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A simple example

Let 2" now be a space of sufficiently smooth¥ functions 2 : 2™ — %. We define a functional
y: X — R as ‘

y(z) = /Q sin(x(p)) dp, (2.153)

i T . . . ; ’ o ; g
v{lleie QQC Z" is a given integration domain. Linearisation of the above functional about a
given argument (function) xp is the following generalisation of (2.114):

l(u) = y(xo) + Dy(xo) [u] = /Q sin(zo(p)) dp + Dy(o) [u], (2.154)

whel‘(e"the directional derivative Dy/(x) [‘u} is now a linear transformation on the function
u € 2 and can be determined by direct generalisation of (2.113):

d
Dy(zo) [u] = —y(z0 + cu
de

e=0

d
T [H sin(zo(p) + € u(p)) dp

e=0

.t /Q cos(wo(p)) u(p) dp. (2.155)

From the above, the linearisation of the functional (2.153) at 2y is then established as

I(u) = ]ﬂ sin(aq(p)) dp + /Q cos(xo(p)) u(p) dp. (2.156)

48 To avoid a precise sl:‘llemenl of regularity properties of functions, we frequently use the term sufficiently smooth
in the present text, meaning that functions have a sufficient degree of regularity so that all nperulim-ls in which they
are involved are properly defined.

3 ELEMENTS OF CONTINUUM
MECHANICS AND
THERMODYNAMICS

HIS chapter reviews some basic concepts of mechanics and thermodynamics of contin-

uous media. The definitions and notation introduced will be systematically employed
throughout the subsequent chapters of this book. The material presented here is well
established in the continuum mechanics literature and an effort has been made to follow
the notation and nomenclature in use in standard textbooks (Billington and Tate, 1981; Bonet
and Wood, 1997; Ciarlet, 1988; Gurtin, 1981; Lemaitre and Chaboche, 1990; Ogden, 1984;
Spencer, 1980; Truesdell and Noll, 1965).

3.1. Kinematics of deformation

Let % be a body which occupies an open region 2 of the three-dimensional Euclidean space
& with a regular boundary OS2 in its reference configuration. A deformation of 2 (Figure 3.1)
is defined by a smooth one-to-one function

p: =&
that maps each material particle? p of 2 into a point
z = ¢(p) (3.1

where the particle is positioned in the deformed configuration of 2. The region of & occupied
by # in its deformed configuration will be denoted

(€2).
The vector field u(p), defined by
u(p) = ¢(p) — P, (3.2)
is the displacement of p. Thus, one may write

xz=7p+u(p) (3.3)

tFor convenience, material particles of 28 will be identified with their positions in the reference configuration
of &.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Peri¢ and DRI Owen
(© 2008 John Wiley & Sons, Ltd
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Figure 3.1. Deformation.

rigid rotation

fixed point

Figure 3.2. Rigid deformations.

A rigid deformation of 2 is a deformation that preserves the distances between all
material particles of &. A rigid deformation (Figure 3.2) can be a translation, a rotation,
or a combination of a translation and a rotation. A rigid translation is a deformation with
constant displacement vector (u independent of p):

p(p)=p+u. (3.4)

A rigid rotation is a deformation that can be expressed as

w(p)=q+ R(p—q), (3.5)

where R is a proper orthogonal tensor (a rotation) and g is the point about which % is
rotated. A deformation is rigid, including translations and/or rotations, if and only if it can be
expressed in the form:

(p) =(a) + R(p - q). (3.6)

The (.iefornmtion map above represents a rigid translation with displacement (q) — g
superimposed on a rigid rotation R about point g.

A time-dependent deformation of % is called a motion of 98. A motion (Figure 3.3) is
defined by a function
Y: QX H— 6,

ELEMENTS OF CONTINUUM MECHANICS AND THERMODYNAMICS

reference
conliguration
ulp> h)
]
u(p,t,) A

Figure 3.3. Motion.

so that for each time t, the map (-, t) is a deformation of 9. The deformation map at time ¢
will be also denoted ¢,. During the motion ¢, the position z of a material particle p at time

t is given by

Similarly,
p(Q,1)

will denote the region of & occupied by the body 2 at time t. In terms of the displacement
field the motion is expressed as

