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Abstract

The feasibility of using conditional GANs (Generative Adversarial Networks) to
predict gripability in log piles is investigated. This is done by posing gripability heatmap
prediction from RGB-D data as an image-to-image translation problem. Conditional
GANSs have previously achieved impressive results on several image-to-image translation
tasks predicting physical properties and adding details not present in the input images.
Here, piles of logs modelled as sticks or rods are generated in simulation, and ground-
truth gripability maps are created using a simple algorithm streamlining the data
collection process. A modified SSIM (Structural Similarity Index) is used to evaluate
the quality of the gripability heatmap predictions. The results indicate promising model
performance on several different datasets and heatmap designs, including using base
plane textures from a real forest production site to add realistic noise in the RGB data.
Including a depth channel in the input data is shown to increase performance compared
to using pure RGB data. The implementation is based on the general Pix2Pix network
developed by Isola et al. in 2017. However, there is potential to increase performance
and model generalization, and the adoption of more advanced loss functions and network
architectures are suggested. Next steps include using terrains reconstructed from high-
density laser scans in physics-based simulation for data generation. A more in-depth
discussion regarding the level of sophistication required in the gripability heatmaps
should also be carried out, along with discussions regarding other specifications that will
be required for future deployment. This will enable derivation of a tailored gripability
metric for ground-truth heatmap generation, and method evaluation on less ideal data.
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1 Introduction

Applied artificial intelligence is rapidly transforming automation in manufacturing, logistics,
and transportation. The large investemens in research and in software and hardware
infrastructure are highly beneficial to automation in closely related industries. Forestry is
no exception. The research program Mistra Digital Foresiﬂ aims to create digital solutions for
a sustainable and efficient forest bioeconomy. The sub-project “Al-forwarding” investigate
how forestry machine autonomy can be develeoped using simulated environments and
machine learning techniques. In particular, the reinforcement learning framework is used to
automate the log-grasping task of a digital forwarder, with the ultimate goal of providing
models transferable to physical machines, learned using high-fidelity simulation software.
The research will cover the possibility of achieving end-to-end learning as well as successfully
combining the reinforcement learning approach with automatic control and human operator
assistance. This report addresses the problem of predicting target locations for grasping
logs and the opportunity of using synthetic sensor data from simulators.

Synthetic environments can achieve high resemblance to real forest terrains using scanned
models of real forest environments. A digital forwarder can be equipped with virtual sensors
allowing for real-time observations of the scene using RGB- and depth-cameras, and sensors
capable of capturing the current state of the actuators, as required for reliable control.

While successfully automating manipulation tasks in the forestry context requires
precise control in very complex and unstructured environments, this only poses the first of
a longer sequence of technical challenges. The log-grasping task alone is likely to require
a combination of high- and low-level controllers cooperating in seamless manner, where
high-level controllers are responsible for high-level scene understanding and decision making
such as strategic log-selection, and low-level controllers are trained to perform the requested
motion and manipulation necessary to accomplish these strategies in practice.

Using high-dimensional camera data quickly complicates the learning process of a
reinforcement learning agent, as the observation space quickly grows very large. This
is also associated with a simulation-to-reality gap, since the camera data generated in
simulation will not map perfectly to real camera data, even when high-accuracy simulation
environments are available. If the machine relies on an internal 3D model of the environment,
it may be feasible to process sensor data in real-time, continuously processing incoming data
and updating the internal model. This can allow for perception based machine intuition
and scene understanding optimizing the final behavior, avoiding risk and analysing the
impact of actions on the environment, as well as mapping camera data to simulated data
similar to the training data used to optimize the controllers. The goal would be to assist
autonomous and semi-autonomous systems operating in the environment, including for
example manipulators used for log-grasping and forwarders navigating a forest harvesting
site.

"https://www.mistradigitalforest.se
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This project aims to initiate research in this direction. Examples of research directions
include:

e Perception-based segmentation of objects with dynamical properties, allowing the
machine to update an internal model of its surroundings and create semantic label
maps of the observed scene, for example segmenting rigid bodies and vegetation.

e Prediction of post-interaction response based on observations and an internal model
of the environment.

e Intelligent analysis based on visual observations of the environment, aiding in the
decision making process.

Previous research related to scene understanding based on visual sensory information
has mainly focused on applications in controlled environments, focused on for example 3D
reconstruction of occluded objects and prediction of position or shape response to controlled
manipulation of objects of different geometrical shapes and physical properties. Another
line of research concerns inverting physics engines based on visual observations. Both of
these research areas require the extraction of additional knowledge, since it is not possible
to infer this information from two-dimensional images. The question is if machines can
develop an intuition allowing for advanced scene understanding from experience of exposure
to limited observations, similar to the advanced human ability to analyse her surroundings
and draw conclusions based on nothing but two-dimensional observations.

This project aims to tackle this question within the log-grasping context. Given enough
experience, it should be possible for an intelligent system to predict which objects are logs
and which logs are optimal to grasp based on camera data. We frame the problem as an
image-to-image translation problem, and investigate the possibility of predicting gripability
heatmaps based on raw RGBD-data. The data is generated in simulation to allow for
automatic ground-truth heatmap generation, with the ultimate goal of learning a model
capable of real-time processing of real-world RGBD-data generating reliable gripability
maps that can aid forwarders in the grasping process. This can also serve as a form of
representation learning to speed up the reinforcement learning training process, allowing
the reinforcement learning agent to observe the environment in segmented gripability maps,
removing high frequencies and redundant information present in the raw camera data.

