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A simple example

Let 2" now be a space of sufficiently smooth¥ functions 2 : 2™ — %. We define a functional
y: X — R as ‘

y(z) = /Q sin(x(p)) dp, (2.153)

i T . . . ; ’ o ; g
v{lleie QQC Z" is a given integration domain. Linearisation of the above functional about a
given argument (function) xp is the following generalisation of (2.114):

l(u) = y(xo) + Dy(xo) [u] = /Q sin(zo(p)) dp + Dy(o) [u], (2.154)

whel‘(e"the directional derivative Dy/(x) [‘u} is now a linear transformation on the function
u € 2 and can be determined by direct generalisation of (2.113):

d
Dy(zo) [u] = —y(z0 + cu
de

e=0

d
T [H sin(zo(p) + € u(p)) dp

e=0

.t /Q cos(wo(p)) u(p) dp. (2.155)

From the above, the linearisation of the functional (2.153) at 2y is then established as

I(u) = ]ﬂ sin(aq(p)) dp + /Q cos(xo(p)) u(p) dp. (2.156)

48 To avoid a precise sl:‘llemenl of regularity properties of functions, we frequently use the term sufficiently smooth
in the present text, meaning that functions have a sufficient degree of regularity so that all nperulim-ls in which they
are involved are properly defined.

3 ELEMENTS OF CONTINUUM
MECHANICS AND
THERMODYNAMICS

HIS chapter reviews some basic concepts of mechanics and thermodynamics of contin-

uous media. The definitions and notation introduced will be systematically employed
throughout the subsequent chapters of this book. The material presented here is well
established in the continuum mechanics literature and an effort has been made to follow
the notation and nomenclature in use in standard textbooks (Billington and Tate, 1981; Bonet
and Wood, 1997; Ciarlet, 1988; Gurtin, 1981; Lemaitre and Chaboche, 1990; Ogden, 1984;
Spencer, 1980; Truesdell and Noll, 1965).

3.1. Kinematics of deformation

Let % be a body which occupies an open region 2 of the three-dimensional Euclidean space
& with a regular boundary OS2 in its reference configuration. A deformation of 2 (Figure 3.1)
is defined by a smooth one-to-one function

p: =&
that maps each material particle? p of 2 into a point
z = ¢(p) (3.1

where the particle is positioned in the deformed configuration of 2. The region of & occupied
by # in its deformed configuration will be denoted

(€2).
The vector field u(p), defined by
u(p) = ¢(p) — P, (3.2)
is the displacement of p. Thus, one may write

xz=7p+u(p) (3.3)

tFor convenience, material particles of 28 will be identified with their positions in the reference configuration
of &.
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Figure 3.1. Deformation.

rigid rotation

fixed point

Figure 3.2. Rigid deformations.

A rigid deformation of 2 is a deformation that preserves the distances between all
material particles of &. A rigid deformation (Figure 3.2) can be a translation, a rotation,
or a combination of a translation and a rotation. A rigid translation is a deformation with
constant displacement vector (u independent of p):

p(p)=p+u. (3.4)

A rigid rotation is a deformation that can be expressed as

w(p)=q+ R(p—q), (3.5)

where R is a proper orthogonal tensor (a rotation) and g is the point about which % is
rotated. A deformation is rigid, including translations and/or rotations, if and only if it can be
expressed in the form:

(p) =(a) + R(p - q). (3.6)

The (.iefornmtion map above represents a rigid translation with displacement (q) — g
superimposed on a rigid rotation R about point g.

A time-dependent deformation of % is called a motion of 98. A motion (Figure 3.3) is
defined by a function
Y: QX H— 6,
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Figure 3.3. Motion.

so that for each time t, the map (-, t) is a deformation of 9. The deformation map at time ¢
will be also denoted ¢,. During the motion ¢, the position z of a material particle p at time

t is given by

Similarly,
p(Q,1)

will denote the region of & occupied by the body 2 at time t. In terms of the displacement
field the motion is expressed as

@(p,t) =p+ulp.t). (3.8)
The parametric curve c(t), defined as
c(t) =p(p, 1) (3.9)

for a fived material point p, describes the trajectory of p during the motion of B.
During a motion ¢, the velocity of a material particle p is defined by

t
@(p, t) = __Mé? ), (3.10)

Since at each time ¢ the map (-, t) is one-to-one (and hence invertible) by assumption,
material points can be expressed in terms of the place they occupy at a time ¢ as

p=y 'z, t) =2 —ule (z,1)1) (3.11)

The map ! is called the reference map. Using the reference map, one may define the
function

o(z, t) =x(p ez, 1), 1). (3.12)
The field v is called the spatial velocity and gives the velocity of the material particle
positioned at a at time £.
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Figure 3.4. Rigid velocity.

A rigid motion of 9 is a motion for which, at each time £, the map (-, {) is a rigid
deformation. A motion ¢ is rigid if and only if at each time ¢, the spatial velocity v admits
the representation

v(z, t) =v(y, t) + W(t) (z — y) (3.13)

forall z, y € (2, t), with W(t) a skew tensor. The velocity at x is given as the sum of a
uniform velocity v(y, t) and a superimposed rotation about the line that passes through y and
is parallel to the axial vector associated to the skew tensor W. By denoting w(t) the axial
vector of W (t), the velocity field above can be re-written as

v(z, t) =v(y, t) +w(t) x (z —y), (3.14)

which is the standard formula for the velocity field of classical rigid-body dynamics. The
vector w(t) is called the angular velocity of the body. The rigid velocity field is schematically
illustrated in Figure 3.4.

3.1.1. MATERIAL AND SPATIAL FIELDS

Both fields & and v introduced above describe the velocity of material particles. However,
& and v have different arguments. While @ has material particle and time as arguments, the
arguments of v are spatial position and time. This motivates the following definitions: Let
a general time-dependent (scalar, vectorial or tensorial) field « be defined over the body 2.
If the domain of « is € x %, i.e. if the value of « is expressed as a function of material
particles p (and time) then «v is said to be a material field. On the other hand, if its domain
is ¢, (Q) x Z, then « is said to be a spatial field. Using (3.7), the material description of a
spatial field a(x, t) is defined by

am(p, t) = al(e(p, t), ). (3.15)
Conversely, the spatial description of a material field 3(p, t) is defined by
Ba(, t) = By~ (e, ), 1). (3.16)

It should be noted that any field associated with a motion of % can be expressed as a
function of time and material particles or spatial position. A material (spatial) field does
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Figure 3.5. Material and spatial descriptions.

not necessarily represent a quantity physically associated with the reference (deformed)
configuration of the body.

Example 3.1.1. Consider, for instance, the rectangular body of Figure 3.5 subjected to the
rigid translation:
z=(p t)=p+tiv,

with constant velocity v. Assume that, during the motion ¢, the temperature field of the
body in question is linearly distributed along its longitudinal axis and varies uniformly
throughout the body at a constant rate. Taking the initial configuration (at t =0) as the
reference configuration (and, therefore, labelling material particles of the body with their
position p at time 0), the material description of this temperature field reads

am(pr f) =a-+ b]?l +ct,

where a, b and ¢ are constants. In view of the assumed motion ¢, the spatial description of
the same field is given by

Os(x,t) = O (p(z, 1), t) =a+ blzy — tvr) +cl.

Note that, in spite of having p as one of its arguments, &, (as 6,) expresses a physical quantity
associated with the configuration of time ¢. The spatial description @ gives the temperature,
at time ¢, of the material particle whose position at time ¢ is . In experimental terms, it would
be the temperature read from a thermometer held fixed in space at «. The function ¢, gives
the temperature, at time ¢, of the material particle whose position at time 0 is p. It would be
the temperature indicated by a thermometer attached to this material particle.

To avoid notational complexity, the subscripts m and s employed above to denote the
material and spatial descriptions of general fields will not be used throughout this book unless
absolutely necessary. In general, the description employed will be evident either from the
context or from the argument used (p or x).




46 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

3.1.2. MATERIAL AND SPATIAL GRADIENTS, DIVERGENCES AND TIME
DERIVATIVES

The material and spatial gradients of a general field o, denoted respectively V,a and V,a,
are defined as

Voo = aipam(p, t), Vea= %as(m, t), (3.17)
i.e. they are, respectively, the derivatives of « with respect to p and @ holding ¢ fixed.
Similarly, the material and spatial time derivatives of a, denoted respectively & and o,
are defined by
L i oin 3.18
o= -afta,,,(p, t), a'= aas(n,, t). (3.18)
The material time derivative ¢&v measures the rate of change of « at a fixed material particle p.
The spatial time derivative, on the other hand, measures the rate of change of ov observed at a
fixed spatial position x. In the example of Figure 3.5, the material and spatial time derivatives
of the temperature field £ are given by

0=c, 6 =-buv +c

The material time derivative in this case corresponds to the temperature rate computed from
a thermometer attached to a material particle p whilst @' is the temperature rate observed
in a thermometer held fixed in space at . Note that the extra term —bwv; added to ¢’ is
a contribution to the rate of change of temperature at x due to the motion of the body
combined with its non-uniform distribution of temperature. This contribution vanishes if the
body moves parallel to e (v; = 0), i.e. the direction of temperature isolines. It would also
vanish if the temperature were uniform throughout the body (b = 0).

