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Constraint Fluids

Kenneth Bodin, Claude Lacoursière, Martin Servin

Abstract—We present a fluid simulation method based
on Smoothed Particle Hydrodynamics (SPH) in which
incompressibility and boundary conditions are enforced
using holonomic kinematic constraints on the density.
This formulation enables systematic multiphysics in-
tegration in which interactions are modeled via simi-
lar constraints between the fluid pseudo-particles and
impenetrable surfaces of other bodies. These condi-
tions embody Archimede’s principle for solids and thus
buoyancy results as a direct consequence. We use a
variational time stepping scheme suitable for general
constrained multibody systems we call SPOOK. Each
step requires the solution of only one Mixed Linear
Complementarity Problem (MLCP) with very few in-
equalities, corresponding to solid boundary conditions.
We solve this MLCP with a fast iterative method.
Overall stability is vastly improved in comparison to
the unconstrained version of SPH, and this allows
much larger time steps, and an increase in overall
performance by two orders of magnitude. Proof of
concept is given for computer graphics applications and
interactive simulations.

I. Introduction

P
ARTICLE based methods for simulating Navier-
Stokes equations for fluids were introduced in com-

puter graphics by Desbrun and Cani [?], who used
Smoothed Particle Hydrodynamics (Sph) for animating
soft objects. Further work has demonstrated animation of
lava flows [2], interactive fluid simulation [3], blood flow [4]
and representation of fluids in medical simulators [5], fluid-
fluid interaction [6], and sand-fluid interaction [7]. Exten-
sions of Sph and the moving least squares method have
been used for animating elastic and plastic materials [8].

In Sph, the fields of partial differential equations (PDEs)
are replaced by weighted volumetric approximations.
These are the smoothed particles which interact with their
neighbors via manybody potentials corresponding to the
various terms appearing in the original PDE. Each of
these potentials is computed as a weighed average over the
smoothed particles. This makes the dynamical system look
much like molecular dynamics, though the interactions are
no longer pairwise only.

Sph was first introduced in astrophysics independently
by Lucy [9] and Gingold and Monaghan [10], to simulate
interstellar flows. But Sph and other particle methods
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are now widely spread in various fields of science and
engineering [11]–[13].

Point and particle methods are simple and versatile mak-
ing them attractive for animation purposes. They are also
common across computer graphics applications, such as
storage and visualization of large-scale data sets from 3D-
scans [14], 3D modeling [15], volumetric rendering of med-
ical data such as CT-scans [16], and for voxel based haptic
rendering [17], [18]. The lack of explicit connectivity is a
strength because it results in simple data structures. But
it is also a weakness since the connection to the triangle
surface paradigm in computer graphics requires additional
computing, and because neighboring particles have to be
found. The overhead in reconstructing polygon surfaces
has motivated the development of specific techniques for
rendering of points and particles. Important steps include
Reeves’ [19] original introduction of particles in graphics,
the pioneering work of Levoy and Whitted [20] on using
points as display primitives, the introduction of surfels [21]
and a broad range of techniques, now often referred to as
point based rendering and point splatting (see [22] for a
review).

Despite good progress on the modeling front, material
particle methods like Sph are subject to performance
and stability bottlenecks. This comes from generalized use
of explicit time integration methods which have serious
limitations with regards to the size of time step, and poor
performance when applied to stiff systems.

For the case of a fluid, such as a gas or a liquid, the
speed of sound is closely related to the incompressibility,
since it determines the propagation speed of impulses
caused by external forces and boundary conditions, as well
as the dynamics of non-stationary flow. For traditional
Sph with pairwise temporal propagation of forces, we
can estimate the required minimum time step ∆ t for
stability from the Courant-Friedrichs-Lewy condition [23],
as ∆ t < h/v, where h is the spatial resolution and
interaction length, and v is the force propagation speed.
For water, compression waves travel at the speed of sound
which is nearly 1500 m/s. This requires time steps in the
range of 10−7 to 10−6 seconds for simulations with a length
scale resolution of 1 to 10 cm. That is between four and
six orders of magnitude smaller than real-time graphics
requirements. The effective compressibility is roughly six
order of magnitudes larger for typical time steps of ten
milliseconds. The incompressibility of water—and of air for
that matter—are fundamental to the qualitative aspects
of the flow. This means that simulated motion cannot
even be plausible to the naked eye for the accessible
speed of sound. Even for offline simulation, a lot of noise
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and inaccuracies can accumulate over three orders of
magnitude, and this motivates looking for simple implicit
integration methods. A similar class of problems arises in
constrained multibodies, especially with regards to contact
problems. Penalty methods for these are equivalent to Sph

methods for fluids, since both rely exclusively on explicit
force computations, but these are notoriously difficult to
tune to achieve stability. Sph can be improved much in
the same way as rigid body methods by projection on a
divergence free velocity field, or, as presented in this paper,
by means of a direct multibody constraint on the mass
density. Either approach corresponds to the imposition of
a global constraint on the system instead of locally as is
the case for forced based methods.

In the rest of this paper, we first review some related
work in § II before introducing the Sph approximation
scheme in § III. Constrained dynamics and the Spook

integration method is explained in § IV, leading to the
specific incompressibility constraint for Sph in § V and
for boundary conditions in § VI. The solution method for
the resulting linear problems is described in § VII-A, and
the integration with multibody systems in § VII-B. The
overall algorithm is spelled out in § VIII and results are
presented in § IX, followed by a brief conclusion in § X.

II. Related work

A variety of methods for fluid simulations exist, including
finite element and finite difference methods, particle-in-cell
methods, level set methods, Lattice-Boltzmann methods,
various types of particle methods, and more. Most of these
have also found their way into computer graphics but we
will restrict our review of related work to particle methods.
For a recent overview of other methods, please refer to [24].