@(p,t) =p+ulp.t). (3.8)
The parametric curve c(t), defined as
c(t) =p(p, 1) (3.9)

for a fived material point p, describes the trajectory of p during the motion of B.
During a motion ¢, the velocity of a material particle p is defined by

t
@(p, t) = __Mé? ), (3.10)

Since at each time ¢ the map (-, t) is one-to-one (and hence invertible) by assumption,
material points can be expressed in terms of the place they occupy at a time ¢ as

p=y 'z, t) =2 —ule (z,1)1) (3.11)

The map ! is called the reference map. Using the reference map, one may define the
function

o(z, t) =x(p ez, 1), 1). (3.12)
The field v is called the spatial velocity and gives the velocity of the material particle
positioned at a at time £.
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Figure 3.4. Rigid velocity.

A rigid motion of 9 is a motion for which, at each time £, the map (-, {) is a rigid
deformation. A motion ¢ is rigid if and only if at each time ¢, the spatial velocity v admits
the representation

v(z, t) =v(y, t) + W(t) (z — y) (3.13)

forall z, y € (2, t), with W(t) a skew tensor. The velocity at x is given as the sum of a
uniform velocity v(y, t) and a superimposed rotation about the line that passes through y and
is parallel to the axial vector associated to the skew tensor W. By denoting w(t) the axial
vector of W (t), the velocity field above can be re-written as

v(z, t) =v(y, t) +w(t) x (z —y), (3.14)

which is the standard formula for the velocity field of classical rigid-body dynamics. The
vector w(t) is called the angular velocity of the body. The rigid velocity field is schematically
illustrated in Figure 3.4.

3.1.1. MATERIAL AND SPATIAL FIELDS

Both fields & and v introduced above describe the velocity of material particles. However,
& and v have different arguments. While @ has material particle and time as arguments, the
arguments of v are spatial position and time. This motivates the following definitions: Let
a general time-dependent (scalar, vectorial or tensorial) field « be defined over the body 2.
If the domain of « is € x %, i.e. if the value of « is expressed as a function of material
particles p (and time) then «v is said to be a material field. On the other hand, if its domain
is ¢, (Q) x Z, then « is said to be a spatial field. Using (3.7), the material description of a
spatial field a(x, t) is defined by

am(p, t) = al(e(p, t), ). (3.15)
Conversely, the spatial description of a material field 3(p, t) is defined by
Ba(, t) = By~ (e, ), 1). (3.16)

It should be noted that any field associated with a motion of % can be expressed as a
function of time and material particles or spatial position. A material (spatial) field does

ELEMENTS OF CONTINUUM MECHANICS AND THERMODYNAMICS

time 1

X
/" O=a+b(x —tv )+ct

tY =a+bp+ct

time 0

o

Figure 3.5. Material and spatial descriptions.

not necessarily represent a quantity physically associated with the reference (deformed)
configuration of the body.

Example 3.1.1. Consider, for instance, the rectangular body of Figure 3.5 subjected to the
rigid translation:
z=(p t)=p+tiv,

with constant velocity v. Assume that, during the motion ¢, the temperature field of the
body in question is linearly distributed along its longitudinal axis and varies uniformly
throughout the body at a constant rate. Taking the initial configuration (at t =0) as the
reference configuration (and, therefore, labelling material particles of the body with their
position p at time 0), the material description of this temperature field reads

am(pr f) =a-+ b]?l +ct,

where a, b and ¢ are constants. In view of the assumed motion ¢, the spatial description of
the same field is given by

Os(x,t) = O (p(z, 1), t) =a+ blzy — tvr) +cl.

Note that, in spite of having p as one of its arguments, &, (as 6,) expresses a physical quantity
associated with the configuration of time ¢. The spatial description @ gives the temperature,
at time ¢, of the material particle whose position at time ¢ is . In experimental terms, it would
be the temperature read from a thermometer held fixed in space at «. The function ¢, gives
the temperature, at time ¢, of the material particle whose position at time 0 is p. It would be
the temperature indicated by a thermometer attached to this material particle.