Analogously to (2.145) (page 37), we define the spatial and material divergence of a vector
field v, respectively, as

div, v =tr(Vpv), divy v =tr(Vyv). (3.19)

In addition (refer to (2.147)), for a tensor field 7T, the spatial and material divergence are
given, in Cartesian components, by

BTU

_ 0T
N 81J !

i 7] T i— &Jm_ - .
(div, T") B (3.20)

(dive T);

The compact definition (2.146) is also applicable to the material and spatial divergence of a
tensor.

3.1.3. THE DEFORMATION GRADIENT
The deformation gradient of the motion ¢ is the second-order tensor F' defined by

Oz;

F (p,t)=Vpp(p, 1) = op

(3.21)

In view of (3.8) it can be written as

F=1TI+V,u.
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Figure 3.6. The deformation gradient.

The Cartesian components of F' are given by

85‘)5
Ou;
=8 + — 3.23
611 apJ: ( )

where z; denote the components of ;. In terms of the reference map (3.11), the deformation
gradient may be equivalently expressed as

F(2,t) = [V Yz, )] ' = [T - Veu] ™, (3.24)

Consider the infinitesimal material fibre dp that connects two neighbouring material
particles p and p + dp of a deforming body (Figure 3.6). Under the deformation ¢,, these
particles are mapped, respectively, into @ and = + da. The deformation gradient is the linear
operator that relates infinitesimal material fibres dp with their deformed counterparts da:

dz = F dp. (3.25)

A deformation of 2 with uniform deformation gradient (F' independent of p) is called
a homogeneous deformation. A deformation is homogeneous if and only if it admits the
representation
¢(p)=w(@)+F(p-4q) (3.26)
for all points p, g € 4, with F' a positive definite tensor. Clearly, rigid translations and
rotations are homogeneous deformations.

3.1.4. VOLUME CHANGES. THE DETERMINANT OF THE DEFORMATION
GRADIENT

Consider now the infinitesimal volume dvg defined by the infinitesimal vectors da, db and de
emanating from the material particle p in the reference configuration (Figure 3.7). Trivially,
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Figure 3.7. The determinant of the deformation gradient.

one has
duvp = (da x db) - de. (3.27)

The deformation ¢, maps the infinitesimal vectors, respectively, into F' da, F' db and F dc,
so that the deformed infinitesimal volume is given by

dv = (F da x F db) - F dc. (3.28)

By making use of identity (2.54), it follows that

dv
det FF = — 3.29
g (3.29)
i.e. the determinant of the deformation gradient represents, locally, the volume after defor-
mation per unit reference volume (or volume change ratio). Throughout this book, we will
adopt the following notation

J =det F. (3.30)

From (3.29) it follows that if det F' =0, then the infinitesimal volume has collapsed
into a material particle. Since the body is not allowed to penetrate itself (this restriction
is embodied in the assumption that the deformation map is one-to-one), this represents a
physically unacceptable situation. Also note that, at the reference configuration, ¥' = I and,
consequently, J = 1. Thus, a configuration with .J < 0 cannot be reached from the reference
configuration without having, at some stage, JJ = 0. Therefore, in any deformed configuration
of a body, .J satisfies

J>0. (3.31)

Isochoric deformations

Isochoric (or volume-preserving) deformations are deformations that do not produce changes
in volume. A locally isochoric deformation is characterised by

J=1 (3.32)
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Volumetric deformations
Volumetric deformations (i.e. pure contractions/dilations) are deformations consisting purely
of a uniform contraction/dilation in all directions. The deformation gradient of any volumetric
deformation is a spherical tensor:

F=al, (3.33)
where the scalar « is the corresponding contraction/dilation ratio. With lp and ! denoting,
respectively, the undeformed and deformed lengths of a material fibre, for a locally volumetric

deformation we have: ’
—=a (3.34)
lo

in all directions.

3.1.5. ISOCHORIC/VOLUMETRIC SPLIT OF THE DEFORMATION GRADIENT

Any deformation can be locally decomposed as a purely volumetric deformation followed
by an isochoric deformation or as an isochoric deformation followed by a pure volumetric
deformation. To see this, note that the deformation gradient can always be multiplicatively

split as
F = Fiy F,= F, Fi, (3.35)

where ]
F,=(det F)3 I (3.36)

is the volumetric component of F' and
Fio = (det F)™5 F (3.37)

is the isochoric (volume-preserving or unimodular) component. Note that, by construction,
F, corresponds indeed to a purely volumetric deformation (it has the representation (3.33))

and, since l
det F'y = [(det F)3]* det I =det F, (3.38)

F, produces the same volume change as F'. The isochoric component in turn represents a
volume preserving deformation, that is,

det Fiso = [(det F)™5) det F = 1. (3.39)

3.1.6. POLAR DECOMPOSITION. STRETCHES AND ROTATION

By applying the polar decomposition to the deformation gradient, one obtains:
F=RU=VR, (3.40)

where the proper orthogonal tensor R is the local rotation tensor and the symmetric positive
definite tensors U and Vare, respectively, the right and left stretch tensors. The right and left
stretch tensors are related by the rotation

V=RUR". (3.41)
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Figure 3.8. Polar decomposition of the deformation gradient. Stretches and rotation.

The stretch tensors U and V'can be expressed as
U=vC, Vv=vB, (3.42)

where C and B — named, respectively, the right and left Cauchy-Green strain tensors — are
defined by
C=U*=F"F, B=V?=FFT, (3.43)

Example 3.1.2 (A simple plane deformation). To illustrate the meaning of the polar
decomposition of F', a simple example consisting of a body subjected to a homogeneous
deformation, i.e. with F' independent of p, is given in what follows. Consider the rectangular
body of Figure 3.8 subjected to homogeneous stretching/compression in the directions of its
longitudinal and transversal axes (respectively, the directions of 2; and 25 in the reference
configuration) with a superimposed rigid rotation of angle . With p; and x; denoting
coordinates of p and @ in the Cartesian system associated with the orthonormal basis {;, 72},
the deformation map is defined as

T1=pP1 A COSQ— P2 A sina
@: (3.44)

Ty =p1 A1 sina + pa As cos a,
where the factors A; and s determine how much stretching/compression occurs, respec-

tively, along the longitudinal and transversal axes. In the basis {;, 42}, the matrix represen-
tation of the corresponding deformation gradient is given by

Al cosa —Ag sina

F= (3.45)

A1 sina A2 coSa
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The rotation tensor, obtained from the polar decomposition of F', is represented by

cosa —sina
— (3.46)
sin « Cos o
and the right and left stretch tensors by
A0
U= (3.47)
0 A2
and
A1 cos? a+ A sin® o (A — A2) sina cosa
V= . (3.48)

(M — A2) sina cosa A sin® a+ A2 cos®a
Insight into the meaning of the polar decomposition of the deformation gradient can be gained
by focusing now on the generic infinitesimal fibre represented by dp in Figure 3.8. Under
deformation, dp is mapped into dz = F' dp. With use of the polar decomposition of F, this
mapping can be split into two sequential steps. If the right polar decomposition F' = R U is
used, the two steps are:

1. dp — U dp,
2. Udp— R (U dp)=Fdp.

In the first operation, dp deforms as if the body were being purely stretched (or compressed)
along the directions of its longitudinal and transversal axes (which at this stage coincide with
i1 and i respectively). The second mapping is a pure rotation (of angle o) of the deformed
fibre U dp and corresponds to a rigid rotation of the body. If the left polar decomposition
F =V R is employed instead, the sequence is reversed:

1. dp — Rdp,
2. Rdp — V(Rdp)= Fdp.

In this case, the fibre is first rigidly rotated by an angle o.. The second operation corresponds
to the deformation of the fibre under pure stretching/compression of the body along its axial
and transversal directions. However, due to the previous rotation, these directions coincide
now with i} = R, and i3 = R 42, respectively. Note that if the basis {47, 5} is used, the
matrix representation of V' reads
A1 0
V= ; (3.49)
0 A

so that the transformation (-) — V() indeed corresponds to stretchings along the directions
of 4] and %5.

The above example has illustrated the significance of the polar decomposition of F’. The
discussion has been restricted to a homogeneous deformation only to ease visualisation of the
stretches and rotation involved in the decomposition of the deformation gradient. It should be
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remarked that for a generic deformation of a body, in which F' is a function of p, intermediate
configurations of the body corresponding to pure stretching or pure rigid rotation (such as
those illustrated in Figure 3.8) do not exist in general. Nevertheless, the interpretation of U
and Vas pure stretchings and of R as a rigid rotation remain valid in a local sense. Note that
for any deformation ¢, one may write:

z+dr=p(p+dp)=p+ F(p)dp, (3.50)

that is, within an infinitesimal neighbourhood of a material point p, the deformation
behaves like a homogeneous deformation with gradient F'(p). Thus, within this infinitesimal
neighbourhood of p, U(p) and V (p) measure stretches from p and R(p) measures the local
rigid rotation.