An important contribution came from Cummins and Rud-
man, who developed a method for projecting velocities
onto a divergence free velocity field resulting in incom-
pressible flow [25]. Through mass conservation and the
density continuity equation this also results in conser-
vation of density and fluid volume. A related approach,
the Moving Particle Semi-Implicit (MPS) method [26],
has also found applications in computer graphics [27].
A recent comparison of methods for incompressible and
weakly incompressible Sph concludes that these methods
are mutually consistent, and that they also are in good
agreement with empirical data [28].

A particle volume constraint approach [29], not distant
from the work presented here, uses the Shake integra-
tion method of molecular dynamics [30]. This requires
nearly exact roots of the nonlinear constraint equation,
using Newton-Raphson iterations. A predictor-corrector
incompressible Sph approach (PCISPH) was recently
introduced in graphics [31], but has not yet gone through
the standard benchmark tests of computational fluids dy-
namics. In PCISPH the density is linearly expanded in the
particle positions and the resulting linear system is solved

by means of Jacobi iterations, i.e. particles are moved
around slightly to achieve incompressibility. As with many
position based methods, PCISPH is rather easy to im-
plement and gives good drift free constraint satisfaction
and convergence. However, for multiphysics simulations
the position projection approach only integrates well with
other position based methods (e.g. [32]), while it does not
integrate well with the more established force and velocity
based methods that we use in the current paper. Position
methods typically also deliver imprecise and noisy force
estimates, since forces are two indices (time derivatives)
away from the positions, making these methods imprac-
tical in applications where forces are important, e.g.,
haptic surgery training simulators. More seriously, position
projection methods do not automatically satisfy Newton’s
third law, and thus risk violating conservation of linear and
angular momentum. When position methods are explicitly
designed to conserve momentum, by including inertia,
they actually reinvent force dynamics and linear implicit
integration.

None of the aforementioned methods provide the combina-
tion of near incompressibility, stability, conservation prop-
erties, computational efficiency and systematic integration
of multiphysics systems, motivating the present work.

III. Smoothed Particle Hydrodynamics

In the Sph approximation, particles carry a weighted
average field value. This is smoothed over the neighboring
particles. Details of this approximation are covered in
monographs and review articles [11]–[13].

For any scalar field A, the value at particle i positioned at
ri is computed as

Ai =
∑

j

mj

Aj

ρj

Wij(rij , h), (1)

where j is over all neighboring particles, including i, found
within the smoothing length h. This length includes the
compact support of the kernel function Wij = W (rij , h),
where rij =

∣

∣ri − rj

∣

∣, mj is the mass of particle j, and ρj

is the smoothed density of particle j computed from

ρi =
∑

j

mjWij . (2)

To obtain a good approximation, the kernel itself should
be normalized on each particle i

1 =
∑

j

mj

1

ρj

Wij . (3)

The beauty of Sph is that field differentials such as ∇A
and ∇2A, that occur in Navier-Stokes equation are easily
computed using Eqn. (1), since the differential operator
only acts on the kernel function and can be calculated
analytically,

∇iAi =
∑

j

mj

Aj

ρj

∇iWij , (4)
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and

∇2
i Ai =

∑

j

mj

Aj

ρj

∇2
i Wij , (5)

for example. The Navier-Stokes’ equations of a Newtonian
viscous fluid read

ρ
Dv

Dt
= −∇p + µ∇2v + ρg, (6)

where ρ is the fluid density, p the pressure, g the gravita-
tional field, v the flow velocity of the fluid, and D/Dt is the
substantial derivative. The LHS of Eqn. (6) is the change
in momentum, and the RHS corresponds to the total force
responsible for this change. In Sph, a Lagrangian particle
moving with the fluid has an acceleration given by Dv/Dt,
so by multiplying with mi/ρ, we can rewrite Eqn. (6) to
obtain an equation of motion for the particle,

mi

dvi

dt
=
∑

j

(

f
p
ij + fv

ij

)

+ mig, (7)

with a pressure force f
p
ij and a viscosity force fv

ij con-
tributed from nearby particles j within the range h of
the kernel function. Using Eqns. (4)–(5) in Eqn. (6), and
symmetrization to fulfill Newton’s third law, we can derive
expressions for these forces. First, the symmetric pairwise
pressure force is approximated as

f
p
ij = −mimj

(

pi

ρ2
i

+
pj

ρ2
j

)

∇iWij , (8)

and the symmetric viscosity force as

fv
ij = µ

mimj

ρiρj

(

vj − vi

)

· r̂ij∇
2
i Wij . (9)

For small density variations the pressure can be approxi-
mated from the Tait equation of state [33],

pi =
ρ0c

2
s

γ

(

(

ρi

ρ0

)γ

− 1

)

(10)

where cs is the sound velocity in the fluid and ρ0 is
the target fluid density, which is 1000 kg/m3 for water.
A model with γ = 1 is often referred to as pseudo
compressible Sph [?], [3], whereas models with γ = 7 are
referred to as weakly incompressible Sph [34]. Obviously,
the latter choice will give a much stiffer equation of state
but alas the achievable incompressibility is still entirely
limited by the size of the time step.

As we show in this paper, an alternative and more efficient
way of expressing the equation of state is to formulate

it as a constraint, that is, g =
(

ρ
ρ0

− 1
)

= 0, so that

the density, ρ, is constrained to the reference density ρ0.
Therefore we now recapitulate some theory of constrained
dynamics and present a new numerical integrator suitable
for this system.

