion planning algorithm and the complexity of the algorithm, see section 6.2.3.

Motion guidance with force feedback

For the loading system force feedback in the joysticks to guide the operator is explored.
Way points from the start position to the end position form the trajectory that should
be followed. A force depending on the distance and direction to the next way point is
generated in the operators joysticks. The magnitude of the force is larger with a larger
distance to the way point. The method gives a good guidance for the operator but have
not been deeply tested because of time limitations in the project.

7.2 Valmet 830 forwarder

A forwarder is used for transportation of logs from the felling place to a roadside, where
the logs are loaded on a lumber car for further transportation. The forwarder is equipped
with a redundant crane , see section 4.3 for more information on redundant manipulators
and how velocity control of the boom-tip can be implemented. The forwarder crane
operates in 3 dimensions and is therefore more complicated than the loading system.How
the complete forwarder is modeled in the virtual environment is briefly covered as an
example in section 5.2.3.

There are sensors available for reading angle/extension and velocity for all joints in
the crane and the grapple. For the machine the same sensors are available for every
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wheel joint and for the steering link. There are also motors to all above mentioned
joints.

For the forwarder crane there are some simplifications. The joints θ2 and θ3, which
are described in section 4.3, are modeled as hinge motors. In reality they are actuated by
linear motors in the form of hydraulic cylinders that are attached to the links connected
with the joint. But the fact that the angle and velocity is measured in the joint and that
the motor is controlled by a PID controller makes the type of the underlying actuator
of less importance. One can consider that the control algorithm will work identical if a
well tuned PID controller is supplied for each joint regardless of the actuator type and
given that angle and velocity is measured in the joint.

There are PID controllers tuned for velocity control of each joint in the forwarder
crane and its grapple. Further there are tuned controllers for velocity control of the
wheels and the steering joint. In the virtual environment the full forwarder is controlled
with two joysticks of the same type as in figure 5.4.

Figure 7.4: Automated loading task.

7.2.1 Determination of tasks that could be automated

To get an insight in how the operator operates the crane, movies with professional
forwarder operators have been studied. From the movies conclusions can be drawn on
which parts of the working cycle that can be automated, where in the working cycle the
operator performs very complicated tasks, how fast the operators working cycle is, etc.

If the automated tasks should be lucrative, the automated working cycle should
be at least as fast and smooth as the non-automated working cycle performed by a
professional operator. If this is fulfilled it will be easier for an unexperienced driver
to become lucrative. For the professional driver the total time of a working cycle may
be significantly reduced while the short pauses in the working cycle introduced by the
automated tasks may reduce the operators mental strain [11, 10].
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The movies shows that the operator performs complicated tasks when grabbing and
releasing the logs, while the transport between ground and load bunk is quite simple. It
is also obvious that the grabbing of logs is much more complicated than releasing logs.
By automating the simple part of the working cycle the operator can get short pauses
with possibilities to relax between the more complicated parts of the working cycle.

From this information and previous experience in the area the transportation parts of
the working cycle is chosen to be automated. These are the parts when the grapple goes
from the bunk and out to grab a log and after a log is manually grabbed the grapple goes
back to the bunk. Grabbing and releasing of logs are chosen to be manually controlled.
Figure 7.4 shows the autonomous loading task.

7.2.2 Shared control test

For the forwarder a high level shared control architecture described in section 6.2 is
tested and evaluated. A trajectory is generated from the current position of the grapple
to a target point. This is done with a very simple motion planner that during planning
of trajectories only is aware of the positions of the loading bunk and the rest of the
machine. The trajectory is tracked with the velocity based tracking algorithm described
in section 6.2.2. This section also describes how the operator interact with the control
algorithm described in algorithm 3 on page 43.

The grapple is attached to the forwarder crane without any control possibilities
except for the rotator. That is, the grapple freely swings around two hinge joints in the
boom tip of the crane. There are dampers, but there is no ability to control these two
joints. This makes it a little bit more complicated to control the crane, if for example a
log is not grabbed at the middle it will not be horizontal during the transportation to
the loading bunk. Also if there are heavy movements in the crane they may cause large
swinging in the grapple.

Figure 7.5: The loading task with shared control illustrated.

Figure 7.4 shows the execution of an automated loading task. In this figure the



52 Chapter 7. Test results

logs are grabbed at the middle and the grapple lies horizontal during the task, so the
operator does not need to take action during the task. The operator instead smoothly
takes over the control at the end of the task and release the logs in the loading–bunk.

In figure 7.5 a log is grabbed at the very end. This introduce swinging in the grapple
when the crane is moved and the grapple will be horizontally aligned. As illustrated in
the figure the operator have to take action an brake the tracking of the trajectory and
at the same time raise the grapple so the log does not collide with the machine.

The interaction between the operator and the control algorithm is natural and
smooth as for the same case on the previously described loading system. As with the
loading system the intuitivity in interaction will be heavily decreased without any visual
feedback. Therefore force feedback in the operators joysticks may be investigated.
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Conclusions

In this master thesis the framework ATVS is developed. The framework provide func-
tionality to control mechanical systems with PID control. A virtual environment where
mechanical systems can be simulated and controlled is supplied with ATVS. The virtual
environment is based on the Physics engine AgX from Algoryx Simulations [1] and the
rendering toolkit OpenSceneGraph [2].

The virtual environment makes it easy to create models of mechanical systems and
evaluate control algorithms together with human interfaces to these mechanical systems.
Proposals on automated tasks and shared control have been given for two mechanical
systems, a loading system, see figure 7.1, and a Valmet 830 forwarder, see figure 1.2.
Inverse kinematics for the forwarder crane, which is a redundant manipulator, have suc-
cessfully been implemented and used in the automated tasks for the forwarder. Support
for force feedback devices is also provided. An application that demonstrates an exam-
ple of shared control with force feedback are supplied as well as other applications that
demonstrates automated tasks with shared control.

The purpose and objectives in chapter 3 are with the above summary of this master
thesis considered to be fulfilled.

8.1 Restrictions and limitations

The force feedback system based on gaming force feedback devices and Microsoft’s Di-
rectInput API does currently not meat the real time requirements. The constant forces
for a force feedback device can only be updated approximately 5 times per second.

8.2 Future work

In future work the ATVS framework could be used to developed new control algorithms
and investigate human machine interfaces. Human machine interfaces that are of interest
to investigate are force feedback as a replacement for visual feedback indicators and force
feedback to guide the operator in its movements of the control devices.

Another interesting area is how motion planning algorithms should be designed and
developed to fit with shared control architectures.

For the ATVS framework better support for input- and haptic devices is desirable.
Extensions with possibilities to connect real sensors and actuators to ATVS together
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with an interface to simulink should significantly increase the possibilities of develop,
investigate and evaluate control algorithms and shared control. Simulink is a MathWorks
software for modeling and simulating dynamic systems based on the Matlab environment
[23].
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