2 Image-to-Image Translation using Machine Learning

2.1 Background

The problem of predicting an output image from the corresponding input image is found in
various application areas in computer vision and graphics artificial intelligence contexts.
The goal is to find a mapping between the input and output domain, allowing for automatic
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image translation. An RGB-image rendered from a real-world scene may not only be
translated into a heatmap to visualize some measured quantity, but also into for example
semantic label maps, edge maps or images in different color spaces.

Traditional machine learning approaches have required application-specific models with
tailored loss functions. For example, learning a model from pixel-wise L2-loss often results
in blurry output images. Hand-engineering of more sophisticated loss functions can be
an exhausting and time-consuming task, often relying on expert knowledge specific to the
desired properties of the output images and their use case. Though the CNN architecture
has proved successful in many of these cases, this has been an obstacle, especially in terms
of generalization to a broader collection of image translation problems.

In 2014, Goodfellow et al. proposed an image synthesizing network in which loss
functions are learned automatically using an adversarial setup. These dual networks, known
as Generative Adversarial Networks (GANSs), consist of a classifier, the discriminator, and a
generative network, the generator, learned in parallel. Essentially, the generator synthesizes
images based on a latent noise vector input, ultimately learning the true distribution of the
dataset. The goal is to generate images that are indistinguishable, but not identical, to
the images constituting the true dataset, i.e. unique images sampled from the distribution
of the true dataset. The discriminator governs the learning process by learning to classify
whether its input images, which are either generated by the generator or drawn from the true
dataset, are synthesized or sampled from the true data distribution. This is a simple binary
classification problem. Thus, the objectives of the generator and the discriminator are
adversarial, and the two networks are trained in parallel, continuously competing with each
other and improving based on gradient feedback from the other network. Convergence is
reached when the generator is able to produce image samples that the discriminator is unable
to distinguish from samples drawn from the true dataset. Many successful applications
followed, including generation of sharp and realistic pseudo-celebrity faces (Karras et al.,
2018) and other classes of synthetic photographs (Brock et al., 2019).

In 2017, Isola et al. presented a conditional extension of the generative adversarial
network, cGAN, in which a conditional generative model of the true data is learned. Here,
the output images synthesized by the generator are conditioned on an input image. The
network, known as piz2piz, has proven to be highly generalizable, showing promising results
in a wide range of image translation tasks. The area is accelerating quickly, with interesting
early developments including unpaired translations between image domains using CycleGans
(Zhu et al.l 2017), temporally coherent video-to-video translation (Wang et al., 2018 as well
as generating photo-realistic images conditioned on text descriptions (Zhang et al.l 2017)).

In this project, the feasibility of using this approach to generate gripability heatmaps
given rendered RGB images of piles of logs in a simulated environment is investigated. The
following subsections provide an overview of the cGAN architecture, and covers previous
applications to similar image translation tasks.
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2.2 Conditional GAN

The conditional GAN is an extended version of the original GAN (Goodfellow et al., |2014)),
where the generator learns a conditional distribution of the data. The following description
follows the notation of Isola et al. (2017)). The generator of the pix2pix network learns a
mapping from the noise vector z and the input image x on which the output is conditioned,
to the output image y. In the case of general conditional GANSs, x is not necessarily an
image, but can be constituted by any auxiliary information such as text sequences or
class labels. Here, we focus on image-conditioned GANs used for paired image-to-image
translation.

Equation shows the objective function (the adversarial loss) of the conditional
GAN using this notation. The goal of the generator is to minimize the log of the inverse
probability predicted by the discriminator for synthesized images, and the goal of the
discriminator is to maximize the average of the log probability of real images and the
log of the inverse probability for images synthesized by the generator. The two networks
therefore compete in a two-player minmaz-game according to Equation . As the training
progresses, the generator learns to generate images with low probability of being classified
as synthesized by the discriminator, and the discriminator improves its ability to correctly
filter out synthetic images from images generated from the true target space. The learning
process generally does not converge, and finding the right balance between the training
process of the discriminator and the generator can be challenging.

Legan(G, D) = EllogD(z,y)] + E [log(1 — D(z, G(z, 2)))] (1)

G* = argmin argmax L.can (G, D) + A\L11(G) (2)
G D

In the conditional case, the discriminator takes both the image = and the output image
y (the true output or the generated output) as input, and predicts the probability that
y is a true translation of z. As seen in , the objective function is combined with a
L1-loss term, such that the generator is encouraged to also minimize the L1-distance (mean
absolute error) between the generated images and the ground-truth output images. \ is a
hyperparameter weighting the pixel reconstruction loss against the adversarial loss.

In the original pix2pix network, the generator has a ’U-net’ architecture; an encoder-
decoder architecture with so called skip-connections, allowing low-level information to travel
between the input and the output images. This framework involves downsampling the
input image to a bottleneck representation, followed by upsampling the image to the target
output size.