IV. Constrained dynamics

In the following we introduce Spook, a novel numerical
integrator for constrained systems [35] formulated in de-
scriptor form. This requires an explicit computation of
the Lagrange multipliers corresponding to the constraint
forces. This method is based on a physically motivated
perturbation of the Lagrangian of the mechanical sys-
tems, i.e., not on the equations of motion themselves.
The perturbation includes both relaxation and dissipation
parameters. The former protects against ill-conditioning
resulting from degenerate constraint configurations [36],
and the latter provides for constraint stabilization. The
perturbed system converges uniformly to the exact con-
strained system, and this can be proven rigorously [37],
[38]. The perturbation parameters do not depend explicitly
on the time step, a feature shared by some [36], [39] but
not all other [40] stabilization techniques. The integrator
is based on a discrete-time formulation of the variational
principle [30] and an approximation of the constraint
equations. We use the simple linear approximation but the
quadratic correction is easy to add, though not strictly
necessary. For a given time step, the stability of the
integrator is limited by the constraint curvature and the
value of the dissipation parameter. The time stepping
scheme is a variant of what is widely known as an impulse
based simulation.

A constrained mechanical system with generalized n-
dimensional coordinates q is one that is restricted to move
on the surface defined by g(q) = 0. Here, g : R

n 7→
R

m, m ≤ n, is the indicator function which is assumed to
be continuously differentiable with m×n Jacobian matrix
G = ∂g/∂q. This is the holonomic scleronomic case.
Non-holonomic cases including inequalities and velocity
constraints are not covered here but are straight forward
extensions.

In the context of classical mechanics, explicit constraints
on the motion may be considered as limits of strong poten-
tials as discussed at length in several classic texts [41], [42],
and these potentials are those acting on short time and
length scales which are of no interest in the present con-
text. Penalty methods use strong potentials directly but
the parametrization is usually difficult to map to physical
quantities since they are intimately coupled to the choice
of integration method. But at the theoretical level at least,
the limit of infinite penalty is well defined as long as
there is some dissipation along the constraint restoration
force [37], since otherwise, wild oscillations could appear as
the force strength increases [38]. Constraints g(q) = 0 sum
up the effect of physical phenomena at time and length
scales that are much smaller than those we are interested
in, i.e., very high frequency and low amplitude oscillations.

If we consider a small constant positive scalar ǫ > 0, we can
define the potential function Uǫ(q) = 1

2ǫ
gT g producing the

force

−
∂Uǫ

∂q
= −

1

ǫ
GTg(q). (11)
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This is just a nonlinear spring force acting on the displace-
ment from equilibrium where g(q) = 0. If we consider
the limit of ǫ → 0, the system has finite energy only if
gǫ(q(t)) → 0 for all times t. Conversely, if the energy
is bounded along any converging sequence {ǫk}

∞
k=0 with

ǫk → 0, the penalty potential remains bounded and Uǫ →
0, which means that (1/ǫ)gTg/2 → 0 as well. Introducing
auxiliary variable λ̄ = −(1/ǫ)g(q), the constraint force is
GT λ̄ǫ. Despite the fast oscillations mentioned previously,
λ̄ǫ converges in the weak sense meaning that the time
integral

∫ t+σ

t−σ
dsλ̄ǫ converges uniformly for an arbitrary

small σ > 0. This is used in the time discretization below.
But damping will work equally well and this can be done
with a force of the form −(τ/ǫ)GTGq̇ = (τ/ǫ)GT β̇ǫ, with
τ ≥ 0 and the auxiliary variable defined implicitly as
ǫβ̇ǫ + τG(q)q̇ = 0. When the two forces are added, we
write λǫ = λ̄ǫ + β̇ǫ. Dropping the ǫ subscript henceforth,
the standard equations of motion for classical mechanics
become

Mq̈ + Ṁq̇ − GT λ = f

ǫλ + g(q) + τG(q)q̇ = 0,
(12)

where M is the systems mass matrix. These differential
algebraic equations (DAEs) have index 1 [39] for any
ǫ, τ 6= 0. In the limit where ǫ, τ → 0, the trajectory
q(t) converges uniformly if the initial conditions satisfy
g(q(0)) = 0,G(q(0))q̇(0) = 0 as is well known [38] [43].

If we set ǫ = 0 and τ = 0 directly, we recover the standard
index 3 DAEs of constrained mechanical systems. These
are much harder to integrate [39]. The point here is that
the ǫ > 0 perturbation in Eqn. (12) is the natural physical
one which regularizes the index 3 DAEs of motion to
something easier to solve, namely, index 1 DAEs. This is in
sharp contrast with other forms of regularizations of the
index 3 DAEs which are not based on physics. Keeping
τ > 0 but setting ǫ = 0 produces an index 2 DAE, but is
different from other index reduction techniques [36], [39],
[40].

The system Eqn. (12) contains the embryos of both pure
penalty and pure constraint formulations. For the former,
one simply eliminates λ algebraically from the second
equation. This is ill-conditioned because it introduces
terms of the form ǫ−1. For the latter, we can first set
ǫ = 0, τ = 0, differentiate the second equation twice, solve
for λ, and substitute back in the first equation. But this
does not guarantee either ġ = 0 or g = 0 for all times
and thus, some form of constraint stabilization is needed
at least at the numerical level. That introduces artificial,
non-physical parameters which can prove difficult to tune.
We avoid this strategy entirely in what follows.

Let us now turn to the problem of discretizing Eqn. (12) in
time without loosing any of the good physics it contains.

