
Computer Simulation of Deforesting
Device

Ludvig Wendelius∗

UMIT Research Lab

November 17, 2011

∗ludvig.wendelius@gmail.com

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Sammanfattning

Vid SLU i Ume̊a har en prototyp p̊a ett skogsgallrings aggregat som kan
skörda flera träd i en rörelse framtagits. Aggregatets syfte är att skörda
oönskvärda träd p̊a återplanterade kalhyggen. Detta projekt bygger p̊a ett
tidigare projekt med syfte att simulera och optimera detta aggregat. Under
projektet har en modell implementerats och testats i fysik motorn AgX och
viktiga variabler för optimerings processen har kunnat identifieras. Bland
dessa är tillhör aggregatets hastighet.

Abstract

At SLU in Ume̊a a deforesting device that can harvest multiple trees in one
motion have been constructed. The devices’ function is to clear unwanted
trees from replanted clear cut areas. This project is a continuation from
another project to simulate and optimize such a device. During the project
a model was implemented and tested in the physics engine AgX and certain
important variables for the devices optimization was identified. Among these
the velocity of the device.

i

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Contents

1 Introduction 1

2 Method 2

3 Results 3

4 Discussion 6

A Documentation: Device2Feed.lua 7
A.1 AssembleDevice . 7
A.2 createDeviceLowerFrame . 8

A.2.1 createBlade . 9
A.2.2 createClawArm . 9

A.3 createDeviceUpperFrame . 10
A.3.1 createFeederArm . 11
A.3.2 attachingSprings . 12
A.3.3 guidingCylinder . 12
A.3.4 backFeederSuspension 13

A.4 createCatchingWire . 14

ii

UMIT Research Lab Ludvig Wendelius
November 17, 2011

1 Introduction

The two researchers Julia Forsberg and Rikard Wennberg have, at SLU, de-
veloped a device prototype for cutting and collecting several smaller trees
in one motion. This is referring to trees between 6 to 12 meters in height.
The reason for building the prototype is that most tree harvesting machines
on the market are designed to harvest one fully grown tree at a time. When
an area in a forest of pine or spruce is clear cut and then replanted other
unwanted trees will also start growing in this area. After some time these
unwanted trees must be cleared so that the planted trees may grow undis-
turbed. Today this clearing is done manually although the project with
the prototypes’ purpose was to investigate the possibility use deforesting
machines instead.

The simulation project that is presented in this report is a continuation
of another project that was made by the students M. Lundqvist, A. Hanga,
T. Holmlund Olsson, H. Forsberg. These four students made a model in the
software physics engine AgX developed by Algoryx with the goal to simulate
and optimize the prototype.0

However the goal of this project was to use the results from the previous
student project together with collaboration with the two researchers at SLU,
make an improved model of the prototype using the same software. This
model was to be presented at the date of the unveiling of the prototype.

0Simulering av ett skördaraggregat: M. Lundqvist, A. Hanga, T. Holmlund Olsson, H.
Forsberg

1

UMIT Research Lab Ludvig Wendelius
November 17, 2011

2 Method

When this project started the CAD prints for the prototype was studied
and compared to the physical model made by the students. With this study
a decision was made to implement a completely new model. This decision
was based on the fact that a lot had been changed to the prototype after the
completion of the students report. Although the results from that report
was taken into account with the new model. You can see the new and old
model in Figure 1 and the CAD prints that was used as a design tool can
be seen in Figure 2

From the CAD prints mentioned above the measurements for the imple-
mented model could be found.

Figure 1: To the left is the new model, to the right is the older model.

The general idea behind the device is to be able to continually accumulate
trees. It does this with the help of its feeding arms. When a tree have been
cut the feeding mechanisms will grip it and transport it backwards. The
tree is then caught by the wire stretching between the feeder pair. This is
then repeated for multiple trees which are all accumulated in the chains.
The prototype had an estimated maximum load of 300 kg of trees before
having to be emptied. Figure 3 shows the accumulation of one tree.

Figure 1 is a little bit misleading because the real prototype did not have
two pairs of feeding mechanisms (black area in new model) but only one.
The reason for this is that one of the results from the student project was
that two pair of feeder arms were needed in order for the device to catch the
tree trunks before the cutting process. As well as having a tight controlled
grip around the trunks during the accumulation. The two researchers from
SLU also wanted to have this tested as they were curious of the behaviour
of the device with one more feeder pair.