The discriminator architecture is called PatchGAN, and relies on classification of N x N
= 70 x 70 patches across its input images. The final classification is an average of the local
classifications. This approach assumes that the image can be modelled as a Markov random
field. More details can be found in [Isola et al.| (2017).
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2.3 Previous Work

By using a spatio-temporal adversarial objective, the vid2vid-network proposed by Wang
et al.| (2018)) learns a mapping between for example sequences of semantic segmentation maps
and photo-realistic videos, displaying impressive temporally coherency between frames. The
pix2pix-network (Isola et al.,2017) produces impressive results on similar, but static, image
translation tasks, including translation from maps to aerial photos, predicting photo-realistic
street-views from static semantic segmentation maps, and generating RGB-photos from
2D sketches of 3D objects. In all of these applications, the network is required to learn a
mapping that encodes information not present in the input, as opposed to the opposite
translation tasks in which information is strictly removed. This property is ultimately
required for heatmap prediction and other tasks related to high-level scene understanding
and machine intuition.

Generative adversarial networks have been used in several heatmap generation contexts,
displaying this ability. If, for example, it is possible for generative models to produce accurate
monocular depth map predictions from RGB images, this implies the incorporation of some
level of spatial intuition in the final model, i.e. the model learns to conceive the physical
concept of distance from flat images. Using the pix2pix conditional generative adversarial
architecture, this has been demonstrated by for example Lore et al.| (2018). Here, the
depth map prediction problem is framed as an image translation problem where single RGB
frames are mapped to grayscale pixel intensity representations of the corresponding LiDAR
depth maps. The model generalizes well to unseen data and performance is comparable to
current state-of-the-art methods for monocular depth prediction that are not GAN-based.
This is encouraging for our purposes.

Other examples of successful pix2pix applications in similar contexts include human
pose heatmap prediction (Matsuzaki et al., 2017), and a similar architecture is used by
Chou et al.| (2018)) to learn a mapping from RGB images to keypoint heatmaps for human
pose estimation. The pix2pix architecture has also been successfully applied to uncertainty
map estimation in deep learning-based optical flow determination methods (Lee et al., 2020)),
producing uncertainty maps similar to those obtained using conventional methods while
significantly reducing the processing time.

Recently, cGANs have also been used for medical image-to-image translation tasks,
for example to predict diffusion weighted MR scans from multi-modal CT perfusion maps
(Rubin and Abulnaga, [2019) to assist in the identification of infarcted brain tissue in stroke
patients. A more general framework, MedGAN (Armanious et al., 2020), has also been
proposed for medical image translation tasks, successfully demonstrating how advanced
derivations of cGANs can be used in for example PET-CT scan translation contexts. Again,
this requires the network to produce more information than what is provided by the input
images, since CT-scans are more detailed than PET-scans.

In (Ma et al.} 2020) a conditional GAN is used to predict probability distributions of
possible efficient paths between two locations on a map. The predicted map showing the
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distribution of feasible paths between the two locations is combined with a modification of
the RRT path planning algorithm for optimal path planning. This is another example where
generative adversarial networks have successfully incorporated high-level scene understanding
and been able to extract additional information based solely on exposure to training data
consisting of flat images.

Uricar et al.| (2019) gives an overview of how generative adversarial networks have
and can be used in the context of autonomous driving. For example, the approach has
been used for segmentation and generation of the occluded parts of objects as well as for
domain adaptation for simulation-to-reality transfer. Bousmalis et al.| (2018) uses this
method in the context of simulation-to-reality transfer for robotic grasping. [Pedersen et al.
(2020)) combines this approach with a deep reinforcement learning-controlled agent trained
to perform robotic grasping tasks. Using a CycleGAN (Zhu et al.l |2017), designed for
unpaired image translation between domains, the agent’s observations in the real world
can be translated back into the simulation domain. Other GAN-inspired applications in
the field of robotic grasping include using a conditional WGAN to generate multi-fingered
robotic grasp candidates from depth information (Patzelt et al., [2019).

3 Problem Statement

Accurate depth map predictions using conditional GANs (Lore et al., [2018) force models
to learn spatial relationships between objects in a scene based purely on the input image.
The power of conditional GANs in similar image-to-heatmap translation tasks has been
demonstrated in many contexts, as discussed in the previous section. This project extends
this approach to gripability map prediction based on the idea that inferring gripability,
which also depends on the spatial relationships between objects given a specific grapple
and grasping strategy, should be possible given RGB- or RGBD data. To produce accurate
gripability maps, the model is required to understand these relationships, as well as how
they relate to gripability depending on the chosen definition of the latter.

For our purposes, a gripability map refers to a heatmap visualization of the gripability
variation across an image. The gripability has to be defined according to a set of predefined
criteria, such as a well-defined grapple and a gripability score depending on the definition
of a successful grasp. Given raw RGB- or RGBD-data capturing a forest scene containing a
pile of logs, we investigate the possibility of predicting the corresponding RGB gripability
maps using supervised machine learning techniques. The problem is therefore framed as
an image-to-image translation problem, where the input and output images consists of
three or four channels, respectively. This project constitutes an initial evaluation of the
feasibility of using Conditional Generative Adversarial Networks for automatic gripability
map generation, with data generated entirely through physics-based simulation. Future
research directions are investigated, and recommendations are provided based on available
scanned data from Komatsu Forest.
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4 Gripability Maps

In the initial approach, binary ground-truth gripability maps are generated from a simple
physics-based simulation environment modelled using the AGX Dynamics simulation soft-
ware. The scene consists of a static base plane (10 x 10 x 0.2 m collide-box geometry) and a
pile of 7 logs modelled as rigid bodies in the shape of 3 x 0.1 x 0.1 sticks (cuboids) or cylinders
of length 3 m and diameter 0.1 m. The log density is 800 % (roughly corresponding to
wood).