If you consider leapfrog or Verlet integration for me-
chanical systems [30], assuming that Ṁ = 0, you have
Mvk+1 = Mvk + ∆ tfk and qk+1 = qk + ∆ tvk+1, where
fk is the total force. Now, the constraint force magnitude

λ should be just that which makes g(qk+1) = 0 and so a
suitable first order discretization is then

Mvk+1 − GT
k λ = Mvk + ∆ tfk

ǫ

∆ t
λ + g(qk+1) + τGkvk+1 = 0

qk+1 = qk + ∆ tvk+1,

(13)

in which a factor of ∆ t was absorbed in the definition
of λ. But this is still a nonlinear system of equations.
In fact, setting ǫ = 0 and τ = 0, Eqn. (13) is identi-
cal to the well known Shake integrator [30]. We could
simply approximate gk+1 ≈ gk + hGkvk+1, but that
makes the approximation one-sided, something that would
break time reversal invariance which is fundamental in
physics. We did use that in our previous work [44], [45]. In
practical terms, such a one-sided approximation introduces
additional numerical dissipation, which might be desirable
in some cases. Our approximation of the discrete stepping
equations of Eqn. (13) replaces g(qk+1) with averaged
value as discussed above

ǫ

∆ t
λ +

1

4
(gk+1 + 2gk + gk−1) + τGkvk+1 = 0. (14)

The linearization of this is then implicit in vk+1,

Gkvk+1 +
4ǫξ

∆ t2
λ = −

4ξ

∆ t
gk+1 + ξGkvk, (15)

with ξ = 1/(1+4τ/h). A complete derivation of Eqn. (14)
is based on the discrete time variational principle [46]
which is beyond the present scope.

We can isolate λ by substituting Gkvk+1 = Gkvk +
GkM

−1GT
k λ + hGkM

−1fk from the first equation, and
linearize g(qk+1) = g(qk) + ∆ tGkvk+1 to get the Schur
complement form

Sǫλ = c − GM−1a, (16)

where Sǫ is the Schur complement matrix

Sǫ = GM−1GT + Σ. (17)

The latter can be interpreted as the inverse inertia seen
by the constraint force, and Σ is a diagonal regularization
term. For the other terms,

a = Mvk + ∆ tfk

c = −
4

∆ t
Ξgk + ΞGkvk

(18)

with the definitions

Ξ = diag(ξ1, ξ2, . . . , ξmh
) (19)

Σ =
4

∆ t2
diag

(

ǫ1
ξ1

,
ǫ2
ξ2

, . . . ,
ǫmh

ξmh

)

. (20)

This might look complicated in matrix form but since
Ξ and Σ are diagonal matrices, operations on these are
straight forward. The complete solver and parametrization
defined in Eqns. (16)–(20) is what we call Spook. That
name was chosen because the auxiliary variables λ are
essentially massless point particles (”ghost particles”) [35]
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in the Lagrangian formulation. For ǫ > 0 and τ > 0,
Spook is linearly stable [46].

Observe that for Eqn. (16) there is no problem in the
limit ǫ → 0 numerically, and that the parameter τ/∆ t is
not critically important, except with regards to stability.
This is easy to see by considering a single scalar linear
constraint in which case the constraint violation is damped
by a factor of 1/(1 + τ/∆ t) at each time step. In all our
simulations presented here, we use τ/∆ t ∈ (2, 5) and ǫ
of the order of 10−8 to 10−3. When τ is too small, the
simulation becomes unstable. When τ is too large, the
constraints fail to stabilize quickly. With regards to ǫ, large
values introduce elasticity in the constraints but make
the linear equations easier to solve both for direct solvers
and iterative ones. In the latter case, a large ǫ improves
diagonal dominance which helps convergence of Gauss-
Seidel methods [47]. It is possible to use ǫ = 0 directly
provided the Jacobian matrices G have full row rank and
the condition number of matrix Sǫ=0 is moderate.

It is possible to directly relate these parameters to conven-
tional material parameters, as was done in Ref. [45] where
a similar approach was taken to mesh-based simulation of
deformable solids. The choice also reflects stability versus
the mass ranges and stresses in the system, and thus also
relates to the effective speed of sound in a fluid. We also
showed elsewhere [46] that the error in constraint violation
is of order O(∆ t2).

We now turn to the specific constraint definition which
applies to incompressible fluid flow.

V. A holonomic manybody mass density

constraint

For an incompressible fluid, the mass density is constant
throughout the fluid volume. To enforce this we formulate
a manybody constraint gi for particle i, that constrains
the Sph density to the target density of the real fluid, ρ0,

gi =
ρi

ρ0
− 1 =

1

ρ0

∑

j

mjWij − 1 (21)

The corresponding kinematic constraint for particle i is,

ġi =
d

dt





1

ρ0

∑

j

mjWij − 1



 (22)

=
1

ρ0

∑

j

mj fij r̂ij · vij ,

where we have introduced fij =
dWij

drij
and r̂ = r

|r| . The
constraint gi can be interpreted as a weighted manybody
distance constraint acting to preserve a weighted average
at each particle, i.e., the mass density at each particle
position. To the best of our knowledge, the formulation of
a density constraint is novel and not to be found elsewhere
in the scientific literature.

Following the previous section, and ġ = Gv, the compo-
nents of the full Jacobian matrix for all particles, corre-
sponding to the constraint, Eqn. (22) are identified to be,

Gij = −
mj

ρ0
fij r̂

T
ij (23)

Gii =
1

ρ0

∑

k

mkfikr̂
T
ik (24)

The kernel function, Wij , and thus also its derivative,
fij , have compact support, so only particles within the
smoothing distance h have non-zero fij . Therefore, the
Jacobian is very sparse for large systems since only the
neighboring particles participate in the constraint. Know-
ing that the Lagrange multipliers λ correspond to the
constraint forces, f = GT λ, and with help of Eqns. (23)–
(24) we can compute the total constraint force on particle
i as,

f i =
∑

j

[

miλi + mjλj

]

fij r̂ij . (25)

The two-body force f ij is antisymmetric in ij and thus
satisfies Newton’s third law and conserves linear momen-
tum. It is a central force acting along r̂ij and therefore it
also conserves angular momentum.

