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6 THE MATHEMATICAL THEORY
OF PLASTICITY

HE mathematical theory of plasticity provides a general framework for the conlinuum

constitutive description of the behaviour of an important class of materials. Basically,
the theory of plasticity is concerned with solids thal, after being subjected to a loading
programme, may sustain permanent {or plastic) deformations when completely unloaded.
In particular, this theory is restricted to the description of matenials (and conditions) for
which the permanent deformations do nat depend on the rate of application of loads and is
often referred to as rate-independent plasticity. Materials whose behaviour can be adequately
described by the theory of plasticity are called plastic (or rate-independent plastic) materials.
A large number of engineering materials, such as metals, concrete, rocks, clays and soils
in general, may be modelled as plastic under a wide range of circumstances of practical
interest. The origins of the theory of plasticity can be traced back to the middle of the
nineteenth century and, following the substantial development that took place, particularly in
the first half of the twentieth century, this theory is today established on sound mathematical
foundations and is regarded as one of the most successful phenomenological constilutive
models of solid materials.

The present chapter reviews the mathematical theory of plasticity. The theory presented
here is restricted to infinitesimal deformations and provides the basis for the numerical
simulation of the behaviour of elastoplastic solids to be discussed in Chapter 7. We remark
that only the most important concepts and mathematical expressions are reviewed. Attention
is focused on the description of mathematical models of elastoplastic materials and, in
particular, issues such as limit analysis and slip-line field theory are not addressed. For a
more comprehensive treatment of the theory of plasticity, the reader is referred to Hill (1950),
Prager (1959), Lubliner (1990) and Jirisek and Bazamt (2002). A more mathematically
oriented approach to the subject is presented by Halphen and Nguyen (1975), Duvaut and
Licns (1976), Matthies (1979), Suquet (1931) and Han and Reddy (1999).

This chapter is organised as follows. In Section 6.1, aspects of the phenomenological
behaviour of materials classed as plastic are discussed and the main properties are pointed
out in the analysis of a simple uniaxial tension experiment. The discussion is followed, in
Section 6.2, by the formulation of a mathematical model of the uniaxial experiment. The
uniaxial model, though simple, embodies all the essential concepts of the mathematical
theory of plasticity and provides the foundation for the gencral multidimensional model
established in Section 6.3. The remainder of the chapter focuses on the detailed description
of the plasticity models most commonly used in engineering analysis: the models of
Tresca, von Mises, Mohr—Coulomb and Drucker-Prager. The comesponding yield critena are
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140 COMPUTATIONAL METHODS FOR FLASTICITY: THEORY AND APPLICATIONS

zscribed in Section 6.4, Plastic low rules and hardening laws are addressed, respectively, in
Sections 6.5 and 6.6,

6.1. Phenomenological aspecis

In spite of their qualitatively distinct mechanical responses, materials as contrasting as metals
and soils share some important features of their phenomenological behaviour that make
them amenable to modelling by means of the theory of plasticity. To illustrate such common
features, a uniaxial tension experiment with a metallic bar is discussed in what follows,

Typically, uniaxial tension tests with ductile metals produce stress—strain curves of the
type shown in Figure 6.1 In the schematic diagram of Figure 6.1, where the axial stress,
¢, is plotted against the axial strain, £, a load programme has been considered in which the
bar is initially subjected to a monotonic increase in axial stress from zero Lo a prescribed
value, ag. The bar is then unloaded back to an unsiressed state and subzequently reloaded
to a higher stress level my. The stress—strain curve follows the path Oy Yo £ 0h Y7 4, shown,
In this path, the initial line segment Yy is virwally straight and, if the bar is unloaded
from point Yy (or before it is reached), it returns to the original unstressed state €. Thus, in
segment (3 Yy the behaviour of the material is regarded as finear efasric. Beyond Y5, the slope
of the stress—strain curve changes dramatically and if the stress (or strain) loading is reversed
at, say. point £y, the bar returns to an unstressed state via path Zg0). The new unsiressed
state, Oy, differs from the initial unstressed state, {Jy, in that a permanent change in the shape
of the bar is observed. This shape change is represented in the graph by the permanent (or
plasticy axial strain =P. Monotonic reloading of the bar o a stress level oy will follow the
path €4 ¥} £, . Similarly to the initial efasiic segment Oy Y5, the portion O Y7 is also virwally
straight and unloading from Y5 (or before Y7 is reached) will bring the stress—strain state back
to the unstressed configuration Oy, with no further plastic straining of the bar. Therefore,
the behaviour of the matenal in the segment (4 Y] may also be regarded as linear elastic.
Here, it is important to emphasise that, even though some discrepancy between unloading
and reloading curves (such as lines Zy() and O Y)) is observed in typical experiments, the
actual difference between them is in fact much smaller than that shown in the diagram of
Figure 6.1. Again, loading beyond an elastic limir (point Y7 in this case) will canse lurther
increase in plastic deformation.

Some important phenomenological properties can be identified in the above described
uniaxial test. They are enumerated below:

I. The existence of an elastic donain, i.e. a range of stresses within which the behaviour
of the material can be considered as purely elastic, without evolution of permanent
(plastic) strains. The clastic domain is delimited by the so-called yield siress. In
Figure 6.1, segments Oy Yy and €4 ) define the elastic domain at two dilferent siates.

The associated yield stresses correspond to points Y5 and Y.

2. If the material is further loaded at the yield stress, then plastic vielding (or plastic flow),
i.e. evolution of plastic strains, takes place.

3. Accompanying the evolution of the plastic strain, an evelition of the vield stress itsell
is also observed (note that the yield stresses corresponding to points Yy and Y are
different). This phenomenon is known as hardening.
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Figure 6.1. Uniavial tension experiment with doctile metals,

It is emphasised that the above properties can be observed not only in metals but also in
a wide variety of materials such as concrete, rocks, soils and many others. Obviously, the
microscopic mechanisms that give rise to these common phenomenological characteristics
can be completely distinet for different types of matenial. It is also important to note lhfu,
according to the type of material, different experimental procedures may be required for
the verification of such properties. For instance, in materials such as soils, which typically
cannot resist tensile stresses, uniaxial tension tests do not make physical sense. In this case,
experiments such as iriavial shear tests, in which the sides of the specimen are 5.uhjc-cted toa
conlining hydrostatic pressure prior to the application of longitudinal compression, are more
appropriate. . o

The object of the mathematical theory of plasticity is to provide continuum conshitulive
models capable of describing (gualitatively and quantitay ely) with sufficient accuracy the
phenomenological behaviour of materials that possess the characteristics discussed in the

above,

6.2. One-dimensional constitutive model

A simple mathematical model of the uniaxial experiment discussed in the previous section is
formulated in what follows. In spite of its simplicity the one-dimensional constitutive model
contains all the essential features that form the basis of the mathematical theory of plasticity.

At the outset, the original stress—strain curve of Figure 6.1, that resulted from the loading
programme described in the previous section, is approximated by the idealised version
shown in Figure 6.2. The assumptions involved in the approximation are summarised in the
following. Firsily, the difference between unloading and reloading curves (segments Zath
and €Y7 of Figure 6.1) is ignored and points £ and Y3, that correspond respectively to
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Figure 6.2. Uniavial tension experiment. Mathematical model.

the beginning of unloading and the onset of plastic yielding upon subsequent reloading, are
assumed to coincide. The transilion beiween the elastic region and the elastoplastic regime
is now clearly marked by a non-smooth change of slope (points Y5 and ¥7). During plastic
yielding, the stress—strain curve always follows the path defined by (2;¥5Y7.2,. This path is
normally referred to as the virgin curve and is obtained by a continuous monotonic loading
from the initial unstressed state O,
_ Under the above assumptions, after being monotonically loaded from the initial unstressed
| state 1o the stress level oy, the behaviour of the bar between states () and Y7 is considered to
be linear elastic, with constant plastic strain, =7, and yield limit, ag. Thus, within the segment
() ¥, the uniaxial stress cormesponding to a configuration with fofaf sirain = is given by

a=FE(z— P}, {6.1)

| where F denotes the Young's modulus of the matenial of the bar. Note that the difference
between the total strain and the current plastic strain, = — =7, is fillly reversible; that is,
upon complete unloading of the bar, £ — =¥ is fully recovered without further evolution of
plastic strains. This motivates the additive decomposition of the axial strain described in the
following section.

| 6.2.1. ELASTOPLASTIC DECONMPOSITION OF THE AXIAL STRAIN

One of the chiel hypotheses underlying the small strain theory of plasticity is the decompo-
sition of the total strain, =, into the sum of an elastic (or reversible) component, £*, and a
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plastic (or permanent) component, £,

g==¢c" +&F, {6.2)

where the elastic strain has been defined as

6.2.2. THE ELASTIC UNIAXIAL CONSTITUTIVE LAW

Following the above definition of the elastic axial strain, the constitutive law for the axial
stress can be expressed as
a=E:". {6.4)
The next step in the definition of the uniaxial constilutive model is to denive formulae
that express mathematically the fundamental phenomenological properties enumerated in
Section 6.1, The items | and 2 of Section 6.1 are associated with the formulation of a yield
criterion and a plastic flow rule, whereas item 3 requires the formulation of a handening law.
These are described in the following.

6.2.3. THE YIELD FUNCTION AND THE YIELD CRITERION

The existence of an elastic domain delimited by a yield stress has been pointed out in ilem |
of Section 6.1. With the introduction of a yield function, ®, of the form

Mo, ay) =o| — 7y, (6.5)

¥

the elastic domain at a state with uniaxial yield stress o, can be defined in the one-
dimensional plasticity model as the set

&={a|d(o, a,) <0}, (6.6)
or, equivalenily, the elastic domain is the set of stresses o that satisfy
|} < ay. (6.7)

Generalising the results of the uniaxial fension test discussed, it has been assumed in the
above that the yield siress in compression is identical to that in tension. The corresponding
idealised elastic domain is illustrated in Figure 6.3.

It should be noted that, at any stage, no stress level is allowed above the current yield
stress, i.e. plastically admissible siresses lie either in the elastic domain or on its boundary
{the yield limit), Thus, any admissible stress must satisfy the restnction

Pla. a,) <0, (6.8)
For stress levels within the elastic domain, only elastic straining may occur, whereas on its

boundary (at the yield stress), either elastic unloading or plastic yielding (or plastic loading)
takes place. This vield criterion can be expressed by

Mo, oy) <0 = eF =1,
7 =1 for elastic unloading. (6.9)

fP(o.a,)=0= ¢ . . :
P £ 0 for plastic loading.
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Figure 6.3, Uniaxiz! model. Elastic domain.