Spectral decomposition of the stretch tensors

Since U and V' are symmetric, it follows from the spectral theorem that they admit the
spectral decomposition

3 3
U= Mliolh, V=) hede, (351)

i=1 i=1

where the {1, A2, A3} are the eigenvalues of U (and V') named the principal stretches.
The vectors [; and e; are unit eigenvectors of U and Vrespectively. The triads {1, 15,13}
and {e}, ea, ez} form orthonormal bases for the space % of vectors in & They are called,
respectively, the Lagrangian and Eulerian triads and define the Lagrangian and Eulerian
principal directions.
Substitution of (3.41) into (3.51) gives the following relationship between the eigenvectors
of Vand U:
L‘ =R €e;, (352)

that is, each vector e; differs from the corresponding I; by a rotation R.

The spectral decomposition of the right and left stretch tensors implies that in any deforma-
tion, the local stretching from a material particle can always be expressed as a superposition
of stretches along three mutually orthogonal directions. In the example discussed above,
illustrated by Figure 3.8, { A1, A2} are the principal stretches and the Lagrangian and Eulerian
bases are, respectively, {21, 22} and {4, i5}.

3.1.7. STRAIN MEASURES

In the above section, we have seen that in a local sense, i.e. within an infinitesimal
neighbourhood of a generic material particle p, pure rotations can be distinguished from
pure stretching by means of the polar decomposition of the deformation gradient. Under the
action of pure rotations, the distances between particles within this neighbourhood remain
fixed. When the distances between material particles are identical to their values in the
reference configuration, we say that the region surrounding p is unstrained. In this case,
the difference between the deformed neighbourhood of p and its reference configuration is a
rigid deformation. Pure stretching, on the other hand, characterised by U or V; changes the
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distance between material particles. Under stretching, we say that the region surrounding p
is strained. To quantify straining, i.e. to evaluate how much U (or V) departs from I (a rigid
deformation), some kind of strain measure needs to be defined.

Let us consider, again, the generic material fibre represented by the infinitesimal vector
dp that emanates from p (Figure 3.8 serves as an illustration). The deformation maps dp into
dx = F dp. Thus, the square of the deformed length of the material fibre in question reads

|dz||? = Fdp- Fdp=Cdp-dp=(I+2E®)dp-dp, (3.53)

where C = F T F = U ? is the right Cauchy—Green tensor and the strain measure E@ (the
meaning of the superscript will be made clear below) is the so-called Green—Lagrange strain
tensor defined as

E® =1(C-1I)
=1Vou+ (%) + (Vpu) Vyu). (3.54)

No straining occurs, that is, the size of any infinitesimal material fibre emanating from
p remains constant (||dz|| = ||dp||, ¥V dp), if and only if E® = 0. This condition is
equivalent to C = U = I, implying that F' is an orthogonal tensor and the deformation is
rigid (pure translation and/or rotation) in the neighbourhood of p. From the definition of
E® its eigenvectors coincide with the Lagrangian triad so that it can be expressed as

3
E®?) — Z %(,\f -1 el; (3.55)

i=1

and, since it measures strains along the principal Lagrangian directions, it is called a
Lagrangian strain measure.

It must be emphasised that the Green—Lagrange strain measure is defined by expression
(3.54). Tt is by no means the unique way of quantifying straining. In fact, the definition of a
strain measure is somewhat arbitrary and a specific choice is usually dictated by mathematical
and physical convenience. An important family of Lagrangian strain tensors, i.e. strain
measures based on the Lagrangian triad, is defined by Seth (1964), Hill (1978) and Ogden
(1984)

l(U m—I) m#0
EM™ = ! m (3.56)
In[U] m=10

where m is a real number and In[ -] denotes the tensor logarithm of | - |. Equivalently, in
terms of its spectral decomposition, (3.56) may be rephrased as

3
E(rn) _ Z f(/\z) li ® li, (357)
i=1
where 1
— (A" =1) m#0
f) = -m( ) 7 (3.58)
In A; m=0.
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Figure 3.9. Strain measures. Principal strain as a function of the principal stretch for various strain
measures.

The Green—Lagrange strain tensor, E? isa particular member of this family (with m = 2).
Other commonly used members of this family are the Biot (7m = 1), Hencky (m =0) and

Almansi (m = —2) strain tensors. Note that for any m, the associated strain tensor vanishes
if and only if the deformation gradient represents, locally, a rigid deformation, i.e.
EM=0 < U=I <— F=R (3.59)

To illustrate the relationship between the stretch and strain tensors, the principal strain for
various strain measures is plotted in Figure 3.9 as a function of the corresponding principal
stretch.

Analogously to the strain measures discussed above, it is also possible to define tensors
that measure strain along the principal Eulerian directions or, simply, Eulerian strain tensors.
Based on the /left stretch tensor, the Eulerian counterpart of the Lagrangian family of strain
measures above is defined by

1
S V?H i I m
E(m) — 77?‘( ) L ?é U (3.60)
In[V) m =0,
or, using the Eulerian triad,
3
™M =3" f(\)ei®e (3.61)
=1
Lagrangian and Eulerian strain tensors are related by
et™ = R '™ RT, (3.62)

that is, they differ by the local rotation R.
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3.1.8. THE VELOCITY GRADIENT. RATE OF DEFORMATION AND SPIN

The spatial field L, defined as
L =V,v, (3.63)

is named the velocity gradient. Equivalently, with application of the chain rule one has

_0(%\ 0 _ g
—3t(ap> 5 =FF " (3.64)

Two important tensors are obtained by splitting L into its symmetric and skew parts. Namely,
the rate of deformation tensor (also referred to as the stretching tensor), D, and the spin
tensor, W, are defined by

D =sym(L), W =skew(L). (3.65)

To gain insight into the physical meaning of the tensors D and W, it is convenient to
consider a body undergoing a motion with uniform (independent of ) velocity gradient. For
such a motion the velocity field reads

v(z, t) =v(y,t) + L(t) (z — y). (3.66)

If the decomposition of L into its symmetric and skew parts is introduced, the velocity field

can be split as ‘
v(w, 1) = v™(z, t) + v°(x, 1), (3.67)

where the following definitions have been used:

oz, 1) =v(y, t) + W(t) (x —y),
; (3.68)
v¥(z, t) = D(t) (z — ).

By recalling expression (3.13), the velocity v®, associated with the spin tensor W, can be
immediately identified as a rigid velocity. The only contribution to straining is then provided
by the term v, associated with the rate of deformation tensor. Note that, due to its symmetry,

D admits the representation
3
D= Z d; e; ® e;, (3.69)
i=1
with d; and {e; }, respectively, the eigenvalues and an orthonormal basis of eigenvectors of D.
With the spectral representation above, the velocity field v° can be decomposed as a sum of
three linearly independent velocities of the form:

d; (e; ® ei) (x—vy),

with no summation implied on i, so that the components of v¥ relative to the basis
{ey, ea, es} are given by

v =d; (zi — ui), (3.70)
again with no summation implied, where 2; and y; denote the coordinates of points & and y
in a Cartesian system associated to {ei, ea, e3}. As schematically illustrated in Figure 3.10,
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Figure 3.10. Straining velocity field.

each v¥ corresponds to a velocity field that purely stretches the body in the direction of e;,
with the plane perpendicular to e; that passes through y fixed. Thus, the rate of deformation
tensor corresponds indeed to a pure stretching of the body.

If a general motion (in which L is not necessarily uniform) is considered, the above
decomposition of the velocity field into the sum of a rigid velocity and a straining velocity
remains valid in the local sense. In this case, consider a point & and a point & + dx lying
within an infinitesimal neighbourhood of z. The velocity field within this infinitesimal
neighbourhood of x is given by

v(x +dz, t) =v(z, t) + L(z, t) dz, (3.71)
so that, in any motion, the velocity field can be locally decomposed as a sum of a rigid velocity
v(zx, t) + Wi(a, t) da,
associated with the spin tensor W, and a straining velocity

D(z, t) dz,

associated exclusively to the rate of deformation tensor D).

3.1.9. RATE OF VOLUME CHANGE

The rate of volume change, J, is related to the rate of deformation tensor through the

expression )
J=JtrD. (3.72)

To derive this expression, we first apply the chain rule to obtain

. - d(det F)

J=(det F) =——2 F =JFT.F, (3.73)
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where we have made use of relation (2.140) (page 36) for the derivative of the determinant.
This, together with definition (2.36) (page 22) of the trace of a tensor and the fact that the

skew symmetry of W implies
tr L=tr D, (3.74)

leading to (3.72).
Also note that from the definition (2.145) of the divergence of a vector field we have

tr D = div, v, (3.75)
so that the rate of volume change can be equivalently expressed as

J = Jdiv,; v. (3.76)

3.2. Infinitesimal deformations

Small or infinitesimal deformations are deformations with sufficiently small displacement
gradient, V,u. For such deformations, the description of kinematics can be substantially
simplified.