VI. Boundary conditions

Different models for boundary conditions have been pro-
posed for Sph, e.g., inert boundary particles, per particle
non penetration constraints, and penalty potentials (see
[12] for a review). The perhaps most common method in
the scientific and engineering literature is the boundary
particle method, where 2–3 layers of inert particles cover
all boundaries and create an Sph consistent boundary
condition. A strength of this method is that the normal-
ization condition, Eqn. (3) is satisfied also for particles
at the proximity of a boundary. However, this method
adds many particles to the simulation, and increases the
computational cost. It also requires a rather complicated
analysis of the boundaries of the system for positioning
the boundary particles. For the purpose of this paper,
we use two different methods for 2D and 3D simulation,
respectively. In 3D, we use the simplest possible method,
a non penetration constraint that prevents the particles
from coming closer to a boundary than half the smoothing
length, h.

If we consider the smoothed particles as non-penetrable
spheres of radius h, a non penetration condition between
a particle at position r with a plane, defined with normal
n and reference point r0 is just

n · (r − r0) − h/2 ≥ 0, (26)

and the Jacobian for that is simply G = nT . For contacts
between particles and rigid bodies, the same logic applies
but now, the reference point is moving with the rigid body.
Assume the reference point is p̄b in the rigid body frame
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based at rb, the center of mass of body b. The world
coordinates of the contact point rc are then

rc(t) = rb(t) + Rbp̄b, (27)

and the time derivative of that is

ṗb = vb + ωb × pb, (28)

where pb = Rbp̄b, Rb is the rotation matrix from body
b to world coordinates, and ωb is the angular velocity of
body b expressed in world coordinates. A small amount of
algebraic manipulation yields

ġ = G







v

vb

ωb






=
[

nT −nT −(pb × n)T
]







v

vb

ωb






. (29)

For 2D simulations, we use an Sph boundary field scheme,
which to our knowledge also is new. When a particle is
found to be within one smoothing length from a boundary,
we add a smoothed mass field, mW (r), to the density
sum of the particle, Eqn. (2). m is here the particle mass,
and W has the same smoothing distance as the particle-
particle kernels. This results in an boundary element block
in the constraint Jacobian matrix, and in effect an efficient
boundary constraint for the particle and a reaction pres-
sure on the boundary. In 2D, we use signed distance fields
for detecting and computing contact information. This
means that both the distance to the boundary, and the
boundary normal, are efficiently available through lookup.
The method also allows us to smooth the precomputed
normals to greatly improve the boundary model near kinks
and corners in the boundary geometry. For our purposes,
we find that the method is comparable to, and often more
efficient than the recently reported multiple boundary
tangent method [48]. We will publish a detailed study
elsewhere. Our boundary field method should also lend
itself to efficient modeling in 3D simulations.

VII. The constraint fluid solver

There is a formulation of the linear approximation of (13)
which can be solved using a direct sparse solver [46]
in almost linear time but for the present application, it
suffices to use Gauss-Seidel iterations. This is done without
building the Schur matrix Sǫ, working only with Jacobian
matrices. In general, the regularization Σ improves the
condition number of the linear system. When boundary
and contact constraints are included, the system (16)
becomes a mixed linear complementarity system.

It is customary in Gauss-Seidel iterations to directly up-
date the approximate final velocity

vk+1 = vk + ∆ tM−1fk + M−1GT λ, (30)

as the iterations proceed to improve the approximation of
λ. Because of this, it is more practical to introduce the
unconstrained velocity as

v
(0)
k+1 = vk + ∆ tM−1fk, (31)

and the final velocity estimate is then

vk+1 = v
(0)
k+1 + M−1GT λ, (32)

once we know λ. As the iterations progress, with ν =
1, 2, . . ., we update v

(ν)
k+1 as well as λ (ν) and we can

monitor the constraint equation residual error as

r (ν) = Gkv
(ν)
k+1 + Σλ (ν) − c, (33)

where c is defined as in Eqn. (18). This is what is used in
the algorithm VII.1 below.

A. Gauss-Seidel solver for Spook

The projected Gauss-Seidel (GS) method iterates through
the individual constraint equations one by one, updating
the current approximation of the Lagrange multipliers,
based on the local residual error. GS is a linear relaxation
method, with slow (linear) global convergence. However, it
can be fast in the first few iterations and has the advantage
that it smoothes the solutions thus damping out jitter and
instabilities. This makes it useful for computer graphics
and interactive simulations. It is also relatively simple to
code and leaves a small memory footprint.

We can write the projected GS algorithm for our MLCP

as follows.

Algorithm VII.1 Gauss-Seidel iterations to solve
(GM−1GT + Σ)λ = c − Gvk

Given c,M,G,Σ, ∆ t, fk, λ0 and vk.
Initialize v = vk + ∆ tM−1fk, λ = λ0.
Compute initial residual and error, r = Gv + Σλ − c

Compute blocks Dkk =
∑

b GkbM
−1
bb GT

kb, for k =
1, 2, . . . , nc

repeat

for k = 1, 2, . . . , m do ⊲ Loop over constraints
r = −ck + Σkkλk ⊲ Local residual
for b = bk1

, bk2
, . . . , bnbk

do ⊲ Loop over bodies
r = r + Gkbvb

end for

Solve LCP: 0 ≤ Dkkz + rk − Dkkλk ⊥ z ≥ 0
∆λk = z − λk

λk = z

for b = bk1
, bk2

, . . . , bnbk
do ⊲ Loop over bodies

vb = vb + M−1
bb GT

kb∆λk ⊲ Update velocities
end for

end for

until Error is small, or iteration time is exceeded

Solving large MLCPs can be very difficult, but we only
need to solve small ones. In the context of Sph, there
is no friction even, and thus, we have one dimensional
complementarity problems of the form

v = d · z + q ≥ 0, z ≥ 0, and wz = 0, (34)

where d > 0. In other words, either the contact force z
is positive and produces a zero velocity v, or the contact



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 7

force vanishes and the velocity is positive. The solution to
this is z = −q/d when q < 0, and z = 0 otherwise.