6.2.4. THE PLASTIC FLOW RULE. LOADING/UNLOADING CONDITIONS

Expressions (6.9) above have defined a criterion for plastic yielding. i.e. they have set the
conditions under which plastic straining may occur. By noting in Figure 6.3 that, upon
plastic loading, the plastic strain rate £V is positive (stretching) under tension (posilive ) and
negalive (compressive) under compression (negative ), the plasiic flow rule for the uniaxial
model can be formally established as

£F =4 signfa), (6,10}
where sign is the signnm function defined as
) Ll ifa=0
signfa) = ) _ (G.11}
1 ifa<0

for any scalar o and the scalar 5 is termed the plastic mudtiplicr. The plastic multiplier is
noi-negative,
=0, (6.12)

4 =10 (6.13)

The constitutive equations (6.10) to (6.13) imply that, as stated in the yield criterion (6.9), the
plastic strain rate vanishes within the elastic domain, i.e.

d<l = §=0 = P =0, (6.14)

and plastic flow (£F # 0) may occur only when the stress level o coincides with the cumrent
yield stress
lol=0, =» =0 = 520. (6.15)
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Expressions (6.8), (6.12) and (6.13) define the so-called loadingfunloading condirions of
the elasticplastic model; that is, the constraints

b 1 0. 2=, -'Ilqs — . (6. 16)

establish when plastic flow may occur,

6.2.5. THE HARDENING LAW

Finally, the complete characterisation of the uniaxial model is achieved with the introduction
of the hardening law. As remarked in item 3 of Section 6.1, an evolution of the yield stress
accompanies the evolution of the plastic strain. This phenomenon, known as hanlening, can
be incorporated into the uniaxial model simply by assuming that, in the definition (6.5) of 4,
the yield stress o, is a given function

ay, = ay (&) (6.17)

of the accumlared axial plastic strain, 7. The accumulated axial plastic strain is defined as
t

= [ lerat, (6.18)
J0

thus ensuring that both tensile and compressive plastic straining contribute to 2. Clearly, in
a monotonic tensile test we have

iF = cF, (6.19)

= gl {6.20)

The curve defined by the hardening function o, (2¥) is usvally referred to as the handening
cunve (Figure 6.4).
From the definition of 27, it follows that its evolution law is given by

P — |£P|, (6.21)

by 1
which, in view of the plastic flow rule, is equivalent to

P =4, (6.22)

6.2.6. SUMMARY OF THE MODEL

The overall one-dimensional plasticity model is defined by the constilulive equa-
tions (6.2}, (6.4), (6.5), (6.10), (6.16), (6.17), and (6.22). The model is summarised in Box 6.1
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Figure 6.4. One-dimensional model. Hardening curve,

Box 6.1, One-dimensional elastoplastic constitutive model.

1. Elastoplastic split of the axial strain

[E¥]

. Uniaxial elastic law
2o g
a=Fz
3. Yield function
Plo.a,)=a| —ay,

4. Plastic flow mle
iF =4 sign(e)

i

Handening law
ay, = a,(EF)

6. Leadingfunloading criterion

6.2.7. DETERMINATION OF THE PLASTIC MULTIPLIER

So far, in the uniaxial plastucity model introduced above, the plastic multiplier, 5, was lell
indeterminate during plastic yielding. Indeed, expressions (6.12) and (6.13) just tell us that 5
vanishes during elastic straining but may assume any non-negative value during plastic flow,
In order to eliminate this indetermination, it should be noted firstly that, during plasiic flow,
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the value of the yield function remains constant

$ =10, (6.23)
as the absolute value of the current stress always coincides with the current yield stress.
Therefore, the following additional complementarity condition may be established:

|i| -'., =1 {6.24)
which implies that the rate of ¢ vanishes whenever plastic yielding occurs (% 7 0),

lil =1, (6.25)
and, during elastic straining, (5 = U}, § may assume any value. Equation (6.25) is called the
consistency condition. By taking the time derivative of the yield funciion (6.5), one obtains

§ = sign(a) o — H 2P, (6.26)
where H is called the hardening modufus, or hardening slope, and is defined as (refer to
Figure 6.4)

H=H(*) = f;} (6.27)

Under plastic yielding, equation (6.25) holds so that one has the following expression for the
siress rate -
sign(er) o= H 2V, {6.28)
From the elastic law, it follows that
o =E(g - &F). (6.29)

Finally, by combining the above expression with (6.22), (6.28) and (6.10), the plastic
multiplier, 4, is iniquely determined during plastic yielding as

E >
= ign(a) & = 4] 6.30)
SHen T EE ‘

6.2.%. THE ELASTOPLASTIC TANGENT MODULUS

Let us now return to the stress—strain curve of Figure 6.2. Plastic flow at a generic yield limit
produces the following tangent relation between strain and siress

a = EF 2 (6.31)

where E<# is called the elastoplosiic tangent modulus. By combining expressions (6.31),
{6.29), the flow rule (6.10) and (6.30) the following expression is oblained for the elastoplastic
tangent modulus B

FiF = T (6.32)
Equivalently, the hardening modulus, H, can be expressed in terms of the elastic modulus
and the elastoplastic modulus as

Eep

S —— - (6.33)
| — E<#JE

H -
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6.3. General elastoplastic constitutive model

A mathematical model of a uniaxial tension experiment with a ductile metal has been
described in the previous section. As already mentioned, the one-dimensional equations
contain all basic components of a general elastoplastic constitutive model:

o the elastoplastic strain decomposition;
& an elastic law;
& ayield criterion, stated with the use of a yield function:
o a plastic low rule defining the evolution of the plastic strain: and
s a hardening law, characterising the evolution of the yield limit.
The generalisation of these concepts for application in two- and three-dimensional siluations

15 described in this seclion.

6.3.1. ADDITIVE DECOMPOSITION OF THE S5TRAIN TENSOR

Following the decomposition of the uniaxial strain given in the previous section, the
cormesponding generalisation is obtained by spliting the strain fensor, £, into the sum of
an elastic component, £°, and a plastic component, e¥; that is,

g=g% +&F, (6.34)

The tensors £ and P are known, respectively, as the elastic strain tensar and the plastic
strarinn tensar. The corresponding rate form of the additive split reads

£=¢g" 4 &F, (6.35)
Note that (6.35) together with the given initial condition
elto) = "(ta) + £"(tn) (6.36)

at a (pseudo-jtime fy is equivalent to (6.34).

6.3.2. THE FREE ENERGY POTENTIAL AND THE ELASTIC LAW

The formulation of general dissipative models of solids within the framework of thermody-
namics with an internal variable has been addressed in Section 3.5 of Chapter 3. Recall that
the free energy potential plays a crucial role in the derivation of the model and provides the
constitutive law for stress. The starting point of the theories of plasticity treated in this book
is the assumption that the free energy, ¢", is a function

vle. eV, o),

of the total strain, the plastic strain (taken as an intemnal varable) and a set o of internal
variables associated with the phenomenon of hardening. It is usual to assume that the free
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energy can be split as

vile, €, a) = U5 (e — e7) + 1 P(a)
=1"(e%) + ¢ :'l:_l‘.l_fl (6.37)

into a sum of an clastic contribution, ¢, whose dependence upon strains and internal
variables appears only through the elastic strain, and a contribution due to hardening, t%.
Following the above expression for the free energy, the Clausius-Duhem inequality reads

(a-—_ﬂ‘;{‘ ):é’ to:eP—Asaz0, (6.38)
e

where
A=pihia (6.39)

is the hardening thermodvaamical force and we note that —a is the thermodynamical force
associated with the plastic strain while the symbaol * indicates the appropriate product
between A and &&. The above inequality implies a general elastic law of the form

e

e A 6.4
Rl ier’ (

so thal the requirement of non-negative dissipation can be reduced to
TV o, A: 2P, &) = D, (6.41)
where the function T7, defined by
TP, A:gP. a)=o:6F — A= a, (6.42)

is called the plastic dissipation finction,
This chapter is focused on matenals whose elastic behaviour is finear (as in the uniaxial
maodel of the previous section) and isotropic. In this case, the elastic contribution to the free

energy is given by

AUt(e)=3€":D: ¢
B I g oty

- {7 Eg-Eg 5 I |:'-.'. ]' (6.43)
where D is the standard isotropic elasticity tensor and 7 and /X are, respectively the
shear and bulk moduli. The tensor £5 is the deviatoric component of the elastic strain and
= = tr[e*] is the volumetric elastic strain. Thus, the general counterpart of uniaxial clastic

law (6.4) is given by
ag=0:&°

=25 e+ K=,

I (6.44)
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6.3.3. THE YIELD CRITERION AND THE YIELD SURFACE

Recall that in the uniaxial yield criterion it was established that plastic flow may occur when
the uniaxial stress attains a critical value. This principle could be expressed by means of a
yield function which is negative when only elastic deformations are possible and reaches
#ero when plastic flow is imminent. Extension of this concept to the three-dimensional case
is obtained by stating that plastic flow may occur only when

flo, A)=10, (6.45)

where the scalar yield function, ¥, is now a lunction of the stress rensor and a set A of
hardening thermodynamical forces. Analogously to the uniaxial case, a yield function defines
the elastic domain as the sel

&= {o|d(e. A) <0} (6.46)

of stresses for which plastic yielding is notl possible. Any stress lying in the elastic domain
or on its boundary is said to be plastically admissible. We then define the set of plastically
admissible stresses (or plastically admissible domain) as

£ ={o|de. A) <0} (6.47)

The yield locus, 1.e. the set of stresses for which plasiic yielding may occur, is the boundary
of the elastic domain, where ®(eo, A) = 0. The yield locus in this case is represented by a
hypersurface in the space of stresses. This hypersurface is termed the yield surface and is
defined as

V= {o | D, A) =0} (6.4%)

6.3.4. PLASTIC FLOW RULE AND HARDENING LAW

The complete charactensation of the general plasticity model requires the definition of the
evolution faws for the internal variables, i.e. the variables associated with the dissipative
phenomena. In the present case, the internal variables are the plastic strain tensor and the
sel o of hardening variables. The following plastic flow rule and hardening law are then

postulated

EP=4N (6.49)
=75 H, {6.50)

where the tensor
N=DNio A) (6.51)

is termed the flow vector and the function
H=Ha, A) (6.52)

is the generalised handening modulns which defines the evolution of the hardening variables.
The evolution equations (6.49) and (6.50) are complemented by the loadingfunloading
conditions
<0, 430, B=0, (6.53)
that define when evolution of plastic strains and internal variables (4 = () may occur.
For convenience, the general plasticity model resulting from the above equations is listed
in Box 6.2,
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Box 6.2, A general elastoplastic constitutive modeal.

1. Additive decomposition of the strain (ensor
ge=eg"+ef

oL -
E=E"+E&", &(to)=€(to) + &°(la)

b

. Free-energy fundtion
v =", ox)

where o1 is a set of handening intemal vanables
3. Constilutive equation for o and hardening thermodynamic forces A
oy _ M

T =i & A=p
F e i

4. Yield function

d =3, A)
5. Plastic Aow rule and hardening law
EF =4 Mo, A)

=< Hia, A)

6. Lozdingfunloading criterion

6.3.5. FLOW RULES DERIVED FROM A FLOW POTENTIAL

In the formulation of multidimensional plasticity models, it is often convenient to define the
flow rule (and possibly the hardening law) in terms of a flow (or plastic) potential. The starting
point of such an approach is to postulate the existence of a flow potential with general form

=19 A) (6.54)

from which the flow vector, IV, is obtained as

_av

N= (6.53)

il
If the hardening law is assumed to be derived from the same potential, then we have in
addition
e (6.56)
T i = L
A
When such an approachis adopted, the plastic potential, ¥, is required to be a non-negative
convex function of both & and A and zero-valued at the origin,

P, 0) = 0. (6.57)
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These restrictions ensure thait the dissipation inequality (6.41) is satisfied a prieri by the
evolution equations (6.49) and (6.50).

Associative flow rule

As we shall see later, many plasticity models, particularly for ductile metals, have their yield
function, 4, as a flow potential, i.e.
= . (6.55)

Such models are called assaciative (or associated) plasticity models. The issue of associativ-
ity will be further discussed in Section 6.5.1.