3.2.1. THE INFINITESIMAL STRAIN TENSOR

Recall definition (3.43) of the Cauchy—Green tensors. In terms of the displacement gradient,

* one has

c=1I +Vu+ (Vu)! + (Vu)? Vyu,
(3.77)

B=1I + Vyu+ (Vu)" + u (V)T
If the displacement gradient is sufficiently small, the second-order terms in Vj,u of the expres-
sions above can be neglected so that, under small deformations, the following approximation

can be made
Cx=B=xI1+Vyu-+ (V,,u)T. (3.78)

From the above expression and the definitions of the Green—-Lagrange strain tensor E?) and
its Eulerian counterpart €(2), it follows that, to the same order of approximation,

E® ~e® = 1[Vu + (Vyu)T]. (3.79)

This motivates the definition of the infinitesimal strain tensor to measure strains under small
deformations
e =Vyu, (3.80)
where we have introduced the notation
s ; T
Vi) =sym|[V(-)] = %[V() + V()] (3.81)

for the symmetric gradient of a vector field. It is worth pointing out here that € is a linear
functional of w. This fact greatly simplifies the description of small deformations.

In fact, it can be easily shown that not only E™ and €@ but all Lagrangian and Eulerian
strain measures defined by expressions (3.56) and (3.60) have the same small deformation
limit, i.e. for any m and to within an error of second order in V;,u, one has

E(m) o~ E(HI) ~E. (382)
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3.2.2. INFINITESIMAL RIGID DEFORMATIONS

In terms of the infinitesimal strain tensor, the square of the deformed length of a generic
material fibre dp (recall the text preceding expression (3.53)) reads

ldz||* = (I+2¢€)dp- dp + o(Vpu) (3.83)

with o(V})u) a term of second order in V. It is clear from this expression that, to within an
error of o(V,u), only the symmetric part € of V,u is associated with local straining. The skew
part of V,,u produces no straining and is associated exclusively with local infinitesimal rigid
rotations. For a pure local infinitesimal rigid rotation (||dz|| = ||dp||, V ||dp||) the tensor &
vanishes or, equivalently, V,,u is skew.

For a body under an arbitrary homogeneous deformation (V,u independent of p), the
displacement field can be written as

u(p) =u(q) + Vyu (p — q), (3.84)

for all points p and g. For infinitesimal rigid deformations and within an approximation of
second order in the displacement gradient, V1 is skew and the field u can be written as

u(p) =u(q) + A (p—q), (3.85)

for all points p and g with A = V,u a skew tensor. Alternatively, with a denoting the axial
vector of A, u can be expressed as

u(p) =u(g) +ax (p - q). (3.86)

Any displacement that admits the representation (3.85)-(3.86) is called an infinitesimal rigid
displacement field. Note that infinitesimal rigid displacements have the same representation
as rigid velocity fields (see expressions (3.13) and (3.14)).

3.2.3. INFINITESIMAL ISOCHORIC AND VOLUMETRIC DEFORMATIONS

Analogously to the isochoric/volumetric split of the deformation gradient in the finite strain
context (refer to Section 3.1.5), the infinitesimal strain tensor € can also be split into a
purely volumetric and a volume-preserving contribution. The isochoric/volumetric split of the
infinitesimal strain tensor is additive (in contrast to the multiplicative split of the deformation
gradient in the finite strain theory) and reads

e=e4+ey, (3.87)

where
EQ=E— €, (3.88)
is the isochoric component, known as the strain deviator or deviatoric strain, which measures

pure infinitesimal distortions. The tensor

ev=3¢e,1 (3.89)
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is the infinitesimal volumetric strain tensor. The scalar invariant of €, defined as
ee=he)=tre=tuVu=uVu (3.90)

is named the infinitesimal volumetric strain. An infinitesimal deformation is volume-

preserving if and only if 1 (3.91)

The tensors eq and g, can be equivalently written in terms of linear operations on & as
ea=ls—3I01I]:¢, EV:%(I@AI)!E- (3.92)
Tt should be noted that the strain deviator is a rraceless tensor, i.e.

treq = 0. (3.93)

The fourth-order tensor defined as
la=lg—3I®I, (3.94)

is referred to as the deviatoric projection tensor. It projects second-order symmetric tensors
into the deviatoric subspace, i.e. into the space of traceless tensors. Throughout this book we
shall often use the alternative notation

dev(S)
to represent the deviator of a symmetric tensor S, i.e.

dev(S)=1q: 8. (3.95)

From finite to infinitesimal isochoric and volumetric strains

Analogously to Section 3.2.1, where the infinitesimal strain tensor isl deri\_fed f?om‘ t!le
finite strain theory, the above isochoric/volumetric split can also be obtained from its finite
deformation counterpart by neglecting higher order terms in Vj,u.

To show this, let us consider the Green-Lagrange strain tensor, E® . Following the
isochoric/volumetric split of the deformation gradient given by (3.35), we define the cor-
responding isochoric and volumetric Green-Lagrange strains

ER =1(Ceo— 1) EP=}(C,-1), (3.96)
where . )
Ciwo=F.L Figo=(det F)"3 FT F=(det F)"3C (3.97)
and ) "
C,=FIF,=(det F)i L (3.98)

Now we proceed to show that, under small strain conditions (small V,u), the volumetric
Green-Lagrange strain defined above leads to definition (3.90). From (3.96); and (3.98),

we have .
E® =1[(det F)s —1] L (3.99)
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From the standard concepts of differentiation discussed in Section 2.5 together with the
definition F' =1 + V,u and the expression given in (iii) of page 36 for the derivative of
the determinant, we find that

det F' = det(I + V,u)
=det I+ (det I) I: Vyu + o(V,u)
=1+ tr Vyu + o(Vyu) (3.100)

and
(det F)5 =1+ 2 tr Vyu + o(Vyu). (3.101)

With the substitution of the above expression into (3.99), we then obtain
E® =¢, + o(Vyu). (3.102)
Thus, if higher-order terms are neglected, we have the following approximation
EP ~e,. (3.103)

Following a completely analogous procedure with the isochoric Green—Lagrange strain,
we obtain

= 3{(1 - 3 tr Vou + o(Vyu)|[I + V,/'u + Vyu + o(Vyu)] - I'}
=& — 3(tr Vu)T + o(Vyu)
=eq + o(V,u). (3.104)

E® = 1{(det F)~3 (I + VT u+ Vyu + V7 u Vpu) — I

Thus, to within second-order terms in V,u, we have

2
BZ) ey (3.105)

The infinitesimal limits above are valid for all Lagrangian and Eulerian finite strain
measures defined by expressions (3.56) and (3.60).

3.3. Forces. Stress Measures

The previous sections of this chapter have been limited to the mathematical description of the
kinematics of deformation. In particular, concepts such as the deformation gradient, rotations
and the different strain measures used to quantify internal straining are of utmost importance
in the formulation of the mechanical and thermodynamical theory of continua. It should be
noted that, thus far, no reference has been made to forces and how they are transferred within
continuum bodies.

The forcies associated with the mechanical description of a body can be classed into three
categories:*

1Stress couples could also be considered but these are outside the scope of this book and fall within the realm of
the so-called polar continuum theories (Cosserrat and Cosserrat, 1909; Toupin, 1962; Truesdell and Noll, 1965).
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1. Boundary forces. Forces applied to the boundary of the body such as those resulting
from contact with another body. The dimension of boundary forces is force per unit

areca.

2. Body forces. Forces exerted on the interior of the body. Gravitational and magnetic
forces are typical examples of such forces. The dimension of body forces is force per
unit mass (or volume).

3. Internal interactions between adjacent paris of a body. The dimension of such
interactions is force per unit area.

Internal interaction forces arise from the action of one part of the body upon an adjacent
part and are transmitted across the surface that separate them. Boundary forces represent
interactions between the exterior and the interior of a body and, as internal interactions,
are transmitted across a surface (the boundary of the body in this case). Thus, boundary
forces and interactions between distinct parts of a body are forces of essentially the same
type and will be collectively called surface forces. To describe surface forces mathematically,
the concept of stress as well as the different ways of quantifying it are introduced in this

section.

3.3.1. CAUCHY’S AXIOM. THE CAUCHY STRESS VECTOR

Crucial to the description of surface forces is Cauchy’s axiom stated in what follows. Consider
a body Z in an arbitrarily deformed configuration (Figure 3.11). Let .¥” be an oriented
surface of # with unit normal vector m at a point . Cauchy’s axiom states that ‘At x,
the surface force, i.e. the force per unit area, exerted across .#” by the material on the side
of . into which m is pointing upon the material on the other side of & depends on %’ only
through its normal n’. This means that identical forces are transmitted across any surfaces
with normal n at @ (such as surfaces .%” and .7 in Figure 3.11). This force (per unit area) is
called the Cauchy stress vector and will be denoted

t(n),

with dependence on @ and time omitted for notational convenience, If .% belongs to the
boundary of 4, then the Cauchy stress vector represents the contact force exerted by the
surrounding environment on 2.

3.3.2. THE AXIOM OF MOMENTUM BALANCE

Let % now be subjected to a system of surface forces, ¢(x, ), and body forces, b(x). The
spatial field b(z) represents force per unit mass acting on the interior of %. The axiom of
momentum balance asserts that ‘For any part 22 of the deformed configuration of %, with
boundary ., the balance of linear momentum,

[ t(n) da + / pbd-z!:/ pvdv (3.106)
JS JP P

and the balance of angular momentum,

/ ccxt(n)da%—/ :J:Xpbd‘vzf T x pvdv (3.107)
J J 7 J P
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Figure 3.11. Surface forces.

are satisfied, with p = p(x) denoting the mass density field, i.e. the mass per unit volume in
the deformed configuration of 2°. The right-hand sides of (3.106) and (3.107) contain the
inertia terms, with © = it denoting the acceleration field of 4.