B. Integration with rigid multibody mechanics

In our 3D examples, the non penetration frictionless con-
straints used for the fluid boundaries in section VI are
very similar to that of two contacting rigid bodies. Thus,
the constraint fluid model is easily integrated with rigid
multibody mechanics. The net effect of non penetration
constraints produces buoyancy of the rigid bodies fully
consistent with Archimedes’s principle. Consequently rigid
bodies will automatically sink or float in the fluid de-
pending on their given density and geometry. Also in
our 2D cases with boundary fields, buoyancy falls out
naturally and integration with constraint mechanics is
consistent. We could incorporate other types of constraint
modeling such as hinges and joints, as well as cloth type
of constraints, or even deformable materials, for a very
general and consistent multiphysics method, but this is
beyond the scope of this paper.

VIII. Overall method description

The overall algorithm takes the form of Alg. (VIII.1).

Algorithm VIII.1 Overall algorithm for constraint fluid
animation

repeat

Detect particle neighbors within h
Detect boundary condition violations
Compute particle densities: Eqn. (2)
Build Jacobians: Eqns. (23),(24),(29).
Solve the MLCP, Alg. (VII.1)
Update positions
Visualize

until Simulation done

The broad phase neighbor search algorithm we use here is
the sweep-and-prune method [49], but a variety of other
methods could be used equivalently. Our 3D-simulations
are implemented in AgX Multiphysics [50], and rendered
in PovRay [51] with the fluid represented either by blob
iso-surfaces, or by a marching cubes generated surface
mesh. The 2D-simulations where implemented in Algo-
doo [52] and visualized using a GPU based meta surface
algorithm.

IX. Results

A. Simulation of water in 3D

To illustrate near-incompressibility and proof of concept
of the constraint fluid method, we fill a container of base
area 0.36× 0.36 m2 with fluid as illustrated in Fig 1. The
final scene consists of 10, 000 particles with 20 neighbors
per particle on average. The total water volume is 70 liter

Fig. 1: Color coded density profiles of the constraint fluid
(left) compared with a standard Sph fluid (right), given the
same size of the time step.

corresponding to a mass per particle is set to 0.007 kg. The
smoothing distance used is 0.03 m. The time step is 1/120
s, and the constraint relaxation time τ is four time steps.
The resulting fluid volume is approximately 60 liters corre-
sponding to an average density of 1170 kg/m3 compared to
a reference density of 1000 kg/m3 for water. This is a 17%
error. This compression comes from both the model and
the numerical approximations. First, the regularization
parameter ǫ = 10−3 relaxes the density constraint and is
linearly related to the observed compressibility. The time
step introduces numerical compressibility of order O(h−2).
The relatively low number of Gauss-Seidel iterations, 15 in
our examples, also introduces errors. Least but not last is
the fact that the kernel normalization criterion, Eqn. (3)
is not satisfied near the boundaries due to particle defi-
ciencies. Because of this deficiency, the density constraint
is enforcing a higher density than what is necessary near
the boundaries.

As shown in Fig. 2, the density of the constraint fluid
decreases at the very bottom of the container due to
the deficiency, and goes up just above the bottom, to
compensate for the deficiency. The situation would have
been substantially improved if we had implemented the
Sph boundary density field of our 2D-simulations also in
the 3D-simulations. Also note that the deficiency neither
depends on the height of the fluid pillar nor the local
pressure.

To compare the constraint fluid with a standard Sph fluid
we use the same number of particles, the same values for
the time step, the particle mass and the smoothing length.
In both cases, we use the poly-6 kernel function [12]. For
the Sph specific parameters we use a sound speed of 1.58
ms−1, and a viscosity of 0.5 kgm−1s−1. Given the time
step and the number of particles in the fluid pillar, we
didn’t have much choice in choosing these two parameters,
but had to set them to values that give a reasonably stable
and still not too viscous fluid. Stability is a serious problem
in standard Sph at these large time steps, and indeed our
simulation is only barely stable and the resulting fluid is
rather viscous, not much like water. The effective fluid
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volume is roughly 32 litres, corresponding to an average
density of approximately 2190 kg/m3, linearly increasing
with the depth with extreme values at the bottom. The
average number of neighbors per particle increases to
nearly 35 and again, the variations increase with depth.
The color coded density profiles of the constraint fluid
and the standard Sph fluid, respectively, are visualized
in Fig. 2. Red color indicates that the density is too
high. Obviously standard Sph cannot represent the desired
volume of fluid unless we would add several times as
many particles, resulting in even more compression at the
bottom and substantial stability problems.

Constraint fluid
SPH fluid
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Fig. 2: The mass density as a function of depth from the
surface for standard Sph vs., the constraint fluid.

Fig. 3 shows a sequence from the flushing of water into a
container of bottom area 1.2×1.2 m2, with other parame-
ters kept as in previous examples, but with up to 250,000
particles. As is demonstrated in the supplementary video,
the numerical viscosity of the fluid is relatively low even at
these large time steps and few solver iterations, resulting
in a vivid and realistic simulation of water.