6.3.6. THE PLASTIC MULTIPLIER

Here we extend to the muliidimensional case the procedure for the determination of the plastic
multiplier, %, described in Section 6.2.7 for the one-dimensional plasticity model. Following
the same arguments employed in Section 6.2.7, the stanting point in the determination of 5 is
the considzration of the additional complementarity equation

&5 =0, (6.59)

which implies the consistency condition

d =10 (6.60)

under plastic yielding (when 5 # 0). By differentiating the yield function with respect to time,
we obtain

= ab . dd

i Caadl
By taking into account the additive split of the strain tensor, the elastic law and the plastic
flow rule (6,49}, we promptly lind the obvious rate form

(6.61)

ag=0":(-")=D":le —5 N ). (6.62)

This, together with the definition of A in terms of the free-energy potential (refer o
expression (6.39)) and the evolution law (6.50), allow us to write (6.61) equivalently as

. O b v
b=—D i (E—EY)+— = - ¥
do )+ 94 P 0aT
il - bl !.Jzi'_"-'.
= D (- N)+H ot s H. 6.63
go ' ET TN gt P har (063

Finally, the above expression and the consistency condition (6.60) lead to the following clozad
formula for the plastic muliiplier
di/ila D" £

¥= - - . .64
b g D" N — /A = pil e fia? « H Lial)
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6.3.7. RELATION TO THE GENERAL CONTINUUM CONSTITUTIVE THEORY

Al this point, we should emphasise that the general rate-independent plasticity mode]
described above can under some conditions be shown to be a particular instance of the general
constitutive theory postulated in Section 3.5.2, starting page 71. The link between the two
theories can be clearly demonstrated when rate-independent plasticity is obtained as a limit
case of rate-dependent plasticity (or viscoplasticity).

However, since the theory of elasto-viscoplasticity is introduced only in Chapter 11,
we find il convenient to carry on focusing on rate-independent plasticity and postpone the
demonstration until that chapter. Those wishing to see now the link between rate-independent
plasticity and the general constittive theory are referred to Section 1103, starling on
page 452, We remark. though, that the concept of subdifferential, introduced below in
Section 6.3.9, is fundamental to the demonstration. Readers not yet familiar with this concept
are advised to read through Section 6.3.9 before moving to Section 11.4.3.

65.3.8. RATE FORM AND THE ELASTOPLASTIC TANGENT OPERATOR
In the elastic regime, the rate constitutive equation for stress reads simply

a=D:£ (6.65)
Under plastic flow, the corresponding rate relation can be obtained by introducing expres-
sion (6.64) into (6.62). The rate equation reads

a=D":g (6.66)
where D®F is the elastaplastic tangent modilus given by

(D : N = (D 2 i)
df /e D N — b /A= piforfda’+ H

D¥ =D (6.67)
In obtaining the above expression, we have made use of the fact that the symmetry (refer to
equation (2.87), page 29) of the elasticity tensor implies

b fida D =D 08 /ilo: £. (6.68)

The fourth-order tensor D°F is the multidimensional generalisation of the scalar modulus
E<¥ associated with the slope of the uniaxial stress—strain curve under plastic flow. In the
computational plasticity literature, D*F is frequently referred to as the contimunm elastoplastic
tangent operator.

Remark 6.1 (The symmetry of D7), Note that if the plastic flow rule is associative, 1e.
il N = dd/ila, then the continuum elastoplastic tangent operator is symnretric. For models
with non-associative plastic flow, D*F is generally unsymmetric.

6.3.9. NON-SMOOTH POTENTIALS AND THE SUBDIFFERENTIAL

It should be noted that expressions (6.55) and (6.56) only make sense if the potential ¥
is differentiable. When that happens, the flow vector, IV, can be interpreted as a vector



Figure 6.5. The flow vector. Smooth potential,

normal to the iso-surfaces of function ¥ in the space of stresses (with lixed 4). A schematic
representation of N in this case is shown in Figure 6.5. The generalised modulus, H, can be

interpreted in a completely analogous way.

The requirement of differentiability of the flow potential is, however, too restrictive and
many practical plasticity models are based on the use of a non-differentiable W. Specific
examples are given later in this chapter. For a more comprehensive account of such theories
the reader is referred to Duvaut and Lions (1976), Eve ef al. (1990} and Han and Reddy
{1999). In such cases, the function ¥ is called a pseteda-potential or generalised potentiol
and the formulation of the evolution laws for the intemal variables can be dealt with by
introducing the concept of subdifferential sets, which generalizes the classical definition of
derivative.

Subgradients and the subdifferential

Let us consider a scalar function y : 58" — 5. The subdifferential of y at a point Z is the set

dy(x)={se@" |ylx) - y(&)=s-(x—&). Yo eF"}. (6.69)
IFthe set dy is notempty at &, the function y is said to be siebdifferentiable al . The elements
of dy are called subgradienss of y. If the function yis differentiable, then the subdifferential
contains a unignee subgradient which coincides with the derivative of A

- 11
dy = { e } (6.70)
dr

A schematic illustration of the concept of subdifferential is shown in Figure 6.6 for n = 1.
In this case, when y is subdifferentiable (but not necessarily differentiable) at a point 7, the
subdifferential at that point is composed of all slopes s lying between the slopes on the right
and left of 7 (the two one-sided derivatives of i a1 7).

The concept of subdifferential sets is exploited extensiy ely in comvex analysis. The reader is referred to
Rockafellar (1970), Part V, for a detsiled sccount of the theory of subdifferentizble functions.
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Figure 6.6. The subdifferential of a convex function.

Plastic flow with subdifferentiable flow potentials

Assume now that the (pseudo-) potential ¥ is a subdifferentiable function of & and A. At
points where W is non-differentiable in o, the isosurfaces of ¥ in the space of stresses contain
asingulanty (comer) where the normal direction is not uniguely defined. A typical siluation is
schematically illustrated in Figure 6.7 where two distinct normals, Ny and N5, are assumed
to exist. In this case, the subdifferential of ¥ with respect to o, denated 8,0, is the set of
vectors contained in the cone defined by all linear combinations (with positive coefficients)
of Ny and N5, The generalisation of the plastic flow rule (6.49) is obtained by replacing
expression (6.35) for the flow vector with

Ned b, {6.71)

i.e. the flow vector IV is now assumed to be a subgradient of . Analogously, the evolution
law (6.50) Tor ox can be generalised with the replacement of the definition (6.56) by

He -y, (6.72)

At this point, it should be remarked that differentiability of & with respect to the stress
tensor is violated for some very basic plasticity models, such as the Tresca, Mohr-Coulomb
and Drucker-Prager theories to be seen later. Therefore, the concepis of subgradient and
subdifferential sets introduced above are important in the formulation of evolution laws
for gF,

An alternative definition of the plastic flow rule with non-smooth potentials, which
incorporates a wide class of models, is obtained as follows. Firstly assume that a finite
number, n, of distinct normals (Vy, Na, . ... V) is defined at a generic singular point of an
izosurface of ' In this case, any subgradient of ¥ can be written as a linear combination

Ny FeeNs - e Y,
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Figure 6.7. The Aow vector. Non-smooth potential.

with non-negative coellicients o, ca, ..., eyt Based on this observation, the low rule (6.49)
can be generalised as

EP=) 4NN (6.73)
i=l1
with all i plastic multipliers required to be non-negative

=0, i=1,..., . (6.74)

¥

The generalization of the plastic Row law, in this format, was originally proposed by Koiter

(1953).

Multisurface models

The above concepts are particularly useful in defining evolution laws Tor mnftisnrface
plasticity models. In a generic multisurface model, the elastic domain is bound by a ser of
n surfaces in the space of stresses which intersect in a non-smooth fashion. In this case, n
yield functions (3, i=1,..., i) are defined so that each bounding surface is given by an
equalion

Pifo. A)=10. (6.75)

The elastic domain in this case reads
d={a|Pilo, A) <0, i=1...., n}, (6.76)

and the yield surface, i.e. the boundary of £, is the et of all stresses such that $;{er, A) =10
for at least one § and ®;(o. A) < 0 for all other indices j # i

I should be emphasised that this representation is nod valid for cenzin ppes of singularity where the

cofresponading subdifferential set cannad be generatad by a finite number of vetors
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Assuming associativity (% = @), the situation discussed previously, where the subgradient
of the flow potential is a linear combination of a finite number of normals, is recovered. Thus,
the plastic flow rule can be written in the general form (6.73) with the normals being defined

here as
iy

it

Ni= (6.77)

In the present case, the standard loadingfunloading criterion (6.53) is replaced by the
generalisation
$i<0, 420, 05 =0, (6.78)
which must hold for each i =1,...,n. Note that summation on repeated indices is not
implied in the above law.

6.4, Classical yield criteria

The general constitutive model for elastoplastic materials has been established in the previous
section. There, the yield criterion has been stated in its general form, without reference to any
particular criteria. In this section, some of the most common yield criteria used in engineenng
practice are described in detail: namely, the critenia of Tresca, von Mises, Mohr-Conlomb and
Dirnicker—Prager.

6.4.1. THE TRESCA YIELD CRITERION

This criterion was proposed by Tresca (1868) to describe plastic yielding in metals. The
Tresca yield criterion assumes that plastic yvielding begins when the maxinm shear stress
reaches a critical value.

Recall the spectral representation of the stress tensor,

3
o= Z 0By e, (6.79)
i=1
where ; are the principal stresses and e; the associated unit cigenvectors, and let ey and
i be, respectively, the maximum and minimum principal stresses

min

Finae = AKXy, Ta, Tg )i

- (6.80)
Frnin = MIN[Ty. T2 T3).
The maxintunt shear SIFEss, Tya, 15 2iven by
Tmax = _-EI:K'F“! % S ”I::i:a]' [G-S“

According to the Tresca criterion, the onset of plastic yielding is defined by the condition
-]_r[‘le:-n. — Tpin) = Tyl )s (6.32)

where 7, is the shear vield siress, here assumed to be a function of a hardening internal
variahle, o, to be defined later. The shear yield stress is the yield limit under a state of pure
shear.
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In view of {(6.82), the yield function associated with the Tresca yield eriterion can be
represented as
11":“] = %':"Truu: 5 'r'r1.u|||.,:| B TI_J[‘:. ). {6-33}

with the onset of yiclding characterised by © = 0. Altemnatively, the Tresca yield Tunction
may be defined as
Do) = (Fmax — Tmin) — dylar). (6.54)

where @, is the nniaxiol yield stress
(6.85)

oy, =27

that is, it is the stress level at which plastic yielding begins under nnfaxial stress conditions.
That o, is indeed the uniaxial yield stress for the Tresca theory can be established by noting
that, when plastic yielding begins under uniaxial stress conditions, we have

Tnin = 0. (6.80)

Trnax = Ty,

The substitution of the above into (6.82) gives (6.85). The elastic domain for the Tresca

criterion can be delined as
&={o|dlo,a,) <0} (6.87)

Pressure-insensilivily

Due to its definition exclusively in terms of shear stress, the Tresca criterion is pressiere
insensirive, that is, the hydrostatic pressure component,

p= Lol =3 (o) + a2+ 03). (6.88)

of the stress tensor does not affect yielding. Indeed, note that the superposition of an arbitrary
pressure, p*, on the stress tensor does not affect the value of the Tresca yield function

Mo+ p'T) =) (6.59)

We remark that the von Mises criterion described in Section 6.4.2 below is also pressure-
insensitive. This property is particularly relevant in the modelling of metals as, for these
materials, the influence of the hydrostatic stress on yielding is usually negligible in practice.

fsofropy

One very important aspect of the Tresca criterion is its isetropy (a propenty shared by the
von Mises, Mohr—Coulomb and Drucker-Prager criteria describad in the following sections).

Note that, since ® in (6.83) or (6.84) is defined as a funciion of the principal stresses,
the Tresca yield function is an isefropic function of the stress tensor (refer to Section A.l,
page 731, for the definition of isotropic scalar functions ol a symmetric tensor), i.e. it satisfies

P(a) =B (QeQT) (6.90)

for all rotations €Q; that is, rotations of the state of stress do not affect the value of the yield
function.