2

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Figure 2: The CAD prints used for the design in AgX.

Figure 3: From left to right the process for cutting and accumulating one
tree is shown.

3 Results

In the model that I implemented it is easy to switch between a model with
two pairs of feeders and only one pair. It is also easy to change many of the
sizes of the models parts, see Appendix A for more details about the script.
I made test runs with both two pairs and one pair of feeders. The outcome
of the two scenarios are shown in Figures 4 and 5.

After more testing with different lengths of the distance between the

3

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Figure 4: Shows what can happen if only one pair of feeders are used.

Figure 5: Shows the device with several trees accumulated.

cogs in the feeding mechanism I could see another result. This result was
that the longer distance the cogs have between them the more displaced the
trees could be from the center of the device when being cut. In a certain
test run with the length between the cogs enhanced by 30% and the trees

4

UMIT Research Lab Ludvig Wendelius
November 17, 2011

displaced 0.25m from the center of the device five out of five trees managed
to be accumulated. This was simulated with the device having a speed of
0.15m/s. Unlike using the cog distance from the CAD prints where the trees
could not be displaced at all if they were to be accumulated.

So if the device had two feeding mechanisms which are longer. This
model shows that the device could harvest trees that are further apart from
each other in one single motion.

Figure 6: The device harvesting trees that are displaced from the center of
the device’s velocity direction.

5

UMIT Research Lab Ludvig Wendelius
November 17, 2011

4 Discussion

I agree with the previous group’s conclusion that two pairs of feeder mech-
anisms are needed to hold the tree trunks in place. I.e. for the device to
be able to control the trees and a have tight grip around them during the
accumulation process. I am however unable to present the optimal param-
eters for the length of the mechanism. This requires further testing and
optimization. As I see it from my test runs the interesting parameters are
the following (see Figure 7 for explanation):

1. The distance between the two cogs driving the chain in the feeder.

2. The length of the cylinder attaching the front of the feeder chain to
the frame work.

3. The spring constants. There are two springs in every feeder both of
which can be optimized. In order for me to get my model to work we
had to introduce a third spring between the big cylinders in the back
in order for the feeder to grip the tree trunks properly. This spring is
marked as 3’.

The reason for the third spring to be introduced is that the model had
problems with the feeder could be forced outside the steel frame when im-
pacting with a tree at high velocity. Also, the model did not grab the trees
in the way it was supposed to. E.g. a tree that had been caught in between
the two feeder chains was still able to fall out of the mechanism because the
force clamping the tree was not large enough.

The speed of the device is also important. If the speed is too high the
trees must almost hit the device in the center in order to be gripped and
accumulated. Even higher speed and even hitting the device in the center is
not enough. I suggest that this is subjected to further simulations as well.

One big problem I encountered has to do with the collisions between
the trees and the front cog of the feeder. I you look at Figure 1 then
you can see that the older model has thin cylinders in front of the feeder
mechanism, whilst in the new model these are modelled as three thin boxes
evenly rotated. Giving the cog the shape of a 12 edged star. When this cog
was modelled as a cylinder the collision between the cylinder shaped tree did
not result in the tree being forced in between the feeder. This can have to do
with the collisions between two cylinders generates too small surface areas
for the friction to bend the trees into the feeding mechanism. Changing to
a star shaped cog did not eliminate the problem, but made it better.

6

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Figure 7: A top view of the device the numbers are corresponding to the
enumeration list. (1) being distance between the cogs, (2) is the
cylinder and (3) are the springs.

A Documentation: Device2Feed.lua

In this appendix the script for the device with two pairs of feeders will be
documented. All functions in the file Device2Feed.lua will be given an
over all explanation together with their inputs and outputs.

All of the functions are designed to construct one particular part of the
device. In one specific function all of the certain variables needed for that
particular part is defined. The diagram in Figure 8 shows how the different
functions are called in the script. Note that one arrow in Figure 8 does not
mean that the function is called only one. It could be called multiple times.