The centre of mass of the first log is located 1 mm above the ground plane, and each
of the remaining logs are spawned at a height of 1 mm above the preceding log, to ensure
collision free simulation initiation. The Cartesian orientation of each log is drawn from a
uniform random distribution.

A RenderTolmage-camera is created to render depth and color buffers, which are used to
generate RGB- and depth images of the scene as viewed from above. When the simulation
is initiated, the logs fall into a pile and once the simulation has reached its final state (i.e.
when the average speed of all logs reaches below some limit, RGBD-data is collected and
saved to file.

Finally, the gripability maps are generated by analysing the gripability using a straight-
forward approach. Here, a log is classified as graspable if at no point on its geometry it is
occluded by another log. We use a simple algorithm to determine the gripability based on a
step-by-step approach to determine which logs are not graspable. Each log is approximated
by three straight lines in the horizontal plane. The lines approximating each log are then
analyzed to the lines approximating every other logs in a pair-wise manner. When an
intersection is detected, the height of each of the corresponding objects at the intersection
point is approximated. The log corresponding to the lowest height at the intersection point
is then determined to be not graspable.

Looping through all logs pair-wise, only graspable logs remain and a simple binary color
heatmap constituting the resulting gripability map is generated. |2/ shows the preprocessed
input data (bottom left), where the preprocessed depth image (top right) has replaced the
third color channel (see Chapter 5). The processed depth image is normalized to cover the
entire pixel range, compared to the raw depth map (top left). The resulting gripability map
is also depicted (bottom right).

For simplicity, and due to time-constraints, some approximations have been made in
the gripability determination using this algorithm. For example, the approach relies on
determining the intersection points in a 2D view of the scene. Each log is assumed to be of
3 m in length in this view, and as a result false intersection points may be detected. By
inspection, the rate of erroneous gripability maps is estimated to be low. Most of these are
borderline cases that are often hard to detect even by manual inspection. The impact on
model performance should be analysed in detail.

10
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(a) (b)

Figure 1: a) Side-view of the simulated scene marking the intersection points used by our
algorithm to determine which logs are graspable. Red and blue spheres mark the detected
intersection points, and blue spheres correspond to logs detected as graspable. b) Top-view
of the simulated scene corresponding to the input RGB images used in the network.

5 Implementation

We follow the Pix2Pix architecture proposed by [Isola et al.| (2017)), taking 8-bit 3-channel
256 x 256 pixel frames (RGB) as input and generating 8-bit images of the same shape.
These are normalized to floating point values between 0 and 1. This architecture can be
modified to perform image-to-image translation between images of different dimensions, but
for simplicity we process our data to fit the original dimensions. This means that, in the case
where greyscale depth images are added as an additional channel to the input images, these
replace one of the color channels. This is not expected to affect the heatmap prediction
quality due to the very high dimensionality of the original 8-bit RGB frames. Thus, two
color channels (and additional depth information) are assumed to contain more than enough
information to perform the desired gripability heatmap predictions. Summarizing, the input
images consist of two color channels and a greyscale depth channel replacing the third color
channel. Analyses using pure RGB inputs are also conducted.

The discriminator and the generator are optimized in parallel, alternating the gradient
descent step between the two networks. The discriminator is optimized using binary cross
entropy. A weight is incorporated to enforce a lower learning rate in the discriminator
compared to the generator, but finding the right balance between the learning rates of
the two networks can be a delicate task. The original paper recommends using a weight
of A = 100 between the adversarial loss, L.gan, and the Ll-loss, L1, of the combined
objective function in Equation , emphasizing correct heatmap predictions relative to the
input image over realistic heatmap predictions. This encourages the generator to synthesize

11
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Figure 2: Top left: Raw depth image from a simulated scene showing a pile of sticks.
Top right: Processed depth map. Bottom left: Input image. Bottom right: Ground-truth
gripability heatmap.

12
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images sharing the global structures of the input images.

As in the original paper, we use the Adam-optimizer with a learning rate of o = 0.0002
and identical momentum parameters. Initial analyses indicate that the training stability
and performance is not very sensitive to these parameters.

The generator and the discriminator networks consists of blocks of convolutional layers,
batch normalization layers, and leakyReL.U-activation layers. The tanh-activation function
is used in the output layer.

6 Evaluation Metrics

In many contexts where generative adversarial networks are applied, assessing the perfor-
mance of the generator is difficult. In image-to-image translation tasks, the problem boils
down to finding a proper metric to evaluate the similarity or dissimilarity between images,
comparing the output of the generator to the ground-truth. Here, we use two common
evaluation metrics: the mean-squared error (MSE), which compares the pixel-wise intensity
difference between the two images, and the structural similarity index (SSIM) (Wang et al.,
2004), which measures structural similarity based on groups of pixels.

The MSE quality measure is calculated as the average of the squared pixel-wise intensity
differences between the ground-truth image Z,; and the generated image Zye,, see Equation
where N is the number of pixels in the images. The MSE metric efficiently captures
absolute differences between images, but often fails to measure perceived differences since it
does not take structural information into account. The SSIM metric, on the other hand, does
not assume independence between neighboring pixel intensities, and allows for structural
quality assessment by measuring the degradation of structural information in the image.
It also includes luminance and contrast masking terms, and is often a better measure of
perceived differences and more intuitive to human perception.