The convergence rate of the iterative Gauss-Seidel pro-
cedure for a fluid pillar consisting of 100,000 particles is
shown in Fig. 4 where the residual error of the system
solved in Algorithm VII.1 is plotted against the number
of Gauss-Seidel iterations. A relatively small 1% error is
reached at 100 iterations. However, for interactive simula-
tions and computer graphics applications we find that it
is usually enough with 5 to 15 iterations for this system
size. A relevant reflection is that a single Jacobi iteration
corresponds to a standard pairwise Sph pressure penalty
force of Eqn. (8), and additional iterations will propagate
information further in the system. With Gauss-Seidel iter-
ations, information propagates through the system already
in the first iteration. This gives an intuitive picture of the
implicit nature of our pressure model, and an explanation
of why already a few iterations give dramatic stabil-
ity improvements. However, the Gauss-Seidel propagation
direction is non-deterministic, and the ordering of the
Gauss-Seidel iterations is typically random, and therefore

Fig. 3: Water flushing into a container.
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Fig. 4: Convergence of the Gauss-Seidel iterations for a
100,000 particle fluid pillar.

this process does not have an obvious physical meaning.
One should therefore refrain from interpreting this as a
physical impulse-propagation method, as often is done in
the literature on physics based animation.

In Fig. 5 we illustrate how buoyancy falls out automati-
cally from the boundary condition model. The rigid bodies
are affected by gravity, as well as pressure forces from
the fluid particles. Dense bodies sink and pile up at the
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Fig. 5: Water in a container, with dense bodies sinking
and light bodies forming a floating pile on the surface.

bottom, and bodies less dense than water float and form a
pile on the surface. The entire system is solved as a clean
and consistent multiphysics system.

B. Two dimensional examples

Fig. 6: The 2D dam break scenario is a standard bench-
mark in fluid simulation. A troubled steam paddler was
added to the water pillar to help visualizing the flow in a
dramatic way.

Dam break simulations are often used as benchmark tests
in computational fluid dynamics [12]. The sequence with
the troubled steam paddler in Fig. 6 and the supplemen-
tary video, shows the characteristic behavior of the propa-
gating wave front and the reflected wave. The simulation is
using 12600 particles. As described previously, our method
allows us to model the steam paddler consisting of 35

jointed rigid bodies and a motor using constrained rigid
body dynamics, and to solve for both the fluid and the
paddler dynamics with one single solve.

A pump is an obvious example of a system that requires a
near incompressible fluid model. To further illustrate this
and the integration with constrained rigid body systems,
an idealized but fully functional piston pump with valves is
shown in Fig. 7. The simulation consists of 11500 particles
and 6 jointed rigid bodies. Numerous hydro mechanical
devices and phenomena could be modeled in this way.

Fig. 7: A simple 2D piston pump with valves.

C. Performance

The computational time of both standard Sph and the
constraint fluid is dominated by the following: a) finding
neighbors; b) calculating the Sph density; c) calculating
the pressure forces. The neighbor search time is in principle
the same in both models, and under normal circumstances
this is about 40% of the computational cost for one time
step in our implementation. However, in many cases the
compression artifacts in standard Sph give a dramatic
increase in the number of neighbors, in particular when
simulating high water pillars subject to gravity and other
loads exerting pressure. Likewise, the time for computing
the Sph density is similar in both methods and typically
takes 20% of the time in standard Sph, but also scales up
in cost with the number of neighbors due to compression
artifacts. The force computations in standard Sph, use the
remaining 40% of the compute time, but also scale up with
the number of neighbors. When solving for the geometric
pressure forces in the constraint fluid, the time for a single
Gauss-Seidel iteration is comparable to the time for the
force computation in standard Sph and scales linearly
with the number of iterations. We typically use 5 to 15
iterations, and thus 40% of the computations are 5 to 10
times slower than in standard Sph in principle. But when
compression is taken into account, the constraint fluid is
as fast or faster than standard Sph, with the difference
that the constraint fluid has much lower viscosity, is nearly
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incompressible and results in a much more stable, and
realistic simulation. Tuning standard Sph to this level
of fidelity requires a 100-1000 times smaller time step,
making it very slow and essentially impractical for simu-
lating large volumes of water. Thus, for 10 iterations, the
constraint fluid is between 25 to 250 times more efficient
than standard Sph.

The 3D-simulations were run on an Intel 2.8 GHz Xeon
processor allowing for 6000 constraint fluid particles at 10
Hz using serial and non-optimized code, with linear scaling
to larger systems. 2D-simulations were run on an Intel 2.53
GHz laptop, with serial code, allowing for 12000 particles
at 10 Hz, also with linear scaling to larger systems.

X. Conclusion and future work

The constraint fluid method presented above can be im-
proved using the same schemes developed for the standard
Sph method [12], including the use of adaptive and asym-
metric kernel functions, and density renormalization, for
instance. For large simulations it would also be desirable
to apply adaptive sampling of the particle resolution [53],
[54]. The constraint fluid has low numerical viscosity and
viscosity models can be added either using the traditional
force based viscosity terms of Sph, Eqn. (9), as external
forces in Spook, Eqns. (18); by increasing the constraint
damping time, τ , in Eqn. (19); or by constructing a
viscosity constraint using Rayleigh dissipation functions
in the discrete variational framework of Spook [35]. The
latter is recommended, since this allows for very high
viscosity also at large time steps. The MLCP solve stage
can be improved using a parallel implementation of the
preconditioned conjugate gradient method, for instance,
and this can be implemented on stream and multicore
processors with substantial speedup, promising interactive
frame rates for several hundred thousand particles. The
iterations can also be warm started using the solutions
of the previous time step, thus exploiting the temporal
coherence of the system.