A.1 AssembleDevice

This is the main function that is called when you want to create the device
model. Here you specify the initial values of the device such as position and
velocity etc. It does not however create the materials used in the device. The
material objects must be constructed and added to the simulation before

It is this function attaches the upper to the lower frame calling the
functions that creates them. Then the two wires are created and attached
to the feeders.
Input
name type description

root *agxOSG.Group –

sim *agxSDK.Simulation –

7

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Figure 8: The chain in which the functions creating the device are called.

A.2 createDeviceLowerFrame

This function is called in the AssembleDevice function and creates every-
thing that is necessary for the lower half of the device. Which is the steel
frame, the two circular saw blades and the claw arms. Blades and claw arms
are created in separate functions that are called here.
Parameters
name type description

depth float Steel frame x

length float Steel frame y

height float Steel frame z

backLength float Steel frames back y

plateLength float Length of the bottomplate

plateThickness float Thickness of the bottomplate
Input
name type description

root *agxOSG.Group –

deviceMaterial *agx.Material The material of the device

bladeMaterial *agx.Material The material of the blade
Output
name type description

lowerAssembly *agxSDK.Assembly The assembly containing all rigid
bodies and constraints of the lower frame

lowerFrameBody *agx.RigidBody Pointer to the steel frame rigid body

8

UMIT Research Lab Ludvig Wendelius
November 17, 2011

A.2.1 createBlade

This function creates one of the spinning blades.
Parameters
name type description

bladeRadius float Radius of the blade

bladeThickness float The thickness of the blade

bladeRotation float The rotation speed of the blade
Input
name type description

root *agxOSG.Group –

bladeMaterial *agx.Material The material of the blade

attachmentBody *agx.RigidBody The rigid body that the blade is
attached to

pos *agx.Vec3 Blade CM position in attachmenBody’s
frame coordinates

isRight bool True if right blade, in cut direction
Output
name type description

bladeBody *agx.RigidBody The Blade rigid body
hinge *agx.Hinge The Hinge attaching the blade to the

attachmentBody

A.2.2 createClawArm

This function creates one of the claw arms used when the trees are dump
from the device.
Parameters
name type description

upperLength float Length of the arm geometry closest to the steel frame

lowerLength float Length of the other arm

barThickness float Thickness of the arm

depthDisp float The arm displacement in x

heightDisp float The arm displacement in z

angle float The angle between the two arm geometries
Input
name type description

root *agxOSG.group –

deviceMaterial *agx.Material Material of the device

attachmentBody *agx.RigidBody The rigid body that the blade is attached to

isRight bool True means right, in cut direction

9

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Output
name type description

clawBody *agx.RigidBody The Blade rigid body
hinge *agx.Hinge The Hinge attaching the claw arm to the attachmentBody

A.3 createDeviceUpperFrame

This function is called in the AssembleDevice function and creates every-
thing that is necessary for the upper half of the device. Such as the four
feeders together with suspension and springs.
Parameters
name type description

depth float Steel frame x

length float Steel frame y

height float Steel frame z

backLength float Steel frame back y

barThickness float Thickness of the bars
Input
name type description

root *agxOSG.group –

deviceMaterial *agx.Material The material of the device

feederMaterial *agx.Material The material of the feeder

10

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Output
name type description

upperAssembly *agx.Assembly The assembly containing all rigid
bodies and constraints

upperFrameBody *agx.RigidBody The steel frame

chainRight *agx.RigidBody The chain body to the right top feeder

chainLeft *agx.RigidBody The chain body to the left top feeder

cogRight *agx.RigidBody The distance cog body to the right
top feeder

cogLeft *agx.RigidBody The distance cog body to the left
top feeder

chainRight2 *agx.RigidBody The chain body to the right bottom
feeder

chainLeft2 *agx.RigidBody The chain body to the left bottom
feeder

cogRight2 *agx.RigidBody The distance cog body to the right
bottom feeder

cogLeft2 *agx.RigidBody The distance cog body to the left
bottom feeder

A.3.1 createFeederArm

In this function one entire feeder mechanism is created. The catching wires
must be created separately though beacuase they need both the right and left
feeders to rout the wire. This function uses the functions attachingSprings,
guidingCylinder and backFeederSuspension to create the feeder.
Parameters
name type description

cogRadius1 float Radius of the front cog wheel, in the cut direction

cogRadius2 float Radius of the rear cog wheel, in the cut direction

cogDistance float Distance between the two cog wheels
Input
name type description