The structural similarity index SSIM € [—1, 1] is calculated across an image based on
local pixel windows. To obtain a global quality measure, the mean SSIM is calculated
according to Equation , where M denotes the total number of windows used to obtain
local SSIM evaluations. p and o denotes the average pixel intensities and variance (or
covariance if twice-indexed) in the local windows of each image. ¢; and co are stabilizing
constants based on the dynamic range of the pixel intensities.

essiyv = 1 for identical images and eggrps = —1 for complete dissimilarity. In our case,
the SSIM is always positive, and we use a modified (inverted) version where a perfectly
reconstructed image generates a modified mean SSIM of 0. Thus, we want to minimize
both e)rsr and eggrys between the generated images and the corresponding ground-truth.

1 N

eMSE = & S (Tgti — Lyeni)’ (3)
=1

13
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€SSIM = M Z 2 2 2 2 (4)
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Figure [3| exemplifies the visual deviation between the predicted gripability map and the
ground truth, corresponding to four different values of the modified SSIM. A modified SSIM
of ~ 0.03 corresponds to approximately one misclassified log using the binary gripability
map in our analyses.

Modified SSIM: 0.046 Modified SSIM: 0.020
] i
\ A | |
=== i VA l
_— e ) i/ i,
- . = A | [ /
Modified SSIM: 0.004 Modified SSIM: 0.002

w 1';
w7 S =l -
! ) - -

Figure 3: Top left: Predicted gripability has classified between one and two logs that are
graspable according to the ground truth as ungraspable. This yields a modified SSIM of
~ 0.05. Top right: Half a log is classified as ungraspable, while the entire log is graspable
according to the ground truth. This yields a modified SSIM of 0.02. Bottom left: A small
fraction of a log is classified as ungraspable, while the entire log is graspable according
to the ground truth. This yields a modified SSIM of 0.004. Bottom right: The predicted
gripability map is almost identical to the ground truth. This yields a modified SSIM of
0.002.

7 Preliminary Results

7.1 Experiments

Several experiments are conducted using two different kinds of log piles: the jack-straw pile,
where seven sticks are placed in a pile that is not well-aligned, and well-aligned piles where
the sticks are placed in more well-aligned piles that are more similar to the piles of timber
prepared by the harvester in real forwarding scenarios. We also investigate the impact
on object segmentation in the preprocessing chain. Using real forest data, object-specific
properties such as the texture, color, lighting and shades varies between each log, so this

14
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does not necessarily make the simulation setup more ideal. Most analyses are performed
combining the RGB input data with a depth map. A performance increase following
this approach is recorded. In more advanced settings with varying weather- and lighting
conditions, the depth map can be more stable than RGB images of a scene, as the depth
map is not affected by these external factors.

For each experiment, we show the raw RGB data from simulation (no depth), together
with a three-image sequence showing the preprocessed network input (left), the predicted
gripability map (middle) and the corresponding ground truth (right). The samples shown
are chosen randomly from the dataset. We also show a kernel density estimate (KDE) of
the probability density function of the modified SSIM as evaluated on the training dataset
and the validation dataset, respectively. The total dataset consists of 6400 samples, of
which 10% constitutes the validation set. Thus, each experiment is carried out using 5760
training samples and 640 validation samples. For training data performance evaluation, the
modified SSIM is calculated on 640 random training samples.

Figure [4 shows the training- and validation performance of models trained using jack-
straw piles generated from simulation. The corresponding training- and validation perfor-
mance of models trained on segmented jack-straw piles is presented in Figure [l Figure [0]
shows the model performance for a dataset based on rod-shaped logs, as opposed to the
cuboid sticks used in the previous analysis.

The initial results indicate a promising potential for gripability map prediction using
conditional GANs. As we can see, the model performance on training data is very high for
models trained on datasets consisting of non-segmented jack-straw piles. Essentially, every
prediction yields a modified SSIM of less than 0.025 compared to the ground truth. This
suggests an error in prediction of less than one graspable object.

Figures [7] and [§ shows nine examples from the evaluation samples from the training and
validation dataset, respectively. The model used for evaluation is trained on non-segmented
jack-straw piles. Each sample consists of a sequence of three images: the preprocessed
input data (left), the predicted gripability map (middle) and the corresponding ground
truth (right). The results illustrate that the model is able to make very accurate gripability
predictions on training data, which is consistent with the modified SSIM distribution shown
in Figure . Model inference on the validation dataset also yields promising results, but
the model performance is low compared to the performance on training data. As can be
seen in the modified SSIM distribution over validation data samples, most predictions still
correspond to a modified SSIM of less than 0.03, but the variance is larger and we need
a modified SSIM of up to 0.1 to capture the bulk of the distribution. This suggests some
overfitting to the training data. The results show that the training performance improves
as the number of iterations increases, while this is not true for the validation performance,
which starts to decrease after 108k iterations.

The top row of Figure ?7b) shows successful gripability map predictions on the validation
data. The middle row shows partly successful predictions, which illustrate the reason for
the generally larger modified SSIM compared to the corresponding evaluation on training

15
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data. As we can see, the graspable objects are generally correctly classified, but the model
is not able to correctly color the entire object according to the defined gripability heatmap.
The bottom row shows situations where the algorithm has produced inaccurate ground
truth gripability maps, and the model does a better job at predicting the true gripability.
This is not captured by the current evaluation metrics. It is possible that this constitutes
part of the the reason for the lower performance on the evaluation data, if the model is
able to adjust to the specifics of the algorithm when fitting to the training data. This
follows from the fact that the fraction of erroneous gripability maps should be identical in
both datasets. Further analyses should be performed to conclude whether or not the model
performs better on data in which the ground truth is not accurate when evaluated on the
training data as opposed to the validation data.