At this point, it is convenient to introduce the following definition: A plastic yield criterion
is said to be isotropic if it is defined in terms of an isotropic yield function of the stress tensor,
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Graphical representation

Since any isolropic scalar function of a symmetric tensor can be described as a function of
the principal values of its argument, it follows that any iso-surface (i.e. any subset of the
function domain with fixed function value) of such functions can be graphically represented
as a surface in the space of principal values of the argument. This allows, in particular, the
yield surface (refer to expression (6.48), page 150) of any isotropic yield criterion to be
represented in a particularly simple and usefu] format as a three-dimensional surface in the
space of principal stresses,

(a) (b)

von Mises

Tresca

f I\f »
{fa

Figure 6.9. (a) The =-plane in principal stress space and, (b) the 7-plane representation of the Tresca
and von Mises yield surfzces.
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In principal stress space, the Tresca vield surface, i.e. the set of stresses for which & =0,
is graphically represented by the surface of an infinite hexagonal prism with axis coinciding
with the hyvdrostatic line (also known as the space diagonal), defined by oy = @2 = 3. This
is illustrated in Figure 6.8. The elastic domain (for which @ < 0) comesponds to the interior
of the prism. Due to the assumed insensilivily to pressure, a further simplification in the
representation of the yield surface is possible in this case. The Tresca yield surface may
be represented, without loss of generality, by its projection on the subspace of stresses
with zero hydrostatic pressure component () + @z + a3 = ). This subspace is called the
deviatoric plane, also referred to as the =-plane. It is graphically illustrated in Figure 6.9(a).
Figure 6.9(b) shows the 7-plane projection of the Tresca yield surface.

Multisurface representation
Equivalently to the above representation, the Tresca yield criterion can be expressed by means
of the following six yield functions

Milo.oy)=0 —a3 —ay

Pala, o) =03 —a3 —ay

gy (e, Oyl =02 — 01 — 0y

(6.91)
'I.ll:":r- "T'_,':I =gz — N oy,
Taie. n.ﬂ.] =3 — d3 — d,
Polor.a,)=ay — 72 — .
so that, for fixed o, the equation
Pilo, a,) =0 (6.92)
corresponds to a plane in the space of principal stresses foreach i = 1, . ., G (Figure 6.10).

In the multisurface representation, the elastic domain for a given a, can be defined as
&= {o|dile.a,) <0, i=1,..., 6}. (6.93)

Definitions (6.87) and (6.93) are completely equivalent. The yield surface — the boundary of
& —is defined in this case as the set of stresses for which 8 (o, ., ) = 0 for at least one @ with
di(o.a,) =< 0lor j#i.

Tnvariant representation

Altematively to the representations discussed above, it is also possible to describe the yield
locus of the Tresca criterion in terms of stress invariams. In the invariant representation,
proposed by Nayak and Zienkiewicz (1972) (see also Owen and Hinton 1980, and Crisfield
1997}, the yield Munction assumes the format

g = f\,‘fl.fg cos f — Ty, (6.94)
where J2 = Ja(s) is the invariant of the siress deviator, s, defined by

o

4‘_;:—.‘3{3]—%[{5-"]—%S:S=% 5| (6.95)
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Figure 610, The Tresca criterion. Multisurface representation in principal stress space,

Recall that the stress deviator is given by

E=a— %{Ho‘]f. (6.90)
The Lode angle, #, is a function of the deviatoric stress defined as
—3\/3.J
n;%bi.r’( : -;—"). (6.97)
.

5
where J3 is the third principal invariant of stress deviator®

Ji=Ii(s) =det s = 1 tr(s)”. (6.98)
The Lode angle is the angle, on the deviatoric plane, between s and the nearest pure shear
line (a pure shear line is graphically represented in Figure 6.11). It satisfies

- <
G ™

(6.99)

=1

Despite being used often in computational plasticity, the above invariant representation results
in rather cumbersome algorithms for integration of the evolution equations of the Tresca
model. This is essentially due to the high degree of nonlinearity introduced by the tngono-
metrie function involved in the definition of the Lode angle. The muliisurface representation,
on the other hand, is found by the authors to provide an optimal parametrisation of the
Tresca surface which results in a simpler numerical algorithm and will be adopted in the
compuiational implementation of the model addressed in Chapter 8.

The equivalence between the two 0 wi Lerms in (6930 05 estzblished by womming
jon (273 (page 2 foc i = 1,2, 3 taking into acoount the fact that fi{s) = 00(SF is a waceless tensor)
and that te{ & )? = ¥, &) for any symmetric tensor 5.
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6.4.2. THE VON MISES YIELD CRITERION

Also appropriate to describe plastic yielding in metals, this critenion was proposed by
von Mises (1913). According to the von Mises criterion, plasiic yielding begins when
the Ja stress deviator invariant reaches a critical valwe. This condition is mathematcally
represented by the equation

gy = Ra), (6.100)

where R is the critical value, here assumed to be a function of a hardening internal variable,
ar, to be defined later.

The physical interpretation of the von Mises criterion is given in the following. Since the
elastic behaviour of the materials described in this chapter is assumed to be linear elastic, the
stored elastic strain-energy at the generic state defined by the stress @ can be decomposed as
the sum

Ut = A+ (6.101)

ol a distertional contribution,
5 . 6.102
.f“-,r—.'_]'ﬁb-f"—r;-f;h (6.102)

and a velunietric contribution,

. l 4
pyL=—=p, (6.103)
I

where (¢ and K are, respectively, the shear and bulk modulus. In view of (6.102), the
von Mises criterion is equivalent to stating that plasiic vielding begins when the distortional
elastic strain-energy reaches a critical valiwe. The comesponding cntical value of the

distortional energy is
1

G
It should be noted that, as in the Tresca criterion, the pressure component of the stress tensor
does not take part in the definition of the von Mises criterion and only the deviatoric stress
can influznce plastic yielding. Thus, the von Mises criterion 15 also pressure-tnsensifive.
In a state of pure shear, i.2. a state with stress tensor

it

a + 0
[l=|7 0 0], (6.104)
0O o0
we have, s = o and
Ja=1". (6.105)

Thus, a yield function for the von Mises criterion can be defined as

(o) = \/Ja(s(a)) — 7, (6.106)
where 7, = VR is the shear yield stress. Let us now consider a state of uniaxial stress:
a 00
[o]=1[0 0 of. (6.107)

g o0 o0
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In this case, we have

200 0
[s]=1]0 —%t‘l 0 (6.108)
1] 0 --%a
and
Ja= 14" (6.109)

The above expression for the Ja-invariant suggests the following alternative definition of the
von Mizes yield funciion:
o) = gla) — ay, (6.110)

where o, = V3R is the uniavial yield stress and
qla) = /3 Lis(a)) (6.111)

is termed the van Mises effective or equivelent stress, The uniaxial and shear yield stresses
for the von Mises criterion are related by

a,=v3ar,. (6.112)

Mote that this relation difters from that of the Tresca criterion given by (6.85). Obviously, due
to its definition in terms of an invariant of the stress tensor, the von Mises yield function is an
isotropic function of o,

The von Mises and Tresca criteria may be sel to agree with one another in either uniaxial
stress or pure shear states, IF they are set by using the yield lunctions (6.84) and (6.110) so
that both predict the same uniaxial yield stress oy, then, under pure shear, the von Mises
criterion will predict a yield stress 2/+/3 (= 1.155) times that given by the Tresca criterion.
On the other hand, if both criteria are made to coincide under pure shear (expressions (6.83)
and (6.106) with the same 7}, then, in uniaxial stress states, the von Mises cnterion will
predict yielding at a stress level v/3/2 (= 0.866) times the level predicted by Tresca's law.

The yield surface (¢ = 0) associated with the von Mises criterion is represented, in the
space of principal stresses, by the surface of an infinite circular cylinder, the axis of which
coincides with the hydrostatic axis, The von Mises surface is illustrated in Figure 6.8 where
it has been set to match the Tresca surface (shown in the same figure) under uniaxial stress.
The corresponding =-plane representation is shown in Figure 6.9(b). The von Mises circle
intersects the vertices of the Tresca hexagon. The yield surfaces for the von Mises and
Tresca criteria set to coincide in shear is shown in Figure 6.11. In this case, the von Mises
circle is tangent to the sides of the Tresca hexagon. It is remarked that, for many metals,
experimentally determined yield surfaces fall between the von Mises and Tresca surfaces.
A more general model, which includes both the Tresca and the von Mises yield surfaces as
particular cases (and, in addition, allows for anisotropy of the yield surface), is describad in
Section 10,34 (starting page 427).

6.4.3. THE MOHR-COULOMB YIELD CRITERION

The criteria presented so far are pressure-insensitive and adequate to describe metals, For
materials such as soils, rocks and concrete, whose behaviour is generally characterized by
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Figure 6.11. Yicld surfaces for the Tresca and von Mices criteria coinciding in pure shear.

a strong dependence of the yield limit on the hydrostatic pressure, appropriate description
of plastic yielding requires the introduction of pressure-sensitivity. A classical example of
a pressure-sensitive law is given by the Mohr-Coulomb yield criterion described in the
following.

The Mohr—Coulomb criterion is based on the assumption that the phenomenon of
macroscopic plastic yielding is, essentially, the result of frictional sliding between material
particles. Generalising Coulomb’s friction law. this criterion states that plastic yielding begins
wihen, an a plane in the body, the shearing stress, T, and the nornal siress, @, redach the

criticetl combination
7= —d, tan o, (6.113)

where ¢ is the colesion and & is the angle of fnternal friction or frictional angle. In the above,
the normal stress, a,,, was assumed tensile positive.

The yield locus of the Mohr—Coulomb criterion is the set of all stress states such that there
exists a plane in which (6.113) holds. The Mohr—Coulomb yield locus can be easily visualised
in the Mohr plane representation shown in Figure 6.12. Itis the set of all stresses whose largest
Mohr circle, i.e. the circle associated with the maximum and minimum principal stresses
(0o and iy, respectively), is tangent to the critical line defined by 7= ¢ — a;, tang,
The elastic domain for the Mohr-Coulomb law is the sei of stresses whose all three Mohr
circles are below the critical line. From Figure 6.12, the yield condition (6.113) is found to
be equivalent to the following form in terms of principal stresses

Frax — Fmin Tmax T Tmir Frnax — Tmin .
: "t.’—ll CO5 0 =0 — (% + o 2 == s g ) LA o (6.114)

which, rearranged, gives

(Tmax — Fmin) + (Fmax + Fmin) sing =2 cos o, (6.115)

In view of (6.115), a yield function expressed in terms of the principal stresses can be
immediately defined for the Mohr—Coulomb criterion as

dar. ¢) = (Frax — Tmin) + (Trmax + Fin) sing — 2e coso. (6.116)
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Figure 6.12. The Mohr-Coulomb eriterion. Mobir plane representation.

Due to its definition in terms of principal stresses, this yield function is an isolropic function
of e. The corresponding yield surface (3 =0) is a hexagonal pyramid aligned with the
hydrostatic axis and whose apex is located at

=i Cofl o {6.1]:“

on the tensile side of the hydrostatic axis. The Mohr-Coulomb surface is illustrated in
Figure 6.13. Its pyramidal shape, as opposed to the prismatic shape of the Tresca surface, is
a consequence of the pressure-sensitivity of the Mohr—Coulomb criterion, It should be noted,
however, that both criteria coincide in the absence of internal friction, 1.e. when o =L As no
stress state 1s allowed on the outside of the yield surface, the apex of the pyramid (point A in
the figure) defines the limit of resistance of the material to tensile pressures. Limited strength
under tensile pressure is a typical characteristic of materials such as concrete, rock and soils,
to which the Mohr-Coulomb criterion is most applicable.