root *agxOSG.group –

deviceMaterial *agx.Material The device material

feederMaterial *agx.Material The material of the cogs and chain

attachmentBody *agx.RigidBody The rigid body that the blade is attached to

data *agx.Vec3 Depth, length, height of the frame that the
arm chould be placed on

backLength float Length of the frames’ ”back”

barThick float Thickness of the bar in the frames

isRight bool True means right, in cut direction

11

UMIT Research Lab Ludvig Wendelius
November 17, 2011

Output
name type description

feederAssembly agx.Assembly The assembly containing all rigid bodies
and constraints of the feeder

chainBody agx.Rigidbody The rigid body chain

distanceBody agx.RigidBody The distance cog body to the left top
feeder

A.3.2 attachingSprings

Here the springs of the feeder are connected to it. Modelled as two distance
joints.
Parameters
name type description

mechConstant float Spring constant of the regular spring

gasConstant float Constant of the gas spring

gasDamping float Damping for the gas spring
Input
name type description

chainBody *agx.RigidBody 1st attachment of mechanical spring

cylBody *agx.RigidBody 2nd attachment of mechanical spring,
1st attachment of gas spring

frameBody *agx.RigidBody 2nd attachment of gas spring

frameLocalPos *agx.Vec3 position in local coordinates to attach
gas spring to frame

isRight bool true if right, false if left
Output
name type description

mechanicalSpring agx.DistanceJoint The mechanical spring

gasSpring agx.DistanceJoint The gas spring

A.3.3 guidingCylinder

This function just creates the cylinder in front of the feeder, helping the
trees to me guided into the chains.
Parameters
name type description

cylLength float Length of the cylinder

cylRadius float Radius of the cylinder
Input

12

UMIT Research Lab Ludvig Wendelius
November 17, 2011

name type description

root *agxOSG.group –

material *agx.Material The material of the cylinder

cogPos *agx.Vec3 The position of the front cog Cm

cogRadius real Radius of cog

data *agx.Vec3 Depth, length, height of the frame that the
arm could be placed on

barThick real The thickness of the bars

color *agx.Vec4 Vector with the color for the

isRight bool True if right, false if left
Output
name type description

cylBody agx.RigidBody The cylinder rigid body

cylFramePos agx.Vec3 Position in steel frame coordinates where
cylinder should be attached

cylChainPos agx.Vec3 Position in steel frame coordinates where
cylinder should be attached to the chain

A.3.4 backFeederSuspension

With this function the back suspension of the feeder is created.
Parameters
name type description

length1 float Length of the shorter bar

length2 float Length of the longer bar

barThickness float Thickness of the bars
Input
name type description

root *agxOSG.group –

material *agx.Material The material of the suspension

framePos *agx.Vec3 The position where the suspension attaches
to the device frame

chainPos *agx.Vec3 The position where the suspension attaches
to the cogs and chain

color *agx.Vec4 Vector with the color for the suspension

isRight bool True if right, false if left
Output
name type description

bar1 *agx.RigidBody The shorter bar

bar2 *agx.RigidBody The longer bar

hinge *agx.Hinge The Hinge connecting the bars

13

UMIT Research Lab Ludvig Wendelius
November 17, 2011

A.4 createCatchingWire

The wires that the trees are accumulated into are created and routed here.
This function is called by the assembleDevice function but uses agx.RigidBody’s
that are created in the function createFeeder.
Parameters
name type description

wireRadius float The radius of the wire

wireLength float The length of the wire

wireResolution float Number of lumps per meter of the wire

forceRangeParam float The force that the winch can withstand
Input
name type description

attachBody *agx.RigidBody Body to attach the wire to

winchBody *agx.RigidBody Body to attach winch to

Y displacement realValue Displacement in Y direction

isRight bool True if winch to the right, false if to the left
Output
name type description

wire *agx.Wire The created wire

14

	Introduction
	Method
	Results
	Discussion
	Documentation: Device2Feed.lua
	AssembleDevice
	createDeviceLowerFrame
	createBlade
	createClawArm

	createDeviceUpperFrame
	createFeederArm
	attachingSprings
	guidingCylinder
	backFeederSuspension

	createCatchingWire