The model performance on rod-shaped logs presented in Figure [6] shows that this
significantly reduces the prediction accuracy on the training data according to the current
evaluation metric. The main difference between this model and the non-segmented jack-
straw model is that there are no thin black lines separating the objects in the RGB image.
The performance on validation data is more similar to that of the original jack-straw model.
Based on the modified SSIM distribution, we can also conclude that the model trained
on rod-shaped logs appear to be less prone to overfitting, and the model performance
generalizes well to the validation data. We also note that the model performance on both
the training and validation data decreases as the training continues after 36k iterations.

The performance of the model trained on rod-shaped log compared to sticks suggest
that the model performance can possibly increase with increased object segmentation in
the preprocessing chain. Figure [5] shows the model performance of a model trained on
segmented jack-straw piles. These results do not show higher performance compared to
the non-segmented logs on the training and validation data, but the model performance
is comparable to that of the validation performance using the non-segmented jack-straw
piles. Again, we observe improved generalization to validation data, as the performance on
validation data unseen during training is consistent with the performance on training data.

Figure [9] and shows the corresponding training- and validation performance for
models trained using non-segmented and segmented well-aligned piles. As we can see,
the performance of the model trained on non-segmented piles is similar to the validation
performance of non-segmented jack-straw piles, and the model generalizes well to unseen
data. It is worth noting that with the current algorithm, well-aligned piles generally result
in a larger number of graspable logs than the more spread out jack-straw piles. This exposes
a weakness of our evaluation metric; for example, a model that classifies all logs as non-
graspable will appear to be better when evaluated on jack-straw piles than when evaluated
on well-aligned piles with more graspable objects to detect. The exact implications on the
performance comparisons need to be investigated, but we note that a similar distribution of
the modified SSIM over the evaluation data possibly suggests a better model performance
for models trained on well-aligned piles.

The perhaps most interesting results are those presented in Figure [I0] which shows
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Figure 4: Jack-straw piles.
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Figure 5: Segmented jack-straw piles.

excellent performance on the segmented well-aligned piles. The performance on training
data is essentially perfect after 108k training steps. The performance on validation data is
slightly decreased compared to the performance on training data, but the model still shows
superior validation performance compared to the previously analysed models. After 108k
training steps, almost every prediction on the validation dataset generates a modified SSIM
of less than(0.025. These results are very promising and demonstrates the potential in using
conditional GANs to predict gripability.

Initial results show that using only RGB representations of the scene as input to the
network decreases the model performance compared to including depth information in a
network of identical size. For comparison, the model performance is evaluated using only
RGB images as input for two datasets previously analyzed: the non-segmented jack-straw
piles and the segmented well-aligned piles. The modified SSIM distribution obtained from
model inference on training- and validation data is shown in Figure[II]and[I2] In both cases,
the performance improves when depth information is included, but the effect is smaller
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Figure 6: Jack-straw piles with rod-shaped logs.
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Figure 7: Training evaluation samples

for the model trained to predict gripability from segmented well-aligned piles. This is
reasonable, since the depth map also induces a form of pixel-wise object segmentation that
can be captured by the network. These results confirm the assumption that including depth
maps will improve gripability map predictions using this approach. It is also likely that the
simulation-to-reality gap is reduced when depth information is fed to the network, since the
depth map does not depend on for example lighting and weather conditions; effects that
are non-negligible in pure RGB frames.

To investigate how sensitive this approach is to increasing heatmap complexity, two
additional analyses are conducted. Figure[I3|shows the model performance using a dataset in
which only the central parts of graspable logs are highlighted as graspable in the gripability
maps. In Figure the model performance using a slightly more complex heatmap is
presented. Here, a third gripability level is added, with the central region of graspable logs
marked as highly graspable, and the remaining parts of the graspable logs highlighted as a
third, medium-gripability level.

Drawing conclusions from the modified SSIM distribution in Figure [13]is difficult, since
misclassification of graspable objects results in such a small difference between the predicted
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Figure 9: Well-aligned piles.

gripability map and the ground truth, which results in a small modified SSIM even when
all graspable objects are misclassified. Based on manual inspection, however, the model
performance appears to be very similar to that of the more complex heatmap model. Both
models generalize well to the validation data, and the performance does not decrease
compared to models trained using the less complex heatmaps of previous analyses. An
interesting note is that the models in these cases appear to classify only one graspable
object as graspable to a significantly larger extent than the previous models, omitting the
other graspable objects in the heatmap. This likely explains the spikes in the modified
SSIM distribution seen in Figure [I4] Overall, however, the model performance is promising.
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Figure 10: Segmented well-aligned piles.

7.1.1 Forest Terrains

It is currently possible to obtain terrain data with a resolution comparable to that required
by an operating forestry machine. At the time of this research, a high-density laser scan
and corresponding LiDAR-measurements of a 341 x 272 m forest site is available through
the courtesy of Komatsu Forest. These provide top-view RGB images of log piles prepared
by the harvester, as well as large patches of the surrounding area. A .tif-file with RGB data
and a .las file containing height field information (and redundant RGB data and additional
information) is provided. Figure|15|a) shows a top-view RGB representation of the available
data.