Multisurface represeittation

Analogously to the multisurface representation of the Tresca criterion, the Mohr-Coulomb
criterion can alzo be expressed by means of six functions:

g, c)l=oy —az + (ay + az) sime — 20 cos o
oo, c)=a3 —agz+ (o2 +a3)sing — 2c cosg
Fia.cl=as —oy +{az +a)sing —2¢ coso
" : (6.1158)
. cl=a3—ay +{ag+am)sing —2¢ coso
defa.c)=a3 —ada+ (agg+az)sing —2 ¢ coso
Iala, ) =a) —aa + [0y faz)sing — 20 cos o,

whose roots, 9;(er, c) =10 (for lixed ¢), define six planes in the pnncipal siress space.
Each plane contains one face of the Mohr—Coulomb pyramid represented in Figure 6.13.
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-0, R

Figure 6.13. The Mohr-Coulomb yield surface in principal stress space,

The definition of the elastic domain and the yield surface in the multisurface representation
is completely analogous to that of the Tresca criterton.

Tnvariant representation

Analogously to the invariant representation (6.94) of the Tresca criterion, the Mohr-Coulomb
yield function can be expressed as (Owen and Hinton 1980, and Crislield 1997):

1 ; _, - .
= (-.'u_-c i _i sin # sin 4::) W Ja(8) + pla) sing — ¢ cos o, (6.119)
W

where the Lode angle, #, is defined in (6.97). As for the Tresca model, in spite of its
frequent use in computational plasticity, the invariant representation of the Mohr-Coulomb
surface renders more complex numerical algonthms so that the multisurface representation is
preferred in the computational implementation of the model described in Chapter 8.

6.4.4. THE DRUCKER-PRAGER YIELD CRITERION

This criterion has been proposed by Drucker and Prager (1952) as a smooth approximation to
the Mohr—Coulomb law. It consists of a modilication of the von Mises criterion in which an
extra term is included to introduce pressure-sensitivity. The Drucker—Prager criterion states
that plastic vielding begins when the J5 invariant of the deviatoric siress and the hydrostatic
stress, p, reach a critical combination. The onset of plastic yielding occurs when the equation

Vsl +np=-¢ (6.120)

is satisfied, where 5 and ¢ are material parameters. Represented in the principal stress space,
the yield locus of this criterion is a circular cone whose axis is the hydrostatic line. For i =0,
the von Mises cylinder is recovered. The Drucker-Prager cone is illustrated in Figure 6.14.
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Figure 6.14. The Drucker—Prager yield surface in principal stress space,

In order to approximate the Mohr-Coulomb yield surface, it is convenient to define the
Drucker—Prager yield lunction as

d(a. c) =/ h(sla)) +yplo) — £ o (6.121)

where ¢ is the coliesion and the parameters 5 and £ are chosen according to the required
approximation to the Mohr-Coulomb criterion. Note that the isotropy of the Mohr-Coulomb
yvield function follows from the fact that it is defined in terms of invarianis of the stress
tensor (Jz(s) and p). Two of the most common approximations used are obtained by making
the yield surfaces of the Drucker-Prager and Mohr-Coulomb criteria coincident either at
the outer or inner edges of the Mohr—Coulomb surface. Coincidence at the ouwter edges is
obtained when ¥k :

ik ._l.l sin o e ._I.l ‘-U:‘Ijl _ (6.122)
Va3 —sing) VA (3 —sing)

whereas, coincidence al the fnner edges is given by the choice

G sin o G cos o
p=——————, =—m——. (6.123)
V334 sing) Va3 (3 4+ sind)

The outer and inner cones are known, respectively, as the cempression cone and the
extension cone. The inner cone matches the Mohr—Coulomb criterion in uniaxial tension and
biaxial compression. The outer edge approximation matches the Mohr-Coulomb surface in
uniaxial compression and biaxial tension. The 7-plane section of both surfaces is shown in
Figure 6.15. Another popular Drucker-Prager approximation to the Mohr—Coulomb criterion
is obtained by forcing both criteria to predict identical collapse loads under plane sirain
conditions. In this case (the reader is referred to Section 4.7 of Chen and Mizuno (1990} for
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derivation) the constants i and £ read

3 tano 3
e o, (6.124)
VO 412 tan” & VO 12 tan” o

For all three seis of parameters above, the apex of the approximating Drucker-Prager cone
coincides with the apex of the corresponding Mohr-Coulomb yield surface. It should be
emphasised here that any of the above approximations to the Mohr-Coulomb criterion can
give a poor description of the material behaviour for certain states of stress, Thus, acconding
to the dominant stress state in a particular problem to be analysed, other approximations may
be more appropriate. For instance, under plane stress, which can be assumed in the analysis
of structures such as concrete walls, it may be convenient to use an approximation such that
both criteria match under, say, uniaxial tensile and uniaxial compressive siress states. For
the Mohr-Coulomb criterion to fit a given uniaxial tensile strength, f, and a given uniaxial
compressive strength, f!, the parameters ¢ and ¢ have to be chosen as

() :_ai]]_l(%)_ = :‘_r;f...l fir; Tan o tﬁ-lj-:"]'
e T M c It

The corresponding Drucker—Prager cone (Figure 6.16) that predicis the same uniaxial failure
loads is obtained by setting

:] =1 O 20080
Ne=—m——, £=—7. (6.126)
‘.."':I \-":f

Iis apex no longer coincides with the apex of the original Mohr—Coulomb pyramid. For
problems where the failure mechanism is indeed dominated by uniaxial tension/compression,
the above approximation should produce reasonable results. However, if for a panticular
problem. failure occurs under biaxial compression instead (with stresses mear point _,Ir;
of Figure 6.16), then the above approximation will largely overestimate the limit load,
particularly for high ratios f!/f which are typical for concrete. Under such a condition,
a different approximation (such as the inner cone that matches point fi_yneeds to be adopted
to produce sensible predictions. Another useful approximation for plane stress, where the
Drucker—Prager cone coincides with the Mohr-Coulomb surface in biaxial tension (point
1.y and biaxial compression (point f;_), is obtained by setting

3 sino D oos o
= —~ = it 71 16127
i S .
24/3 v

Drucker-Prager approximations to the Mohr—Coulomb criterion are thoroughly discussed by
Chen (1982), Chen and Mizuno (1990) and Zienkiewicz et al. (1978).

6.5. Plastic flow rules
6.5.1. ASSOCIATIVE AND NON-ASSOCIATIVE PLASTICITY

It has already been said that a plasticity model is classed as associative il the yield function,
i, is taken as the low potential, i.e.

(6.128)
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Figure 6.15, The w-plane section of the Mohr—Coulomb surface and the Dvucker-Prager approsima-
tions.
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Figure 6.16, Plane stress, Drucker-Prager approximation matching the Mohr-Coulomb surfzce in
uniaxial tension and uniavial compression.
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Any other choice of flow potential characterizes a non-associative (or non-associated)
plasticity model.

In associative models, the evolution equations for the plastic strain and hardening variables
are given by

; T
EY =7 =, (6.129)
il
and
. L i (6.130)
= By - . - 4L
taA

Associativity implies that the plastic strain rate is a tensor mormal to the vield surface in the
space of stresses. In the generalised case of non-smooth yield surfaces, the flow vectoris a
subgradient of the yield function. i.e. we have

EP=4N;: Nea,d. (6.131)

In non-associative models, the plastic strain rate is not normal to the yield surface in general,

6.5.2. ASSOCIATIVE LAWS AND THE PRINCIPLE OF MAXIMUMN PLASTIC
DISSIPATION

It can be shown that the associative laws are a consequence of the principle of maximiim
plastic dissipation. Before stating the principle of maximum plastic dissipation, recall that
for a state defined by a hardening force A, the admissible stress states are those that satisfy
Per, A) < 0. Thus, it makes sense to define

“={le. A) | P#(a, A) <0} (6.132)

as the set of all admissible pairs (combinations) of stress and hardening force. The principle
of maximum dissipation postulates that amaong all admissible pairs (e, A") € & the actual
state (o, A) maximises the dissipation function (6.42) for a given plasiic strain rate, £°, and
riite & of hardening interal variables. The principle of maximum plastic dissipation requires
that, for given (&, &),

Te, A7, a) =2 TP (o", A &7 a), Vo, A") e o 6.133)

In other words, the actual state (er, A) of stress and hardening force is a solution to the
following constrained oplimisation problem:

maximise TH(a*, A", &7, &)
_ (6.134)
subjectto Bo®. A") < (L

The Kiln—Tucker optimality conditions (Luenberger, 1973, Chapter 10) for this optimisation
problem are precisely the associative plastic flow rule (6.129), the associative hardening

rule (6.130) and the loadingfunloading conditions

Bla, A) <0, 420, dla. A =0. (6.135)
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Remark 6.2. The postulate of maximum plastic dissipation, and the corresponding asso-
ciative laws, are not universal. Based on physical considerations, maximum dissipation
has been shown to hold in crystal plasticily and is particularly successful when applied to
the description of metals. Nevertheless, for many materials, particularly soils and granular
materials in general, associative laws frequently do not correspond to experimental evidence,
In such cases, the maximum dissipation postulate is clearly not applicable and the use of
non-associative laws is essential.

6.5.3, CLASSICAL FLOW RULES
The Prandil-Reuss equations

The Prandtl-Reuss plasticity law is the flow rule obtained by taking the von Mises yield
function (6.110) as the fow potential. The comresponding Mlow vector is given by

ad il f4 &
T 2o ' R
WN=—=—|[+/3.fls {3 ; {(6.130)
g0~ a3l = vz
and the Aow rule results in
T &
EF =4 ,f3 —. (6.137)
Vo2 I8

Here, it should be noted that the Prandtl-Reuss flow vector is the derivative of an isotropic
scalar funciion of a symmeiric tensor — the von Mises yield lTunction. Thus (refer Lo
Section A.1.2, page 732, where the derivative of isotropic functions of this type is discussed),
N and o are coaxial, i.e. the principal directions of IV coincide with those of a. Due to the
pressure-insensitivity of the von Mises yield function, the plastic flow vector is deviatoric,
The Prandil-Revss flow vector is a tensor parallel to the deviatoric projeciion s of the siress
tensor. lts principal stress representation is depicted in Figure 6.17. The Prandil-Reuss mle
is usually employed in conjunction with the von Mises criterion and the resulting plasticity
maodel is referred to as the von Mises associative model or, simply, the von Mises model.

Assaciafive Tresca

The associative Tresca flow rule utilises the yield function (6.84) as the flow potential. Since
& here is also an isotropic function of o, the rate of plastic strain has the same principal
directions as . The Tresca yield function is differentiable when the three prncipal stres<es
are distinct (o) 3 o2 # 73) and non-differentiable when two principal stresses coincide (a1
the edgzes of the Tresca hexagonal prism). Hence, the Tresca associative plastic low rule 15
generally expressed as

E¥ = 4N, (6.138)

where [V is a subgradient of the Tresca function
Ned, D {6.139)
[ts multisurface-based representation reads
f ] .
- 4 qull-
LY =1 FE __ 21
ET = E ¥ Nt = ¥ _ﬂﬂ' % (6. 1400

i=1 i=1



Figure 6.17. The Prandil-Reuss Aow vectorn

with the yield functions &, defined by (6.91). Each vector V' is normal to the plane defined
by & = ().