In conclusion, we have presented a novel fluid simulation
method with the following advantages: a) it can efficiently
handle a high degree of incompressibility; b) it is stable
for large time steps; c) the constraint model has a physics
based origin and is fully consistent with models of rigid
body mechanics and multiphysics systems; d) both com-
putationally expensive stages, namely, collision detection
and the linear solve, can each be parallelized.

It is our belief that constraint fluids can become com-
petitive in computer graphics, with applications ranging
from animation and visual effects to real-time simulation
in simulators and computer games. However, the scope
of the method is broader, and constraint fluids should
also be useful in the domain of education, engineering
and basic science, and offer rich opportunities for further
development and research.
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P. Schröder, and M. Desbrun,“Geometric variational integrators
for computer animation,” in SCA ’06: Proceedings of the 2006
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2006, pp. 43–51.

[57] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements
and Fast Iterative Solvers: with applications in incompressible
fluid dynamics. Oxford University Press, 2005.

[58] S. Koshizuka, Y. Oka, and H. Tamako, “A particle method for
calculating splashing of incompressible viscous fluid,” in Pro-
ceedings of the International Conference on Mathematics and
Computations, Reactor Physics and Environmental Analyses,
vol. 2. ANS, 1995, pp. 1514–.

[59] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, “Multiple inter-
acting liquids,” in Proceedings of ACM SIGGRAPH ’06, vol. 25,
2006, pp. 812–819.

[60] M. Carlson, P. J. Mucha, R. B. Van Horn, III, and G. Turk,
“Melting and flowing,” in SCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation.
New York, NY, USA: ACM, 2002, pp. 167–174.

[61] Y. Zhu and R. Bridson, “Animating sand as a fluid,” in Proceed-
ings of ACM SIGGRAPH ’05, 2005.

[62] F. Colin, R. Egli, and F. Lin, “Computing a null divergence
velocity field using smoothed particle hydrodynamics,” Journal
of Computational Physics, vol. 217, pp. 680–692, 2006.

[63] W. G. Hoover, Smooth Particle Applied Mechanics: The State
of the Art. World Scientific, 2006.

[64] M. Kass and G. Miller, “Rapid, stable fluid dynamics for com-
puter graphics,”in Proceedings of ACM SIGGRAPH ’90, vol. 24,
1990, pp. 49–57.

[65] J. Stam, “Stable fluids,” in Proceedings of ACM Siggraph
’99, 1999, pp. 121–128. [Online]. Available: cite-
seer.ist.psu.edu/stam99stable.html

[66] J. Chen and N. Lobo, “Toward interactive-rate simulation of
fluids with moving obstacle using the navier-stokes equations,”
Computer Graphics and Image Processing, vol. 57, pp. 107–116,
1994.

[67] N. Foster and D. Metaxas, “Realistic animation of liquids,”
Graph. Models and Image Processing, vol. 58, 1996.

[68] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
Proceedings of ACM SIGGRAPH ’01, 2001, pp. 23–30.

[69] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “Animation
and rendering of complex water surfaces,” ACM Transactions
on graphics, vol. 21, no. 3, pp. 736–744, 2002.

[70] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” J. Research Nat. Bur. Standards,
vol. 49, pp. 409–436, 1952.

[71] F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw, “Two-
way coupled SPH and particle level set fluid simulation,” IEEE
Trans. on vis. and computer graphics, vol. 14, no. 4, pp. 797–804,
jul–aug 2008.

[72] G. R. G.-R. Liu and M. B. Liu, Smoothed particle hydrodynam-
ics: a meshfree particle method. Singapore: World Scientific,
2003.

[73] K. Lundin, M. Sillen, M. Cooper, and A. Ynnerman, “Haptic vi-
sualization of computational fluid dynamics data using reactive
forces,” in Visualization and Data Analysis 2005, Erbacher, RF
and Roberts, JC and Grohn, MT and Borner, K, Ed., vol. 5669.
Spie-Int Soc Optical Engineering, 2005, pp. 31–41.

[74] M. Anitescu, “Optimization-based simulation of nonsmooth
rigid multibody dynamics,”Math. Program., vol. 105, no. 1, Ser.
A, pp. 113–143, 2006.

[75] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grin-
spun,“Efficient simulation of inextensible cloth,” in SIGGRAPH
’07. New York, NY, USA: ACM Press, 2007, p. 49.

Kenneth Bodin Kenneth Bodin is a researcher at the High Perfor-
mance Computing Center North at Ume̊a University and CEO at Al-
goryx Simulations. He completed his MSc at the physics department
of Ume̊a University in 1989 and his PhLic in Theoretical Physics from
Chalmers University of Technology in 1992. His research interests in-
clude computational physics, high performance computing, computer
visualization and condensed matter physics.

Claude Lacoursière Claude Lacoursière is a researcher at the High
Performance Computing Center North (HPC2N) and the UMIT
center for industrial and IT research at Ume̊a University. He com-
pleted his MSc at the physics department of McGill University in
1993 and his PhD at Ume̊a University in 2007. He has 12 years
of experience from industry research and development of multibody
system simulations. His research interests include physics motivated
numerical methods for real-time integration of mechanical systems,
especially contacting multibodies subject to dry friction.

Martin Servin Martin Servin is senior lecturer at the department
of Physics at Ume̊a University. He received his MSc and PhD degrees
in theoretical physics from Ume̊a University in 1999 and 2003,
respectively. His research interests include physical modeling and
numerical simulation of complex mechanical systems with particular
interest for real-time interactive 3D graphics and applications to
robotics and off-road vehicles.