To extend the analysis to less ideal environments, the terrain is divided into 90 x 90
images, each with a dimensionality of 3.8 x 4.2m. These are combined in neighboring
quadruples resulting in 7.6 x 8.4m terrain slices. Terrain slices containing white pixels,
logs, dense forest areas or other terrains unlikely to contain piles of logs are removed, and
a final dataset containing 850 terrain slices is selected. This is done in order to test the
model response to background noise and unstructured plane textures. When the training
and validation datasets are generated, the base plane is covered by a terrain slice chosen
randomly during each simulation. Since the top surface of the base plane is 10 x 10m, the
terrain texture is slightly distorted. Following the current terrain slice generation procedure,
terrain slices of precisely 10 x 10m are obtained by initially dividing the terrain into 68 x 54
images, but for the current analysis our approximation is sufficient. Figure [15/b) shows
examples of the terrain slices (top) together with the input RGB image generated from
simulation and the corresponding gripability map (bottom).

Natural future directions include representing the LiDAR point cloud as a height field
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Figure 11: Jack-straw piles with only RGB input.

in order to obtain a more accurate depth map representation of the unstructured forest
environment. This can be done through terrain reconstruction in AGX Dynamics, by
generating an agxCollide.Heightfield directly from the LiDAR point clouds.

Figure [16] and [I7] shows the model performance using this terrain texture together
with segmented well-aligned piles, which generated the best performance using the ideal
simulation environment. In the dataset used to train models whose performance is shown
in Figure the logs are segmented using RGB colors from logs present in the available
data from Komatsu Forest. This gives a small segmentation effect similar to that of real
piles of logs. Figure [17] shows the corresponding model performance for a model trained
using logs segmented according to previous segmentation analyses.

The results show very high model performance on training data for both models, but
contrary to the previous analysis using well-aligned piles, the best training and validation
results are obtained for the model trained on non-segmented logs. The top performance of
the two models are essentially comparable, however, and the impact of segmentation is not
as large as detected in previous analyses.

These models do not generalize as well as other models to the validation data, but
the performance on training data is very high and the performance on validation data is
comparable to the validation performances of previous models. This could partly account
to the fact that the non-segmented logs in this case are slightly segmented according to
the color differences between logs in the real forest data. This could suggest that even
conservative segmentation in the the preprocessing chain could have a positive effect on the
model performance.

In the case of segmented logs on forest background, the model performance actually
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Figure 12: Segmented well-aligned piles with only RGB input.

increases compared to the corresponding model trained with a plain background, and the
conclusion is that the added background noise does not decrease the potential for gripability
map prediction using these kinds of networks. This is encouraging for the potential to apply
this method to even more realistic forest environments.

8 Discussion & Future Work

This study has investigated the potential application of cGANs for gripability heatmap
prediction in the context of forestry log grasping. The network, based on the Piz2Pix
network developed by (Isola et al., 2017)), is observed to be capable of producing generally
accurate gripability heatmaps, and we conclude that the initial analysis show potential for
using a similar approach to generate more advanced gripability heatmaps from less ideal
sensor data.

Analyses have been carried out for very simple gripability map predictions using RGB
input as well as three-channel images where one color channel is replaced by a depth map
captured by a built-in depth camera. We observe that feeding depth information to the input
increases the model performance, but the extent varies depending on pile configuration and
the level of object segmentation in the preprocessing chain. The exact impact of including
depth information should be subject to further investigation.

Models are evaluated using a modified structural similarity index (modified SSIM).
The best results are achieved for well-aligned piles with segmented logs in our entirely
simulated setting. The corresponding results using forest background from scanned forest
data suggests promising generalization of the method to less ideal settings. The forest
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Figure 13: Jack-straw piles with the central region highlighted as graspable in the gripability
maps.

background texture induces noise in the RGB representation of the image but does not
include height variations in the terrain. Important future steps include investigating the
potential for gripability map prediction with cGAN derivatives using log piles on simulated
terrains reconstructed from high-density laser scans, including local height maps. An
ongoing discussion regards the point-of-view of the collected sensor data. A suggestion is
that the gripability map aids an intelligent agent in determining what logs to grasp. In
the current analysis, a drone is required to collect aerial data, but it is likely possible for
sensors to equip the driver’s cabin of forwarders to obtain camera observations following
the motion of the vehicle more closely. Ideally, it is possible to perform real-time inference
on the incoming sensor data. In this case, a high-level intelligent agent views the scene
through a gripability map representation-lens as the forwarder navigates the environment.

Our approach shows very good predictability if only one graspable object is required.
This is encouraging, as an intelligent agent is only required to pick one grasping pose at
each time. Moreover, the false positive rate (FPR) is generally low according to inspection
(i.e. non-graspable objects are seldom predicted as graspable in the predicted gripability
heatmaps). Gripability heatmaps with high modified SSIM compared to the corresponding
ground truth is usually due to the model neglecting or half-detecting some graspable objects,
i.e. the false negative rate (FNR) is sometimes high.

Despite our gripability maps being very simple, the network is not able to produce highly
correct gripability maps with an accuracy that generalizes very well to validation data. The
bulk of the modified SSIM distribution is generally at scales of < 0.1 for the training and
validation data, and this should be reduced to < 0.03 to ensure that the deviation between
the predicted gripability maps and the corresponding ground truth amounts to less than
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Figure 14: Jack-straw piles with added gripability heatmap complexity.

one graspable object. This is indeed the case for several models, and is particularly true for
the model trained on data consisting of segmented well-aligned piles based on inference on
both the training and validation data, respectively.