The above Mlow rule can be alternatively expressed as follows. Firstly assume, without loss
of generality, that the principal stresses are ondered as 7y = 73 = a3, so that the discussion
can be concentrated on the sextant of the 7-plane illustrated in Figure 6.18, Three different
possibilities have to be considered in this sextant:

{a) yielding ata stress state on the side (main plane) of the Tresca hexagon (4 = 0,42 <0
and P < O);

ib) yielding from the right cormer, it (8 =0, e = Oand $3 < 0); and
{c) Yielding from the left camer, L (3 =0, %2 = 0and g < 0),

When the stress is on the side of the hexagon, only one multiplier may be non-zero and the
plastic fow rule reads

eF =4 IN", (6141}
where the flow vector is the normal to the plane 4 =0, given by
LT .
N°=N'=—=+= (0 - 03)
ild  do
=e) e —e; ey, (6.142)

with &; denoting the eigenvector of ar associated with the principal stress a;. In deriving the
last right-hand side of (6.142), use has been made of the expression (A.27) of page 736 for
the derivative of an eigenvalue of a symmelric tensor.

At the right and left corners of the hexagon, where two planes intersect, two multipliers
may be non-zero, Thus, the plastic flow equation is

1}

EP =4 N +4° N° (6.143)
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d
N

hi

Figure 6.18. The associative Tresca flow male,

The vector VY is the normal to the plane 4 =0, already defined. In the right comer
o . . b o

(repeated minimum principal stress), the second vector, N7, is normal to the plane @ =0

and is obtained analogously to (6.142) as

N'=N%=g @ e —es @ ea. (6.144)
3, * a b = ¥
In the left cormer (repeated maximum principal stress), N, is normal to the plane 42 =10,
N =N?= E: 7 82 — €3 T Ba. (6.145)

It should be noted that, as for the Prandil-Reuss rule, the plastic flow predicied by the
associative Tresca law is velume-preserving. Indeed, note that, in the above, we have tnivially

trN®=tr NP =0, (6.146)

This is due o the pressure-insensitivity of the Tresca yield funcuon.

Associative and non-associative Mohir-Conlomb

In the associative Mohr-Coulomb law, the Mohr—Coulomb yield function (6.1 16} is adopted
as the Mow potential, s multisurface representation is based on the yield functions (6.118),
The flow rule, which requires consideration of the intersections between the yield surfaces,
is derived in a manner analogous to the Tresca law described above, However, it should be
noted that in addition to the edge singularities, the present surface has an extra singulanty in
its apex (Figure 6.13). Plastic yielding may then take place from a face, rom an edge or from
the apex of the Mohr—Coulomb pyranid.

Again, in the derivation of the flow rules at faces and edges, it 1s convenient o assume
that the principal stresses are ordered as oy = @3 = o3 so that, without loss of generality, the
analysis can be reduced o a single sextant of a cross-section of the Mohr-Coulomb pyramid
as illustrited in Figure 6,19, The sitwation is identical to Tresca’s (Figure 6.18) except that
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sarisnd wih

Figure 6.19. The Mohr-Coulomb flow rule; (a) fzces and edges, and (b) apex.

the normal vectors IV * and W are no longer deviatoric, i.e. they have a non-zero componenl
along the hydrostatic axis (the vectors shown in Figure 6.19 are deviatoric projections of the
actual normals). For plastic yielding from the face, the flow rule is given by

gF =4 N*, (6.147)

where W7 is normal to the plane &, =10,

i il .
N®= rﬂa. = [;—a_ 71 — a3 + (o1 + a3) sin g
= (1l +sing)e; @ep — (1 —singles O e, (6.148)

At the comers, the above flow rule is replaced by
&P =47 N +4° N, (6.149)

At the right (extension) comner, R, the second vector, N7, is normal to the plane &5 = 0 and
is given by
Ni=(14+sind)e @e — (1= sing)es @ e, (6.150)
5 b -
whereas, at the feft (compression) comer, L, the tensor N7 is normal to the plane $; =10,
b " ! a -
N=(14+singd) e = es— (1 —singd) ez = es. (6.151)

At the apex of the Mohr—Coulomb surface, all six planes intersect and, therefore, six
normals are defined and up to six plastic multipliers may be non-zero. This situation is
schematically illustrated in Figure 6.19(b). The plastic strain rate tensor lies within the
pyramid defined by the six normals:

L
E=%" 4N, (6.152)
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It is important to note that, dug to the pressure sensitivity of the Mohr—Coulomb eriterion,
the associative Mohr—Coulomb rule predicts a non-zeco valwnetric plastic straining. This is in
contrast to the Prandtl-Reuss and associative Tresca laws, The volumetric component of the
plastic strain rate in the associative Mohr—Coulomb law can be obtained by expanding (6.152)
in principal stress space taking into account the definitions of N, This gives

:I'l
]l fa 0 2 3 0 a] |7,
gl=10 a a 0 3 3| |, (6.153)
e 3 30 a a0
=6
!
where
a=1+sing, F=-1+4sing. (6.154)
The above trivially vields
L]
=+ +f=2sin¢ Y 4 (6.155)
i=1

As all 5''s are non-negative, the volumetric plastic strain rate is positive and, therefore,
dilatani. The phenomenon of dilatancy during plastic flow is observed for many materi-
als, particularly geomatenals. However, the dilatancy predicted by the associative Mohr-
Coulomb law is often excessive. To overcome this problem, it is necessary (o use a non-
associated Mow rule in conjunction with the Mohr—Coulomb criterion. The non-associated
Mohr-Coulomb law adopts, as Mow potential, a Mohr—Coulomb yield function with the
frictional angle ¢ replaced by a different (smaller) angle . The angle o is called the difatancy
angle and the amount of dilation predicted is proportional to its sine, Note that for ¢ = 0, the
plastic low becomes purely deviatoric and the fow rule reduces to the associative Tresca law.

Associative ond non-associative Dricker-Prager

The associative Drucker—Prager model employs as flow potential the yield function defined
by (6.121). To derive the corresponding flow rule, one should note first that the Dirucker
Prager function is singular at the apex of the yield surface and is smooth anywhere else.
Thus, two situations need to be considered:

{a) plastic yielding at (smooth portion of) the cone surface; and
(b) plastic yielding at the apex.

At the cone surface, where the Drucker-Prager yield funciion is differentiable, the flow
vector is obtained by simply differentiating (6.121) which gives (Figure 6.20(a))

N =

I, (6.156)
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Figure 6.20, The Drocker—Prager flow vector; (a) cone surface, and (b) apes.

where 1 is given by (6.122)y, (6.123); or (6.124),. according to the chosen approximation to
the Mohr-Coulomb surface. The flow rule is then

EF =4 N, (6.157)

The deviatoric/volumetric decomposition of the Drucker-Prager (low vector gives

Ny = .—1- s N.= 1. (6.158)
2 \.-"r.-f_:{ﬁ:l

At the apex singularity, the flow vector is an element of the subdifferential of the yield
function (6.121}:
Ned,b. (6.159)

It lies within the complementary cone to the Drucker-Prager yield surface, i.e. the cone
whose wall is normal to the Ducker—Prager cone illustrated in Figure 6.200b), From standard
propertics of subdilferentials (Rockafellar, 1970; Rockafellar and Wets, 1998) it can be
established that the deviatoric/volumetric split of IV in this case is given by

Niei, Py, No=1, (6.160)

where &y = 4/ Jals). Expressions (6.157), (6.158) and (6.160) result in the following rate of
(dilatant) volumetric plastic strain for the associative Drucker—Prager Now rule:

=4, (6.161)
This expression is analogous to (6.155).

Similarly to the associative Mohr—Coulomb flow rule, the often excessive dilatancy
predicted by the associated mule in the present case is avoided by using a non-associated
baw. The non-associative Diucker—Prager law is obtained by adopting, as the flow potential,
a Drucker—Prager yield funciion with the frictional angle ¢ replaced by a dilatlancy angle
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11 < o that is, we define _ -
e, o) =/ Jalsla)) + 5 p. (6.162)

where ij is obtained by replacing & with ¢ in the definition of i given by (6.122)y, (6.123),
or (6.124)1. In other words,
G osin g

e i (6.163)
V3 (3 - sin )

I
when the outer cone approximation to the Mohr-Coulomb criterion is employed. When the
inner cone approximation is used,

G sin v

==y {(6.164)
Va3 4+ sin)

whereas, for the plane strain match,

3 tan -

(6.165)

[ = m—————————,
V9412 tan?® (s

The non-associated Drucker-Prager Mow vector differs from its associated counterpart
only in the volumetric component which, for the non-associated case, reads

Ne= . (6.166)

If the dilatancy angle of the non-associative potential is chosen as ¢ = 0, then the volumetric
component, N, vanishes and the Aow rule reduces to the Prandil-Reuss law that predicts
volume-preserving plastic ow (refer to Figure 6.20{a)).

6.6. Hardening laws

The phenomenon of hardening has been identified in the uniaxial experiment described in
Section 6.1. Essentially, hardening is characterised by a dependence of yield stress level
upon the history of plastic straining to which the body has been subjected. In the uniaxial
model, formulated in Section 6.2, this phenomenon has been incorporated by allowing
the uniaxial yield stress to vary (as a function of the axial accumulated plastic strain)
during plastic flow. In the two- and three-dimensional situations, hardening is represented
by changes in the hardening thermodynamical force, A, during plastic yielding. These
changes may. in general, affect the size, shape and orientation of the yield surface, defined by
e, A) =1

6.6.1. PERFECT PLASTICITY

A material model is said to be perfectly plastic if i hardening is allowed, that is, the yield
stress level does nor depend in any way on the degree of plastification. In this case, the yield
surface remains fixed regardless of any deformation process the matenal may experience
and, in a uniaxial test, the elastoplastic modulus, E*F, vanishes. In the von Mises, Tresca,
Dirucker—Prager and Mohr-Coulomb models described above, perfect plasticity corresponds
to a constant uniaxial yield stress, o, (or constant cohesion, ). Figure 6.21 shows the stress—
strain curve of a typical uniaxial cyclic (tension—compression) test with a perfectly plastic
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Figure 6.21. Perfect plasticity. Uniavial test and =-plane representation.

von Mizes model along with the comesponding =-plane reprezentation of the yield surface,
Perfectly plastic models are particularly suitable for the analysis of the stability of struclures
and soils and are widely employed in engineering practice for the determination of limit loads
and safety factors.

6.6.2. ISOTROPIC HARDENING

A plasticity model is said to be isotropic hardening if the evolution of the yield surface is
such that, al any state of hardening, it corresponds to a uniform (isotropic) expansion of the
initial yield surface, without translation. The uniaxial model described in Section 6.2 is a
typical example of an isotropic hardening model. For that model, the elastic domain expands
equally in tension and compression during plastic flow. For a multiaxial plasticity model
with a von Mises yield surface, isotropic hardening corresponds to the increase in radius of
the von Mises cylinder in principal stress space. This, together with a typical stress—strain
curve for a uniaxial cyclic test for an isotropic hardening von Mises model is illustrated in
Figure 6.22.

The choice of a suitable set (denoted o in Section 6.3) of hardening internal vanables
must be obviously dependent on the specific characteristics of the material considered. In
metal plasticity, for instance, the hardening internal variable is intrinsically connected with
the density of dislocations in the crystallographic microstructure that causes an isolropic
increase in resistance to plastic flow. In the constitutive description of isotropic hardening,
the set o normally contains a single scafar variable, which determines the size of the yield
surface. Two approaches, strain hardening and work hardening, are paticularly popular in
the treatment of isotropic hardening and are suitable for modelling the behaviour of a wide
range of materials. These are described below.