3.3.3. THE CAUCHY STRESS TENSOR

One of the most fundamental results in continuum mechanics is Cauchy’s theorem which
establishes that, as a consequence of the axiom of momentum balance, the dependence of
the surface force £ upon the normal 7 is linear, i.e. there exists (recall Section 2.2, starting
page 19) a second-order tensor field o () such that the Cauchy stress vector (see Figure 3.12)
is given by

t(xz,n) =o(x) n. (3.108)

Further, o is symmetric,’
o=07, (3.109)

The tensor o is called the Cauchy stress tensor and is often referred to as the true stress tensor
or, simply, stress tensor. Formal proofs to Cauchy’s theorem can be found, among others, in
Wang and Truesdell (1973), Gurtin (1972, 1981), Gurtin and Martins (1976), Marsden and
Hughes (1983) and Ciarlet (1988).

At this point, it should be emphasised that, in real life bodies, forces are actually
transferred by atomic interactions which are clearly discrete quantities. The continuum
mathematical representation of such interactions by means of a stress tensor is meaningful
only in an average sense and is valid only for a sufficiently large volume of material. This
observation applies equally to quantities such as strain measures or any other continuum
fields associated with the body. The smallest volume of material for which the continuum
representation makes sense is called the representative volume element.

Cauchy stress components

Using an orthonormal basis {81, es, 63}, the Cauchy stress tensor is represented as

o =0 e; X e, (3.110)

$The symmeltry of o is a result of the balance of angular momentum.
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Figure 3.12. The Cauchy stress.

[ e

Figure 3.13. Cauchy stress tensor components and principal Cauchy stresses.

with summation on repeated indices implied and the components o;; given by
a;j:(cre,-)-ej. (311])

From (3.108), it follows that the vector o e; is the force per unit area exerted across a surface
whose unit normal vector is e; at the point of interest. The component o;; of the Cauchy
stress tensor is the magnitude of the projection of o e; in the direction of e;. The schematic
representation of such projections is illustrated in Figure 3.13 where an infinitesimal cube
with faces normal to the base vectors e;, es and eg is considered. The components o711,
a2 and ga3 represent the tractions normal to the faces of the infinitesimal cube whereas the
remaining components, d12, 013, 021, 023, 731 and o9 are the shear tractions acting parallel
to the faces.

Principal Cauchy stresses

Due to its symmetry, the Cauchy stress tensor admits the spectral representation

3
o=Y oie}®e, (3.112)

i=1
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that is, there exists an orthonormal basis {e], e5, e3}, for which all shear components of the
Cauchy stress tensor vanish and only the normal components may be non-zero. The normal
components, o;, are the eigenvalues of o and are called the principal Cauchy stresses. The
directions defined by the basis {e}, e3, e3} are named the principal stress directions. The
schematic representation of the forces acting on the faces of the infinitesimal cube oriented
according to the principal stress directions is shown in Figure 3.13. The forces are exclusively
normal to the faces of this cube. Note that, analogously to the representation of the stress
tensor in terms of principal stresses, the spectral decomposition has been used in Section 3.1
to represent the stretch tensors U and V in terms of principal stretches (see expression
(3.51)).

Deviatoric and hydrostatic stresses

It is often convenient, particularly for the purpose of constitutive modelling, to split the stress
tensor ¢ into the sum of a spherical and a traceless component

o=s+pl, (3.113)

where the invariant
p=3h(o)=3itro (3.114)

is the hydrostatic pressure (also referred to as hydrostatic stress, mean stress or mean normal
pressure), and
s=o—pl=l,:0, (3.115)

with | defined by (3.94), is a traceless tensor named the deviatoric stress or stress deviator.
The tensor
pI=iI®I):0o (3.116)

is called the spherical stress tensor. The above decomposition is analogous to the iso-
choric/volumetric split of the infinitesimal strain tensor discussed in Section 3.2.3.

3.3.4. THE FIRST PIOLA-KIRCHHOFF STRESS

The traction vector £ of expression (3.108) measures the force exerted across a material
surface per unit deformed area. Crucial to the definition of the first Piola—Kirchhoff stress
is the counterpart £ of ¢ that measures, at the point of interest, the force that acts across
any surface whose normal is 1 in the deformed configuration per unit reference area. With
da denoting an infinitesimal element of area of a surface normal to n in the deformed
configuration and with dag being its undeformed counterpart, £ is expressed as (Figure 3.14)

_ la ]
t:(it_di

= : 3.11
dag dag S ( 7

Consider the surface .%” in the reference configuration of % (Figure 3.14). Let dp, and
dp, be infinitesimal (linearly independent) vectors tangent to .’ at the material point p and
let dag be the area element generated by dp; and dp,. With m denoting the unit normal to
& at p, one has
mdag =dp, x dp,. (3.118)
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p(F)

Figure 3.14. The first Piola-Kirchhoff stress tensor.

Under deformation, the tangent vectors dp; and dp, are mapped, respectively, into F* dp,
and F' dp, so that the unit normal to the deformed configuration of .%’reads

nda = F dp, x F dp,, (3.119)

where da is the corresponding deformed area element. Pre-multiplication of both sides of the
expression above by F' T together with use of the identity

Su x Sv=(det 8) ST (u x v), (3.120)
valid for any invertible tensor S and vectors « and v, leads to
FTnda=.Jdp, x dpy = .J mdao, (3.121)
where .J = det F. This is equivalent to
90— J F~Tmn, (3.122)
day

Finally, with substitution of the expression above into (3.117), £ may be written in terms of
the reference unit normal m as

t=JoF Tm. (3.123)
This last expression motivates the following definition
P=JoF T, (3.124)

so that the force transmitted across .%” measured per unit reference area reads
t=Pm. (3.125)

The tensor P is called the first Piola—Kirchhoff stress and is often referred to as the Piola—
Kirchhoff stress or nominal stress.1 The vector t is obtained by applying the first Pio]-u—
Kirchhoff stress to the unit vector 7, normal to the reference configuration of .%”at the point
of interest. Note that in contrast to the Cauchy stress, P is generally unsymmetric.

YSome authors (Billington and Tate, 1981; Nemat-Nasser, 1999) define the nominal stress as the transpose of the
first Piola—Kirchhoff stress tensor.
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configuration

Figure 3.15. The first Piola—Kirchhoff stress. Example.

Example 3.3.1 (The Piola-Kirchhoff stress). Consider a cylindrical bar (Figure 3.15)
with cross-sectional area ag in its initial configuration (taken as reference). During a
uniaxial experiment this bar is stretched along its longitudinal axis (direction of e;) with
a simultaneous reduction of its cross section. Assume that the final deformed configuration
of the bar corresponds to a state of homogeneous deformation with cross-sectional area a.
Furthermore, assume that the bar is subjected to a state of uniaxial stress, with constant o
given by
o=011 € ®ej.

Let f= f e; be the total force applied to the deformed configuration of the bar (by the
experimental equipment). Under the assumption of uniform stress distribution in the cross-
section of the bar, force balance requires that the Cauchy stress component 1, be given by

g11 = —.
a

In practice, the force f (and not the stress component) is what can actually be measured in an
experiment. Thus, after fis measured, the Cauchy stress oy; is determined according to the
expression above. If instead of a, the reference cross-sectional area ay is used, then the first
Piola—Kirchhoff or nominal stress component is determined

P = i
ap

It is obvious that, in this case, the corresponding tractions ¢ and &, respectively per unit
deformed and reference area, are simply

1 - 1
t=cnei=-f, t=Phe=—Ff
a agp

3.3.5. THE SECOND PIOLA-KIRCHHOFF STRESS

The Second Piola—Kirchhoff stress tensor, denoted S, is the tensor defined as

S=JF lgF T, (3.126)
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Note that from this definition, we have
ST =JF 1eTFT, (3.127)

so that the symmetry of o implies that S is symmetric.

3.3.6. THE KIRCHHOFF STRESS

Another important measure of stress is the Kirchhoff stress tensor, T, defined by
T=Jo. (3.128)

Due to the symmetry of o, the Kirchhoff stress is symmetric. Its spectral representation reads
3

=) me;@c¢], (3.129)
i=1

where the principal Kirchhoff stresses, 7;, are related to the principal Cauchy stresses, a;, by
T!':JO'-,'. (3130)

Later in this book, frequent reference to the principal Kirchhoff stresses will be made in the
formulation of various constitutive models.

3.4. Fundamental laws of thermodynamics

In order to state the fundamental laws of thermodynamics, it is necessary to introduce the
scalar fields @, e, s and 7 defined over 48 which represent, respectively, the temperature,
specific internal energy, specific entropy and the density of heat production. In addition, b
and g will denote the vector fields corresponding, respectively, to the body force (force per
unit volume in the deformed configuration) and heat flux.