Most models show promising results and many models show good generalization to
validation data. While the best results are obtained for segmented logs or sticks in
well-aligned piles, the model performance on validation data is often similar between the
different experiments and it is difficult to conclude where the generalization and performance
bottlenecks lie. Some results appear contradictory; for example, for well-aligned piles,
segmentation increases accuracy, but not for jack-straw piles. This could be reasonable,
though, as it is easier to separate objects in jackstraw piles even without segmentation, so
the segmentation effect is expected to be limited compared to well-aligned piles. However,
the training is generally stable and the method shows potential for gripability heatmap
prediction on different kinds of datasets. The initial study also indicates a possibility of
maintaining good predictions when more complex heatmaps are necessary, but tailored loss
functions or more advanced network architectures may be required to increase performance
further.

Observed prediction problems may be caused by under-training or overfitting, and may
also be related to the suboptimal quality of the ground-truth gripability maps used during
training. In several cases, the method is able to produce very accurate gripability maps on
training data. These models do not generalize as well to the validation data, and efforts
to understand the reason for this should be made. Over-fitting is not generally an issue
for cGANs, but applications where the produced images have actual physical meaning are
rare. Known issues include modal collapse, where the generator fools the discriminator
by outputting a limited number of images regardless of its input, and issues in stabilizing
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Figure 15: a) Scan of the forest harvesting site provided by Komatsu Forest. b) Top left:
3.8 x 4.2 m terrain slice including a pile of logs. Top right: 7.6 x 8.4 m terrain slice. Bottom
left: Input RGB data where a pile of cuboid logs or sticks are imaged on a base plane
wrapped in a terrain slice texture. Bottom right: Corresponding gripability heat map.

the joint training of the discriminator and the generator. These are not observed in our
experiments. Modal collapse also refer to the generator generating outputs independent on
the latent code, which is observed in the original Pix2Pix-network as well, but in our case
a deterministic output is desired.

The impact of using a larger dataset should be investigated, as this may reduce po-
tential overfitting and increase generalization to validation data. Similar effects can be
obtained using training data augmentation, subjecting the complete training dataset to
affine transformations such as flipping and rotating images.

More sophisticated loss functions should be considered. The Pix2Pix network is very
general and focuses on images looking realistic, as opposed to accurately making predictions
about the physical world. Pixel-reconstruction losses often leads to blurry results, and may
not capture detailed differences of the images. For example, the MedGAN network uses
additional losses such as perceptual loss and style transfer losses. They show successful results
in image-to-image translation tasks such as PET-to-CT scan translations and MR motion
artefact correction, where the target image contains detailed soft-tissue and bone structure
information that is not present in the input image. Using the current architecture and loss
functions, performance sensitivity to varying the weight parameters for the adversarial loss
and the Li-loss should also be investigated.

The possibility of increasing accuracy in the gripability map prediction using more
advanced network architectures should also be investigated. In fact, in many other applica-
tions the Pix2Pix network is used as a baseline for more complex and application specific
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Figure 16: Well-aligned piles on a forest background.

architectures. For example, (Lore et al., [2018) uses two conditional GANs to improve depth
map estimations from RGB image frames. This is done by concatenating the original RGB
input and the generated depth map prediction, and training a second GAN to map the
concatenation to a more refined depth map. In our case, more advanced derivatives of the
cGAN family may be able to generate more complex predictions, which is necessary since
our data is very ideal compared to real world sensor data.

Another important follow-up to this study is to improve the evaluation metric. Here, the
MSE did not provide useful information adding to the modified SSIM, but a combination
of evaluation metrics is likely necessary to obtain more accurate evaluations, especially if
more complex heatmaps are evaluated. For example, MSE might better capture differences
in scale of such heatmaps, while the SSIM captures structures are correctly. In previous
sections, some drawbacks of using only the modified SSIM metric has been discussed, such
as the SSIM immediately giving a stronger response for a bad network if more logs are
graspable in the input data. One solution is to use a specific number of graspable logs
for validation, but this is specific to the current heatmaps in which there is no gripability
gradient over individual objects. It would also be beneficial to separate false positives (FP)
from false negatives (FN), since grasping objects that are not graspable is of more concern
than grasping a graspable object that is not the currently most optimal.

A crucial next step is also to address what kind of gripability maps are necessary in
the real-world application, and feasible for ground-truth generation from available data.
Should they be more or less complex, i.e. should they consist of a continuous heatmap over
the entire view or highlight the most graspable object immediately? What metric should
be used to define gripability? This is not trivial, as gripability depends on many external
criteria, including how such a metric conveys the capacity of the grapple and what defines a
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Figure 17: Segmented, well-aligned piles on a forest background.

successful grasp, which will depend on details that may not be visible from pure RGB data -
such as the density or mass variations between individual logs, or other physical properties.
This is not taken into account by our approach, but using realistic data and a sophisticated
gripability metric it should be possible for an intelligent system to build intuition for the
specific task. Other questions concern how the solution to this subtask fit into the overall
grasping pipeline. For example, it is important that the gripability map is not dependent
on the particular sensor view, since what is graspable cannot change arbitrarily from the
point of view of the agent if the sensors move along with it during operation.

Many questions are left to be answered, but the current investigation has shown that
there is potential in accurately predicting gripability in a scene solely based on RGB and
depth data, successfully posing the problem of gripability map prediction as an image-to-
image translation problem.
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