Strain hardening

In this case the hardening intemal state variable is some suitably chosen scalar measure of
strain. A typical example is the von Mises effective plastic strain, also referred to as the

THE MATHEMATICAL THEORY OF PLASTICITY 179
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Figure 6.22. Isotropic hardening. Uniaxial test and =-plane representation.

von Mises equivalent or accunndated plastic strain, defined as

] —
/ 1-=;'= &p dr_/ .,.,.-'r;-—;||.ef'|:m_ (6.167)
1]

The above definition generalises the accumulated axial plastic strain (6.18) (page 145) of the
one-dimensional model to the multiaxially strained case. Iis rate evolution equation reads

= [2erer= 2], (6.168)

or, equivalently, in view of the Prandil-Reuss flow equation (6.137),

- (6.169)

Accordingly, a von Mises isotropic strain-hardening model is obtained by letting the uniaxial
yield siress be a function of the accumulated plastic strain:

a, = ay (7). (6.170)

This function defines the strain-hardening curve (or strain-hardening fintction) that can be
obtained, for instance, from a uniaxial tensile test.

Behaviour under nnfaxial siress conditions

Under uniaxial stress conditions the von Mises model with isotropic strain hardening
reproduces the behaviour of the one-dimensional plasticity model discussed in Section 6.2
and summarised in Box 6.1 {page 146). This is demonstrated in the following. Let us assume
thal both models share the same Young's modulus, E, and hardening function o, = o, (7).
Clearly, the two models have identical uniaxial elastic behaviour and initial yield stress.
Hence, we only need to show next that their behaviour under plastic yielding is also identical.
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Under a uniaxial stress state with axial stress o and axial stress rate & in the direction of the
base vector ey, the malnx representations of the siress tensor and the stress rale tensor in the
three-dimensional model are given by

1 00 1 00
ol=a |0 0 0], [#g=a(0 0 0. (6.171)
LI V| 0 o 0

The comresponding stress deviator reads

1 0o 0
s]=2a |0 -3 0]. (6.172)
0 0 -3

In this case, the Prandil-Reuss low equation (6.137) gives

1 0 0]
[€F]=¢F |0 -5 0O, (6.173)
0 0o =1
wherne
£F = 4 sign|a) (6.174)

is the axial plastic strain rate. Note that the above expression coincides with the one-
dimensional plastic flow rule (6.10). Now, we recall the consistency condition (6.60), which
must be satisfied under plastic flow. In the present case, by taking the derivatives of the
von Mises yield function (6.1 10}, with o, defined by (6.170), we obtain

G =N:a— HF=0, (6.175)

where &V = 9 /de is the Prandil-Reuss flow vector (6.136) and H = H{Z") is the hard-
ening modulus defined in (6.27). To conclude the demonsiration, we combine (6.175)
with (6,136}, (6.171); and (6.172) 1o recover (6.28) and, then, following the same arguments
as in the one-dimensional case we find that, under uniaxial stress conditions, the isolropic
strain hardening von Mises model predicts the tangential axial stress—strain relation
EH .
¢=eTm 16.176)

which is identical to equation (6.31) of the one-dimensional model.

VWork hardening

In work-hardening models, the vanable defining the state of hardening is the dissipated plaseic
work, Y w?, defined by

(6.177)

Mste mai
1 a3 work-Fandening marerials, In this text, bowever, the term work Bardening is reserved for plastic

which the dissipated plastic work is t2ken as the state vanshle associztad with kardening

, 1. matenizls whose yield stress level depends on the history of strai

ity madels in
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Figure 6.23, The plastic work.

In a uniaxial test, for instance (Figure 6.23), the 1otal work 10 necessary to deform the material
up to point P is given by the total area under the corresponding stress—strain curve. Part of this
work, w®, is stored in the form of elastic energy and is fully recovered upon elastic unloading.
The remaining (shaded) area, wF, is the plasiic work. It comesponds to the energy dissipated
by the plastic mechanisms and cannot be recovered. From the definition of w®, its evolution
equation is given by

il =g &R (6.178)

An isotropic werk-hardeiing von Mises model is obtained by postulating
oy, = ay(uF). (6.179)

This defines the work-hardening ciurve (or work-hardening function).

Eguivalence between strain and work hardening
Under some circumstances, the strain-hardening and work-hardening descriptions are equiv-
alent. This is shown in the following for the von Mises model with associative flow
rule (6.137).

The substitution of (6.137}) into (6.178), together with the identity V’:I;’? || = @, valid
for the von Mises model under plastic Row, gives

w® = oy £F, (6.180)

or, equivalently,

'jL =g, (6.181)

As g, is sirictly positive (o, > 0}, the above dillerential relation implies that the mapping
between w and 27 is ong-to-one and, therefore, invertible so that

w? = w” () (6.182)

and
£ = P (u). (6.183)
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This allows any given strain-hardening function of the type (6.170) to be expressed as an
equivalent work-hardening function,

a, (%) = ay(w®) = 0, ((w?)), (6.184)

and any given work-hardening function of the type (6.179) to be expressed as an equivalent
strain-hardening function,

ay(uw”) = a,(7) = g, (uF(EF)). (6.185)

Expressions (6.184) and (6.185) establish the equivalence between the strain and work-
hardening descriptions for the von Mises model with associative flow rule.

Linear and nomfinear hardening

A model is said to be linear hardening if the strain-hardening function (6.170) is linear, i.e.
il it can be expressed as
a () =wa,, + H, (6.186)

yp !
with constant o, and H. The constant o, is the initial vield stress, i.e. the uniaxial yield
stress at the initial (virgin) state of the material, and I is called the linear isotropic handening
modilus. Any other hardening model is said to be nonlinear hardening. Note that perfect
plasticity (defined in Section 6.6.1) is obtained if we set H = 0 in (6.186).

It should also be noted that a linear wark-hardening function corresponds in general to an
equivalent nonfinear strain-hardening function (i.e. a nonlinear hardening model). This can
be easily established by observing that (6.181) defines a nonlinear relation between n” and
£F if @, is not a constant.

6.6.3. THERMODYNAMICAL ASPECTS. ASSOCIATIVE ISOTROPIC HARDENING

Within the formalism of thermodynamics with intemnal variables, the above isotropic strain-
hardening law corresponds to the assumption that the plastic contribution, 7, to the free
energy (recall expression (6.37), page 149) is a function of a single scalar argument — the
accumulated plastic strain. That is, the set o of hardening variables is defined as

o = &) (6.187)

and
v = oV [EP). (6.188)

The set of hardening thermodynamic forces in this case specialises as
A= {x}, (6.189)
where the scalar thermodynamic force, », associated to isotropic hardening is defined by

_ ovF

=P o = (7). (6.190)

K
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The hardening curve is postulated in terms of & as
a,(EF) = ay, + K(EF). (6.191)

If the state of hardening is defined in terms of cohesion (or shear yield stress), « (or 7,)
replaces o, in (6.191). Note that the hardening modulus H. initially defined in (6.27}),
represents the rate of change of the hardening thermodynamic force with respect to the
hardening internal variable, i.e.

ila, s

R

H(EF) (6.192)

For the strain-hardening von Mises model the evolution law (6.168) and (6.16Y) for the
internal variable, 27, follows from the hypothesis of assaciativity, that relies on the choice of
the yield function as the plastic potential. The associative evolution equation for 2% in this
case is a specialisation of (6.130); that is, we have

F=4H=4. (6.193)
The associative generalised modulus H is given by

‘:_J'Iil _ j:l‘:l: _
a4 s

1, (6.194)

where @ is the von Mises yield function (6.110). A hardening law defined by means of the
associativity hypothesis is called an associative hardening law. Any other hardening rule is
said 1o be nan-associative.

Multisurface models with associative hardening

Analogously to the associative plastic flow rule definition (6.73), (6.77) and (6.78), associa-
tive hardening for multisurface plasticity models can be defined by postulating the following
generic evolution equation for the accumulated plastic strain:

b e
Rt et 7 (6.195)
i

i=]l

Note that, here, the accumulated plastic strain, 27, is being defined by evolulion equa-
tion (6.195). Its actual physical meaning depends on the specific format of the functions
&, and is generally different from that of (6.167) adopted for the von Mises model.

A simple example of associative isotropic hardening law of the type (6.195) is obtained
for the Tresca model. Here, we refer to the plastic flow equations (6.141) and (6.143),
defined respectively on the side (smooth portion) and comer of the Tresca yield surface.
The corresponding associative evolution equations that define the accumulated plastic strain
EF are ;

F=—4 ﬂ =+ (6.196)
iy

and

L0 dPg

e
ity TS

4 4%, (6.197)
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respectively, where functions € and $s are defined by (6.91) with 7, related o &
through (6.191}).

For Mohr-Coulomb plasticity, one of the possibilities in defining a hardening law is to
assume the cefiesion, o, that takes part of the yield function (6.1 16) or (6.121) to be a function
of the hardening internal variable:

e = ¢ 2P). (6.198)

This type of hardening description is often used in practice in the modelling of soils — for
which cohesion is a fundamental strength parameter. This assumption will be adopted in
the computer implementation of Mohr—Coulomb and Drucker-Prager models described in
Chapter 8. Il hardening associativily is also assumed, then similarly 1o (6.191) we define

e(2P) = co + K(2P), (6.199)

and the intemnal vanable £ - the accumulated plasiic strain for associative Mohr—Coulomb
hardening — is defined by the corresponding particularization of general evolution law (6.195).
This gives the gencral expression
G
= a5y y "' {ﬁ:ml
i=1

P

When Aow takes place at the smooth poriion of a Mohr—Coulomb pyramid face, this is
reduced 1o

EF =2 005 :.'- (6201 ]
At the corners (refer to the plastic flow equation (6.149)), we have

F=2coso (5" 4 *J

). (6.202)

Note that if it is insisted to adopl the von Mises accumulated plastic strain rate defini-
tion (6.167) in conjunclion, =ay, with the Tresca mode] with associative plastic flow, (6.141)
to (6. 143), the evolution equation for 27 will resultin

—

- \.a". ePier= L4 (6.203)

Lalwd

for Mow from the smeoth portions of the Tresca surface, and

. W T
P =5 €7 8P = 2 /(1) + 923 + (14)2 (6.204)

for flow from a comer. In this case, the isotropic hardening law is non-associative in spite of
the associativity of the plastic flow rule.

=

Drucker-Prager associative hardening

Associative hardening for Drucker-Prager plasticity is obtained by combining assump-
tion (6.199) and the yield lunction definition (6.121) with the general associative evolution
law (6.130) for the hardening intermal variable. The accumulated plastic strain in this case is
then defined by the evolution equation

Ly 2
3 =5E. (6.205)

P — 4
Dk
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Other hardening models

Further refinements to capture hardening behaviour more accurately can be incorporated in
Mohr-Coulomb based plasticity models by assuming, in addition, the frictional angle to be a
function, for example, of the accumulated plastic strain:

&= a{ 2P, (6.2040)
For Drucker-Prager-based models, the above would correspond to having
n=n(e"), §=E(F). (6.207)

The direction of plastic low is generally affected by the history of plastic straining in
miaterials such as soils and rocks. This phenomenon can be accounted for in non-associative
How Mohr—Coulomb type models by letting the dilatancy angle, v, be a function of the
hardening intemal variable. For Drucker-Prager-based models, this can be obtained by having
the parameter ij as a function of the hardening variable,

6.6.4. KINEMATIC HARDENING. THE BAUSCHINGER EFFECT

When the yield surfaces preserve their shape and size but fransfate in the stress space as a
rigid body, kinematic handening is said to take place. Itis frequently observed in experiments
that, after being loaded (and hardened) in one direction, many materials show a decreased
resistance to plastic yielding in the opposite direction (Lemaitre and Chaboche, 1990). This
phenomenon is known as the Bauschinger effect and can be modelled with the intreduction
of kinematic hardening. A number of constilutive models have been proposed to describe
elastoplastic behaviourunder cyclic loading conditions (Lemaitre and Chaboche, 1990; Mroz,
1967; Skreypek, 1993). The typical result of a uniaxial cyclic test showing the Bauschinger
effect is illustrated in Figure 6.24. The evolution of a kinematically hardening von Mises-type
yield surface (in the deviatoric plane) used to medel the phenomenon is shown alongside. The
yield function for the kinematically hardening model is given by

'I"[O’. ﬂ} = \;"::_:'I .-.;31 I]‘-:_ﬂ'. |sz:l] — Ty, (6.208)

where

e 3 =sla)—-03 (6.209)
is the refative stress tensor, defined as the difference between the stress deviator and the
symmetric deviatoric (stress-like) tensor, 3, known as the back-stress tensor. Note that, by
definition, the relative stress is deviatoric. The back-stress tensor is the thermodynamical
force associated with kinematic hardening and represents the translation (Figure 6.24) of the
yield surface in the space of stresses. The constant o, in (6.208) defines the radius of the yield
surface. When 3 = 0, we have i = s and the yield surface defined by 4 = 0 is the isotropic
von Mises yield surface with uniaxial yield stress ,,.