3.4.1. CONSERVATION OF MASS

The postulate of conservation of mass requires that

p+ pdivg w=0. (3.131)

3.4.2. MOMENTUM BALANCE

In terms of the Cauchy stress tensor, whose existence has been established in Section 3.3.3,
the balance of momentum for 4 can be expressed by the following partial differential
equation with boundary condition: !

divyo+b=pi inep(Q)
(3.132)
t=on in p(08),

| Equations (3.132) are also a result of Cauchy’s theorem, alluded to in page 62.
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where 1 is the outward unit vector normal to the deformed boundary ¢ (952) of 28 and t is the
applied boundary traction vector field on ¢(9€2). Equations (3.132) are often referred to as
the strong, local or point-wise form of equilibrium. Equation (3.132); is known as Cauchy’s
equation of motion.

The above momentum balance equations are formulated in the spatial (deformed) config-
uration. Equivalently, they may be expressed in the reference (or material) configuration of
2 in terms of the first Piola—Kirchhoff stress tensor as

div, P +b=pu inQ

B (3.133)
t=Pm in 952,

where

b=Jb (3.134)

is the reference body force, i.e. the body force measured per unit volume in the reference
configuration,

p=Jp, (3.135)

is the reference density (mass per unit volume in the reference configuration), t is the
reference boundary traction (boundary force per unit reference area) and m is the outward
normal to the boundary of 44 in its reference configuration.

3.4.3. THE FIRST PRINCIPLE

The first principle of thermodynamics postulates the conservation of energy. Before stating
this principle, it is convenient to introduce the product

o: D,

which represents the stress power per unit volume in the deformed configuration of a body.
The first principle of thermodynamics is mathematically expressed by the equation

pe=oc.:D+ pr—div; q. (3.136)

In words, the rate of internal energy per unit deformed volume must equal the sum of the
stress power and heat production per unit deformed volume minus the spatial divergence of
the heat flux.

3.4.4, THE SECOND PRINCIPLE
The second principle of thermodynamics postulates the irreversibility of entropy production.

It is expressed by means of the inequality

p§+ divg [g] - % >0. (3.137)
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3.4.5. THE CLAUSIUS-DUHEM INEQUALITY

By combination of the first and second principles stated above, one easily obtains the
fundamental inequality

pé+divﬂ;[g] - %(pé—cr:D#-div_u q) > 0. (3.138)

The introduction of the specific free energy v (also known as the Helmholtz free energy
per unit mass), defined by
h=ec—0s, (3.139)
along with the identity
. |4a T, 1
le.IT [a] = 'é dlv.‘l? q— '9_2 q- vzg, (3140)
into the above fundamental inequality results in the Clausius—-Duhem inequality
5 : 1
o’:D—p(q,thSH)—aq-gZU, (3.141)

where we have defined g = V0. The left-hand side of (3.141) represents the dissipation
per unit deformed volume. Equivalently, by making use of (3.135), the Clausius—Duhem
inequality can be expressed in terms of dissipation per unit reference volume as

T:D—p(-drﬂé)—%q-gzo. (3.142)

3.5. Constitutive theory

The balance principles presented so far are valid for any continuum body, regardless of
the material of which the body is made. In order to distinguish between different types of
material, a constitutive model must be introduced. In this section, we review the principles
that form the basis of the constitutive theories discussed in later chapters of this book. We
start by stating, in Section 3.5.1, three fundamental axioms that define a rather general class of
constitutive models of continua. The use of internal variables to formulate constitutive models
of dissipative materials is then addressed in Section 3.5.2. We remark that all dissipative
constitutive models discussed in Parts Two and Three of this book are based on the internal
variable approach. Section 3.5.4 summarises a generic purely mechanical internal variable
model. The discussion on constitutive theory ends in Section 3.5.5 where the fundamental
constitutive initial value problems are stated.

3.5.1. CONSTITUTIVE AXIOMS

In the present context, the axioms stated in this section must be satisfied for any constitutive
model. Before going further, it is convenient to introduce the definitions of thermokinetic and
calorodynamic processes (Truesdell, 1969). A thermokinetic process of 4 is a pair of fields

w(p,t) and O(p,1).

A set

{a(p,t), e(p. 1), s(p. t), v(p, 1), b(p, 1), g(p 1)}
of fields satisfying the balance of momentum, the first and the second principles of thermo-
dynamics is called a calorodynamic process of A.
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Thermodynamic determinism

The basic axiom underlying the constitutive theory discussed here is the principle of
thermodynamically compatible determinism (Truesdell, 1969). It postulates that ‘the history
of the thermokinetic process to which a neighbourhood of a point p of % has been subjected
determines a calorodynamic process for & at p’. In particular, we shall be concerned with
so-called simple materials, for which the local history (history at point p only) of F', & and
g suffices to determine the history of the thermokinetic process for constitutive purposes. In
this case, regarding the body force b and heat supply r as delivered, respectively, by the linear
momentum balance (3.132); and conservation of energy (3.136) and introducing the specific
free energy (3.139), the principle of thermodynamic determinism implies the existence of
constitutive functionals F, &, $ and J of the histories of F', § and g such that, for a point p,

a(t) =3 (F', 0, g")
»(t) =B(F 0", g)

3.143
s(t) =H(F', 0", g") e
qt) =3 (F', 6" g")

and the Clausius—Duhem inequality (3.141) holds for every thermokinetic process of 4. The
dependence on p is understood on both sides of (3.143) and (-)* on the right-hand sides
denotes the history of (+) at p up to time ¢.

Material objectivity

Another fundamental axiom of the constitutive theory is the principle of material objectivity
(or frame invariance). It states that ‘the material response is independent of the observer’.
The motion ¢* is related to the motion ¢ by a change in observer if it can be expressed as

©*(p, t) = y(t) + Q(t) [w(p, t) — o], (3.144)

where y(t) is a point in space, Q(t) is a rotation and ¢(p, t) — xo is the position vector
of ¢(p,t) relative to an arbitrary origin @o. This relation corresponds to a rigid relative
movement between the different observers and the deformation gradient corresponding to ™
is given by

F*=QF. (3.145)

Scalar fields (such as @, 7 and s) are unaffected by a change in observer but the Cauchy stress
o (t), heat flux g(t) and the temperature gradient g(¢) transform according to the rules

o —o0'=QaQ"
g — ¢ =Qq (3.146)
g — g =Qg.
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The principle of material objectivity places restrictions on the constitutive functionals
(3.143). Formally, it requires that §, &, $) and 7 satisfy

1 (3.147)
tx
g

t*

) )
)=6(F",0,g")
) '9")
) "9
for any transformation of the form (3. 145, 3.146).

Material symmetry

The symmetry group of a material is the set of density preserving changes of reference
configuration under which the material response functionals §, &, $ and J are not affected,
The symmetry group of a solid material is a subset of the proper orthogonal group & *+, that
is, a set of rotations. Thus, the symmetry group of a solid material is the set of rotations of
the reference configuration under which the response functionals remain unchanged. This
concept is expressed mathematically as follows. A subgroup % of & * is said to be the
symmetry group of the material defined by the constitutive functionals §, &, and J if
the relations : .
F(FL0,9)=3(FQI0.d")
& (F',0,¢") =6(F Q' 6.g"
t t
H(F'L0,9)=9(FQl.6,4g"
I(F0,g) =T (F QL0 g

(3.148)

hold for any time-independent rotation @ € .. A solid is said to be isotropic™™ if its symme-
try group is the entire proper orthogonal group. In the development of any constitutive model,
the constitutive functionals must comply with the restrictions imposed by the symmetries of
the material in question.

3.5.2. THERMODYNAMICS WITH INTERNAL VARIABLES

The constitutive equations (3.143) written in terms of functionals of the history of F’, 6 and
g, in that format, are far too general to have practical utility in modelling real materials
undergoing real thermodynamical process. This is especially true if one has in mind the
experimental identification of the constitutive functionals and the solution of the boundary
value problems of practical interest. Therefore, it is imperative that simplifying assumptions
are added to the general forms of the constitutive relations stated above.

An effective alternative to the general description based on history functionals is the
adoption of the so-called thermodynamics with internal variables. The starting point of
the thermodynamics with internal variables is the hypothesis that at any instant of a
thermodynamical process the thermodynamic state (defined by o, ¥, s and g) at a given

**We remark that most constitutive models discussed in this book are isotropic.
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point p can be completely determined by the knowledge of a finite number of state variables.
The thermodynamic state depends only on the instantaneous value of the state variables and
not on their past history.

Mathematically, state variable models can be seen as particular instances of the general
history functional-based constitutive theory. The relationship between the two approaches
is discussed in detail by Kestin and Bataille (1977) and Bataille and Kestin (1979). In
general terms, state variable models can be obtained from the general history functional-
based description by re-defining the history of the thermokinetic process in terms of a finite
number of parameters (the state variables).

The state variables

For the applications with which we are mostly concerned, it will be convenient to assume that
at any time t, the thermodynamic state at a point is determined by the following set of state
variables:

{F, 8, g, a},

where F, # and g are the instantaneous values of deformation gradient, temperature and the
temperature gradient and
o= {a;} (3.149)

is a set of internal variables containing, in general, entities of scalar, vectorial and tensorial
nature associated with dissipative mechanisms.