It is important to observe that, unlike the isotropically hardening von Mises medel, the
vield function & defined by (6.208) is not an isotropic Tunction of the stress tensor for
kinematically hardened states (3 # 0). The function (6.208) is an isotropic function of the
relative stress, 1. Analogously to expression (6.208), it is possible to introduce Kinematic
hardening in other plasticity models simply by replacing o with a relative stress measure,
defined as the difference o — (3, in the definition of the corresponding yield function.
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Figure 6.24. Kinematic hardening and the Bauschinger effect. Unianial test and 7-plane representation,
I_llidll'iln_: in one direciion results in devreased resizstance to p]_'..'ttjl_'- }je]lhng in the |_'|i'|.];.‘u_.|';4_- direction.

Plastic flow rule with kinematic hardening

The von Mises model with kinematic hardening is used in conjunction with an assaciative
flow rule. The flow vector in this case reads

_9®_ 51

N= — = il E8
N=o =i (6.210)

and we have the following plastic strain rate equation:

s [ + o ¥

e =i N=4,/31 (6.211)
This rule extends the Prandtl-Reuss equation to account for kinematic hardening. Note thal

the plastic flow is in the direction of the (deviatoric) relative stress, 17, and coincides with the
Prandil-Reuss equation if 3 = 0.

Prager’s linear kinematic hardening
To complete the definition of the kinematic hardening plasticity model, evolution equations

for @ are required. One of the most commonly used laws is Prager's linear Einematic
hardening rule, where the rate evolution equation for 3 is given by

f-

Elr

p_ =+ fa "
Hébwa, 2 g 6.212
'1L 3 n (6.212)
The material constant H is the linear kinematic hardening modulus.

Belaviowr under monotonic uniavial stress loadin I

For monotonic loading under uniaxial stress conditions, the stress—strain behaviour of the
model defined by equations (6.208), with constant ay =y, (6.211) and (6.212) and initial
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state of hardening defined by F = 0 is identical to the behaviour of the purely isotropic
hardening von Mises model with linear hardening curve (6.186) and initial state of hardening
£ = 0. Itis assumed in this statement that both models share the same Young's modulus, £,
Under the above conditions, it is clear that both models have the same elastic behaviour and
uniaxial yield stress, .. To show that their plastic behaviour also coincides, let us consider
again a vniaxial test with loading in the direction of the base vector e;. In this case, the
stress, stress rate and stress deviator tensors have the matnx representations given in (6.171)
and (6.172). Now note that the integration of the rate equation (6.212) with initial condition
B =0(ie. p=s)and s as in (6.172) gives a back-stress tensor of the form

1 0 0
@=a3l0o-1 0], (6.213)
0 0 -1

where 3 is the axial back-stress component. With the above, we obtain for the relative stress
tensor

1 0 0
=5 |0 —% 0y, 16.214)
0 o0 -1
where
r,i':gn—.i (6.215)

is the axial relative stress. From (6.212) and (6.214) we obtain

_ 1 0 0
Bj=2H: |0 -1 0], (6.216)
0 0 -3

where ¥ is the axial plastic strain rate given by
£F = 4 signin). (6.217)

Now, by recalling (6.60) and specialising (6.61) for the present case we have that, under
plastic yielding, the following consistency condition must be satisfied:

L7k L # i
i (e L

b= —:+-—:3=0. (6.218)
il d‘ﬂ ir
After some straightforward tensor algebra, taking into account (6.171); and the above

expressions for 3, 3, the definition of #, and the identity

b ar  [3p
a3~ aa N2|g| (6.219)
equation {6.218) yields
F=HE (6.220)

Then, with the intreduction of the elastoplastic split of the axial strain rate, together with the
equation
a=FE:, (6.221)
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of the linear elastic model under uniaxial stress conditions, into (6.220), we obtain
F=——2F, (6.222)

which coincides with the stress rate equation (6.176) of the von Mises isotropic strain-
hardening model with constant i, To complete the demonstration, let us assume that the
uniaxial loading is monotonic, i.e. we have either £ > D or £ < 0 throughout the entire loading
process. In this case, the integration of (6.222) having the initial yield siress (7., for both
maodels) as the initial condition produces the same stress—strain curve as the isotropic model.

Armstrong-Frederick hardening

A refinement upon the linear kinematic hardening law proposed by Armstrong and Frederick
(1966} 1s obtained by intreducing an extra term in the above expression (refer to Lemaitre
and Chaboche (1990), Chapter 5, or Jirisek and BaZant (2002), Chapter 20, for details) with
the evolution of 3 given by

i~ 2 ] - o
B=ZHE —qbp
¥ ]
= (:H d—' f _ﬁ). (6.223)

I

where bris a material constant, The extra term — & 3 introduces the effect of saturation in the
kinematic hardening rule. In the case of the von Mises criterion, the saturation corresponds to
a maximum limit value for the norm of 3, at which the material behaves as perfectly plastic.

Nonlinear extension to Prager's rule
Another possible improvement upon Prager’s linear kinematic hardening rule is the introduc-

tion of nonlinearity by replacing the constant kinematic hardening modulus, H, of (6.212)
with a generic function of the accumulated plastic strain, 27,

= 2 R - o
A= _HFF)EF =5 _H(zF) —. (6.224)
3 3 it
In this case, a scalar funclion
3= 3(zP), (6.225)
such that
i di
H(z) = = 16.226)

defines the kinematic hardening curve. This curve can be oblained from simple uniaxial tests
in a manner analogous to the determination of the hardening curve for the purely isotropic
hardening model,
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Thermodynamical aspects of kinematic hardening

From the thermodynamical viewpoint, the above kinematic hardening laws follow from the
assumption that the plastic contribution, ¥, to the free energy is a function of a second-order
tensor-valued internal variable, X,

v =P (X)), (6.227)
The variable X is related 1o self-equilibrated residual stresses that remain afler elastic
unloading. These stresses may increase or decrease resistance to plastic slip according to

the direction considered. The kinematic hardening thermodynamical force = the back-stress
tensor, (3 - is then defined as the denivative

e
3=—. (6.228)
| X
For the Armstrong-Frederick kinematic hardening law (6.223), for instance, we have
WH(X) =5 XX, (6.229)

where the material constant a has been defined as

H. (6.230)

il =

Galnd

The back-stress tensor (6.228) is then a scalar muliiple of X, given by
J=aX. (6.231)

The evolution law for the intermal variable X is obtained by poswilating a flow potential

b
§=d+ Tﬁ:ﬁ. (6.232)
2a
and assuming normal dissipativity
) g1 b 1
L ) ;3), (6.233)
a3 i3 a

i

Obviously (since ¥ £ @), this evolution law is nen-asseciative. The equivalence between the
above equation and (6.223) can be established by taking into account (6.231) and the fact thay,
since & is obtained from a non-kinematic hardening yield funciion by replacing the argument
o with o — 3, we have : :

ﬂ - = ﬁ : (6.234)
i3 iter

6.6.5. MIXED ISOTROPIC/KINEMATIC HARDENING

Rather than purely isotropic or purely kinematic hardening, real-life materials show in general
a combination of both; that is, under plastic straining. the yield surface expands/shrinks
and translates simullancously in stress space. Thus, more realistic plasticity models can be
obtained by combining the above laws for isotropic and Kinematic hardening.
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G foad
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Figure 6.25. Mixed hardening. Uniaxial test with load reversal.

For example, a relatively simple von Mises-based model with mixed isotropic/kinematic
hardening can be devised by adopting the yield function (6.208) and allowing o, to be a
function of 27, If the nonlinear rule defined by (6.224) and (6.225) is adopted, the hardening
behaviour of the model is determined by the curves

a, =a,(zP), 3= 3z, (6.235)

which can be obtained from relatively simple uniaxial tests with load reversal (see schematic
illustration of Figure 6.25). Al each point &7, the kinematic hardening stress, 3, is the
kinematic contribution to overall hardening.

A more refined mixed hardening model can be devised by coupling the Armstrong-
Frederick law (6.223) with the von Mises-type yield function (6.208) where o, as in (6.235),,
is a function of the accumulated plastic strain. A model including mixed hardening of
this type is discussed in Section 12.3 (starting on page 478) in the context of damage
mechanics.

7 FINITE ELEMENTS IN
SMALL-STRAIN PLASTICITY
PROBLEMS

N the previous chapter, the mathemaltical theory of plasticity has been reviewed. A general

small-strain elastoplastic constitutive model has been established within the formalism of
thermodynamics with internal variables and the most popular theories, namely, the von Mises,
Tresca, Mohr—Coulomb and Drucker—Prager models, have been described in detail.

Obviously, due to the mathematical complexity of such constitutive theories, an exact
solution to boundary value problems of practical engineering interest can only be obtained
under very simplified conditions. The existing analytical solutions are normally restricted
to perfectly plastic models and are used for the determination of limit loads and steady
plastic flow of bodies with simple geometries (Chakrabany, 1987 Hill, 1950; Lubliner,
1990; Prager, 1959; Skrzypek, 1993). The analysis of the behaviour of elastoplastic structures
and soils under more realistic conditions requires the adoption of an adequate numencal
framework capable of producing approximate solutions within reasonable accuracy. As
pointed out in Chapter 4, the approximate solution to such problems is addressed in this
book within the context of the Finite Element Method. In fact, the Finite Element Methed is
by far the most commonly adopted procedure for the solution of elastoplastic problems. Since
the first reported applications of finite elements in plasticity in the mid-1960s, a substantial
development of the related numerical techniques has occurred. Today. the Finite Element
Method is regarded as the most powerful and reliable tool for the analysis of solid mechanics
problems involving elastoplastic materials and is adopted by the vast majority of commercial
software packages for elastoplastic stress analysis.

This chapter describes in detail the numerical/computational procedures necessary for
the implicit finite element solution of small strain plasticity problems within the framework
of Chapter 4. For the sake of generality, the methodologies presented in this chapter are
initially derived taking the general plasticity model introduced in Chapter 6 {(summarized
in Box 6.2, page 151) as the underlying constitutive model. Practical application of the
theory and procedures introduced, including a complete description of the algorithms and
corresponding FORTRAN subroutines of the HYFLAS program, is then made to the particular
case of the von Mises model with nonlinear isotropic hardening. The choice of this model
is motivated here by the simplicity of its computational implementation. A set of numencal
examples is also presented. Further application of the theory is made at the end of the chapter
to a mixed isotropic/kinematic hardening version of the von Mises model. This model 1s also
included in the HYPLAS program. Application to the Tresca, Mohr-Coulomb and Drucker-
Prager models is left for Chapter 8.
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