Thermodynamic potential. Siress constitufive equation

Following the above hypothesis, the specific free energy is assumed to have the form'7

v=v(F, 0, a), (3.150)
so that its rate of change is given by
. ('){'[J . 01[! . (')U"
W=—:F + — 8+ — ar, 3.
V=2F + a0 + Buis g, (3.151)

where summation over & is implied. In this case, using the connection
c:D=cF T:.F, (3.152)

for the stress power, one obtains for the Clausius—Duhem inequality

N . P\ - N 1
oF T _ huti A ) - s+ )0—p—"G. ——-qg-g>0. 3.
( P OF) p(s U()) p T Op— Z g2 0 (3.153)
Equivalently, in terms of power per unit reference volume, we have
(‘) UJ*' 3 (')[f) % a(fu J
P—-p—|:F —pls+—=|0—-p—acr——=q-g=0.
( p OF) p(s-i— 8()) P Doy Vi 7 qg-g=0 (3.154)

TiThe dependence of 1 on the temperature gradient is disregarded as it contradicts the second principle of
thermodynamics (Coleman and Gurtin, 1967).
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Expression (3.154) is obtained from (3.153), by simply using relation (3.135).
The principle of thermodynamic determinism requires that the constitutive equations must

be such that the above inequality holds for any thermokinetic process. Thus, (3.154) must

remain valid for any pair of functions { F'(t), 6(¢)}. This implies the constitutive equations

_ oY N

LT T

for the first Piola—Kirchhoff stress and entropy. Equation (3.155); is equivalent to the
following constitutive relations for the Cauchy and Kirchoff stress tensors:

P (3.155)

1 _oY _r _

e — 52" T
_J")(')F T 'O(')FF ; (3.156)

o
Thermodynamical forces
For each internal variable «, of the set e, we define the conjugate thermodynamical force

_ oY

Ay p(‘)(—u

(3.157)

With this definition and the identities (3.155), the Clausius—Duhem inequality can be
rewritten as 7
—Ap ® Gy — 7 qg-g=>0, (3.158)

where we recall that the symbol ‘+’ denotes the appropriate product operation between Aj.
and ;.. In what follows, we will adopt for convenience the notation

A={A} (3.159)

for the set of thermodynamical forces, so that (3.158) can be expressed in a more compact
form as

—A>:<d—%q-g?_>0. (3.160)

Dissipation. Evolution of the internal variables

In order to completely characterise a constitutive model, complementary laws associated with
the dissipative mechanisms are required. Namely, constitutive equations for the flux variables
éq and ¢ must be postulated. In the general case, we assume that the flux variables are given
functions of the state variables. The following constitutive equations are then postulated

a=f(F,0,9 a)

1 (3.161)
aq =h(F,0, g, o).

Recalling the principle of thermodynamic determinism, the Clausius-Duhem inequality, now
expressed by (3.158), must hold for any process. This requirement places restrictions on the
possible forms of the general constitutive functions f and /1 in (3.161) (the reader is referred
to Coleman and Gurtin, 1967; Truesdell, 1969, for further details on this issue). It is also
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important to mention that when internal variables of vectorial or tensorial nature are present,
it is frequently convenient to re-formulate (3.161), in terms of so-called objective rates rather
than the standard material time derivative of c. Objective rates are insensitive to rigid-body
motions and may be essential in the definition of a frame invariant evolution law for variables
representing physical states associated with material directions. Objective rates are discussed
in Section 14.10 (starting page 615) in the context of the hypoelastic-based formulation of
plasticity models.

Dissipation potential. Normal dissipativity

An effective way of ensuring that (3.158) is satisfied consists in postulating the existence of
a scalar-valued dissipation potential of the form

=E=Z(A,g; F,0, o), (3.162)

where the state variables F', # and o appear as parameters. The potential = is assumed convex
with respect to each A, and g, non-negative and zero valued at the origin, {4, g} = {0, 0}.
In addition, the hypothesis of normal dissipativity is introduced, i.e. the flux variables are
assumed to be determined by the laws

0= 1 0=

—g=——, (3.163)

Re=—24" T dg

A constitutive model defined by (3.150), (3.155) and (3.163) satisfies a priori the
dissipation inequality. It should be noted, however, that the constitutive description by means
of convex potentials as described above is not a consequence of thermodynamics but, rather,
a convenient tool for formulating constitutive equations without violating thermodynamics.
Examples of constitutive models supported by experimental evidence which do not admit
representation by means of dissipation potentials are discussed by Onat and Leckie (1988).

3.5.3. PHENOMENOLOGICAL AND MICROMECHANICAL APPROACHES

The success of a constitutive model intended to describe the behaviour of a particular
material depends critically on the choice of an appropriate set of internal variables. Since
no plausible model will be general enough to describe the response of a material under
all processes, we should have in mind that the choice of internal variables must be guided
not only by the specific material in question but, equally importantly, by the processes
(i.e. the range of thermokinetic processes defined by strain and temperature histories as
well as the time span) under which the model is meant to describe the behaviour of the
material. The importance of considering the possible thermokinetic processes when devising
a constitutive model can be clearly illustrated, for instance, by considering a simple steel bar.
When subjected to a sufficiently small axial strain at room temperature, the bar exhibits a
behaviour that can be accurately modelled by linear elasticity theory (generalised Hooke’s
law). If strains become larger, however, linear elasticity may no longer capture the observed
response satisfactorily. In this case, a plasticity theory may be more appropriate. With further
increase in complexity of the strain history (by introducing, say, cyclic extension), other
phenomena such as internal damaging and possibly fracturing may take place and more
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refined constitutive models, incorporating a larger number of state variables, will be required.
Due account of the possible temperature histories and time span to be considered is also
fundamental. At higher temperatures, the long-term behaviour of the steel bar subjected to
even a very small strain, may no longer be accurately modelled by the linear elasticity theory.
In this case the introduction of time-dependent effects (creep/relaxation) may be essential to
produce an acceptable model. In an extreme situation, if the temperature rises above melting
point, the bar will cease to be a solid. Under such circumstances, a fluid mechanics theory
will be needed to describe the behaviour of the material.

In general, due to the difficulty involved in the identification of the underlying dissipative
mechanisms, the choice of the appropriate set of internal variables is somewhat subtle and
tends to be biased by the preferences and background of the investigator. In simplistic
terms, we may say that constitutive modelling by means of internal variables relies either
on a micromechanical or on a phenomenological approach. The micromechanical approach
involves the determination of mechanisms and related variables at the atomic, molecular
or crystalline levels. In general, these variables are discrete quantities and their continuum
(macroscopic) counterparts can be defined by means of homogenisation techniques. The
phenomenological approach, on the other hand, is based on the study of the response of
the representative volume element, i.e. the element of matter large enough to be regarded as
a homogeneous continuum. The internal variables in this case will be directly associated
with the dissipative behaviour observed at the macroscopic level in terms of continuum
quantities (such as strain, temperature, etc.). Despite the macroscopic nature of theories
derived on the basis of the phenomenological methodology, it should be expected that ‘good’
phenomenological internal variables will be somehow related to the underlying microscopic
dissipation mechanisms.

The phenomenological approach to irreversible thermodynamics has been particularly
successful in the field of solid mechanics. Numerous well-established models of solids, such
as classical isotropic elastoplasticity and viscoplasticity, discussed in Parts Two and Three of
this book, have been developed on a purely phenomenological basis providing evidence of
how powerful such an approach to irreversible thermodynamics can be when the major con-
cern is the description of the essentially macroscopic behaviour. In some instances, however,
the inclusion of microscopic information becomes essential and a purely phenomenological
methodology is unlikely to describe the behaviour of the material with sufficient accuracy.
One such case is illustrated in Chapter 16, where a microscopically-based continuum model
of ductile metallic crystals is described.

3.5.4. THE PURELY MECHANICAL THEORY

Thermal effects are ignored in the constitutive theories addressed in Parts Two and Three of
this book. It is, therefore, convenient at this point to summarise the general internal variable-
based constitutive equations in the purely mechanical case. By removing the thermally-
related terms of the above theory, we end up with the following set of mechanical constitutive
equations:

h=1(F, a)

_-9 164
P=poF (3.164)
&= f(F,a).
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The infinitesimal strain case

In the infinitesimal strain case, the infinitesimal strain tensor, €, replaces the deformation
gradient and the stress tensor o of the infinitesimal theory replaces the first Piola—-Kirchhoff
stress. We then have the general constitutive law

Y=Y, a)

W
Uzﬁ%—l— (3.165)
a=f(e, a)

3.5.5. THE CONSTITUTIVE INITIAL VALUE PROBLEM

Our basic constitutive problem is defined as follows: ‘Given the history of the deformation
gradient (and the history of temperature and temperature gradient, if thermal effects are con-
sidered), find the free-energy and stress (plus entropy and heat flux, in the thermomechanical
case) according to the constitutive law conceptually expressed by (3.143)°. If the internal
variable approach is adopted in the formulation of the constitutive equations, the generic
constitutive problem reduces to the following fundamental mechanical initial value problem.

Problem 3.1 (The mechanical constitutive initial value problem). Given the initial values
of the internal variables a(to) and the history of the deformation gradient,

F(t), te [to,T),

find the functions P(t) and a(t), for the first Piola—Kirchhoff stress and the set of internal
variables, such that the constitutive equations

P(t)=p b
¢ (3.166)
a(t) = f(F(t), at))
are satisfied for every t € [to, T.
In the infinitesimal case, PP and F' are replaced with o and e, respectively, in the above

initial value problem. For completeness, the infinitesimal constitutive initial value problem is
stated in the following.

Problem 3.2 (The infinitesimal constitutive initial value problem). Given the initial values
of the internal variables ex(to) and the history of the infinitesimal strain tensor,
E,'(t), te [tU,T},

find the functions o(t) and c(t), for the stress tensor and the set of internal variables, such
that the constitutive equations

_
ot)=p e f
- o (3.167)

a(t) = f(e(t), e(t))

are satisfied for every t € [to, T.
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3.6. Weak equilibrium. The principle of virtual work

The strong (point-wise, local or differential) forms of the momentum balance have been
stated in Section 3.4 by expressions (3.132) and (3.133). In this section, we state the
momentum balance equations in their corresponding weak (global or integral) forms. The
weak equilibrium statement — the Principle of Virtual Work — is fundamental to the definition
of the basic initial boundary value problem stated in Section 3.7 and, as we shall see in
Chapter 4, is the starting point of displacement-based finite element procedures for the
analysis of solids.

Again, let us consider the body % which occupies the region €2 C & with boundary 9€} in
its reference configuration subjected to body forces in its interior and surface tractions on its
boundary. In its deformed configuration, # occupies the region ¢(§2) with boundary ()
defined through the deformation map ¢.

3.6.1. THE SPATIAL VERSION

The spatial version of the principle of virtual work states that the body # is in equilibrium
if, and only if, its Cauchy stress field, o, satisfies the equation

/ [J:Vﬂgn—(b—pﬂ)-ﬂ]d‘uff t-nda=0, Vne¥, (3.168)
Jo(92) @(80)
where b and ¢ are the body force per unit deformed volume and boundary traction per unit
deformed area and ¥ is the space of virtual displacements of 28, i.e. the space of sufficiently
regular arbitrary displacements

n:e(fd) - %

Equivalence between strong and weak equilibrium statements

When the stress field o is sufficiently smooth, the virtual work equation is equivalent to the
strong momentum balance equations (3.132). To show this, let us start by assuming that the
field o is sufficiently regular so that we can use the identity (v) of Section 2.5.8 (page 38) to
obtain

o Ven=div.(on) — (diveo) - 1. (3.169)
In obtaining the above identity we have used the fact that o is symmetric. Next, by
substituting the above expression into (3.168), it follows that

/ [div,(on) — (div. o+ b — pit) - 7] dv — [ t-nda=0, Yne¥. (3.170)
Jo(2) Jo(a0)

We now concentrate on the first term within the square brackets of the above equation. The
divergence theorem (expression (2.148), page 37) implies the following identity

/ div,(on)dv= / on-nda. (3.171)
J () Jp(09)

By taking into account the symmetry of o, which implies o7 - . = on - 1, together with the
above identity, equation (3.170) can be rewritten in the equivalent form

/ (div, o+ b— pit) - pdv + / (t—on)-nda=0, Vne¥ (3.172)
Jo(9) J (000
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Finally, since this equation holds for all virtual displacement fields 7, then it follows from the
fundamental theorem of variational calculus (refer, for instance, to Gurtin 1972; Oden 1979
or Reddy 1998) that each bracketed term of the above equation must vanish pointwise within
their respective domains, i.e. we recover the strong equilibrium equations (3.132).
Conversely, the strong form yields the weak form of equilibrium. This can be shown in a
relatively straightforward manner by applying a weighted residual method to the strong form
together with use of the divergence theorem. ‘

3.6.2. THE MATERIAL VERSION

The virtual work equation can be equivalently expressed in the reference configuration of %.
The corresponding material (or reference) version of the Principle of Virtual Work states that
Z is in equilibrium if and only if its first Piola—Kirchhoff stress field, P, satisfies

fQ[P;vpn—(bﬁﬁ)-n]du—f t-npda=0, Vnev, (3.173)

where b and t are, respectively, the body force per unit reference volume and the surface
traction per unit reference area and p is the mass density in the reference configuration. The
space of virtual displacements, ¥; is accordingly defined as the space of sufficiently regular
arbitrary displacement fields

n:Q—%

The material version of the virtual work equation is obtained by introducing, in its spatial

counterpart, the identities

1
o-:jPFT; Vea=V,a F 1, (3.174)

where the second expression holds for a generic vector field a, and making use of the standard
relation (Gurtin, 1981)

[ a(z) dv :/ J(p) a{p(p)) dv, (3.175)
Jp(Q) ) Q

valid for any scalar field a.

The proof of equivalence between (3.173) and the strong form (3.133) under conditions
of sufficient regularity is then analogous to that given for the spatial version discussed in
Section 3.6.1 above.

3.6.3. THE INFINITESIMAL CASE

Under infinitesimal deformations, reference and deformed configurations coincide and the
virtual work equation reads simply

L[U:Vn—(b—pﬁ)-n]d'u—/ t-nda=0, Vne¥ (3.176)
a0
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3.7. The quasi-static initial boundary value problem

Having defined the generic constitutive initial value problems in Section 3.5 and the weak
equilibrium statements in Section 3.6, we are now in a position to state the weak form of
fundamental initial boundary value problems, whose numerical solution by the finite element
method is the main subject of the subsequent chapters of this book. The problems formulated
here are restricted to quasi-static conditions, where inertia effects are ignored. This is the case
on which the numerical methods discussed in this book are focused.

3.7.1. FINITE DEFORMATIONS
Let the body % (Figure 3.16) be subjected to a prescribed history of body forces
b(t), te€lto, T]

in its interior. In the above, dependence of b on @ is implicitly assumed. In addition, the
following boundary conditions are imposed.

(i) The natural boundary condition. The history of the surface traction
t(t), te(to,T),

with dependence on @ implied, is prescribed over the portion of the boundary of 4 that
occupies the region 9 in its reference configuration.

(ii) The essential boundary condition. The motion is a prescribed function on the part of
the boundary of 4 that occupies the region 9§2, in the reference configuration

@(p,t)=p+a(p,t) t€lto,T], p€I,

where 1 is the corresponding prescribed boundary displacement field. For simplicity,
it is assumed here that 92, () 9% = 0. We define the set of kinematically admissible
displacements of 9 as the set of all sufficiently regular displacement functions that
satisfy the kinematic constraint (the essential boundary condition)

H={u:Qx Z— ¥ u(p,t)=u(p,1), t€ [to, T], p € 0.} (3.177)

The body Z# is assumed to be made from a generic material modelled by the internal
variable-based constitutive equations associated with Problem 3.1 (page 76) and the internal
variable field, ¢, is known at the initial time fp, i.e.

a(p, to) = a(p). (3.178)

The fundamental quasi-static initial boundary value problem is stated in its spatial version in
the following.

Problem 3.3 (The spatial quasi-static initial boundary value problem). Find a kinemati-
cally admissible displacement function, w € JE such that, forall t € [to, T, the virtual work
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t(x,1)

QI ,1)

Figure 3.16. The initial boundary value problem. Schematic illustration.

equation is satisfied
/ [o(t) : Vo — b(t) - m] dv — [ t(t)-nda=0, VYne. (3.179)
#(D1) J (a5 1)
The space of virtual displacements at time t is defined by
Vi ={n:@(Q,t) = % |n=0o0np(08,, 1)} (3.180)
and, at each point of B, the Cauchy stress is given by
a(t) = P(O)F ()T /J(t), (3.181)

where P(t) is the solution of constitutive initial value Problem 3.1 (page 76) with prescribed
deformation gradient
F(t) =Vpp(p, t) = I+ Vyu(p, t). (3.182)

The problem can be equivalently formulated in the reference configuration of 4 in terms
of the material version of the principle of virtual work (3.173). For completeness, we state
the material version of the fundamental initial boundary value problem in the following.

Problem 3.4 (The material quasi-static initial boundary value problem). Find a kinemat-
ically admissible displacement function, u. € A such that, for all t € [to, T),

/ [P(t) : Vm — b(t) - m] dv — [ t(t) nda=0, Vnev, (3.183)
Q JOQy
where

Y={n:Q—> % |n=00n0Q,} (3.184)

and the Piola—Kirchhoff stress, P(t), is the solution of initial value Problem 3.1 with
prescribed deformation gradient (3.182).
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3.7.2. THE INFINITESIMAL PROBLEM

Under infinitesimal deformations, the quasi-static initial boundary value problem is based on
the weak form (3.176). It is stated in the following.

Problem 3.5 (The infinitesimal quasi-static initial boundary value problem). Find a
kinematically admissible displacement, u € J, such that, fort € [to, T),

/ [o(t): Vi — b(t) - m] dv — [ t(t) - mda=0, Vne, (3.185)
Q J A

where

‘1’:{7]:9—»‘?/\11:0011893,} (3.186)

and, at each point p, o (t) is the solution of the constitutive initial value Problem 3.2 (page 76)

with prescribed strain

e(t) = Viu(p, t). (3.187)