To avoid notational complexity, the subscripts m and s employed above to denote the
material and spatial descriptions of general fields will not be used throughout this book unless
absolutely necessary. In general, the description employed will be evident either from the
context or from the argument used (p or x).
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3.1.2. MATERIAL AND SPATIAL GRADIENTS, DIVERGENCES AND TIME
DERIVATIVES

The material and spatial gradients of a general field o, denoted respectively V,a and V,a,
are defined as

Voo = aipam(p, t), Vea= %as(m, t), (3.17)
i.e. they are, respectively, the derivatives of « with respect to p and @ holding ¢ fixed.
Similarly, the material and spatial time derivatives of a, denoted respectively & and o,
are defined by
L i oin 3.18
o= -afta,,,(p, t), a'= aas(n,, t). (3.18)
The material time derivative ¢&v measures the rate of change of « at a fixed material particle p.
The spatial time derivative, on the other hand, measures the rate of change of ov observed at a
fixed spatial position x. In the example of Figure 3.5, the material and spatial time derivatives
of the temperature field £ are given by

0=c, 6 =-buv +c

The material time derivative in this case corresponds to the temperature rate computed from
a thermometer attached to a material particle p whilst @' is the temperature rate observed
in a thermometer held fixed in space at . Note that the extra term —bwv; added to ¢’ is
a contribution to the rate of change of temperature at x due to the motion of the body
combined with its non-uniform distribution of temperature. This contribution vanishes if the
body moves parallel to e (v; = 0), i.e. the direction of temperature isolines. It would also
vanish if the temperature were uniform throughout the body (b = 0).

Analogously to (2.145) (page 37), we define the spatial and material divergence of a vector
field v, respectively, as

div, v =tr(Vpv), divy v =tr(Vyv). (3.19)

In addition (refer to (2.147)), for a tensor field 7T, the spatial and material divergence are
given, in Cartesian components, by

BTU

_ 0T
N 81J !

i 7] T i— &Jm_ - .
(div, T") B (3.20)

(dive T);

The compact definition (2.146) is also applicable to the material and spatial divergence of a
tensor.

3.1.3. THE DEFORMATION GRADIENT
The deformation gradient of the motion ¢ is the second-order tensor F' defined by

Oz;

F (p,t)=Vpp(p, 1) = op

(3.21)

In view of (3.8) it can be written as

F=1TI+V,u.
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relerence
configuration

Figure 3.6. The deformation gradient.

The Cartesian components of F' are given by

85‘)5
Ou;
=8 + — 3.23
611 apJ: ( )

where z; denote the components of ;. In terms of the reference map (3.11), the deformation
gradient may be equivalently expressed as

F(2,t) = [V Yz, )] ' = [T - Veu] ™, (3.24)

Consider the infinitesimal material fibre dp that connects two neighbouring material
particles p and p + dp of a deforming body (Figure 3.6). Under the deformation ¢,, these
particles are mapped, respectively, into @ and = + da. The deformation gradient is the linear
operator that relates infinitesimal material fibres dp with their deformed counterparts da:

dz = F dp. (3.25)

A deformation of 2 with uniform deformation gradient (F' independent of p) is called
a homogeneous deformation. A deformation is homogeneous if and only if it admits the
representation
¢(p)=w(@)+F(p-4q) (3.26)
for all points p, g € 4, with F' a positive definite tensor. Clearly, rigid translations and
rotations are homogeneous deformations.

3.1.4. VOLUME CHANGES. THE DETERMINANT OF THE DEFORMATION
GRADIENT

Consider now the infinitesimal volume dvg defined by the infinitesimal vectors da, db and de
emanating from the material particle p in the reference configuration (Figure 3.7). Trivially,
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reference
configuration

dv = det[FF]dy,

7

y(82)

Figure 3.7. The determinant of the deformation gradient.

one has
duvp = (da x db) - de. (3.27)

The deformation ¢, maps the infinitesimal vectors, respectively, into F' da, F' db and F dc,
so that the deformed infinitesimal volume is given by

dv = (F da x F db) - F dc. (3.28)

By making use of identity (2.54), it follows that

dv
det FF = — 3.29
g (3.29)
i.e. the determinant of the deformation gradient represents, locally, the volume after defor-
mation per unit reference volume (or volume change ratio). Throughout this book, we will
adopt the following notation

J =det F. (3.30)

From (3.29) it follows that if det F' =0, then the infinitesimal volume has collapsed
into a material particle. Since the body is not allowed to penetrate itself (this restriction
is embodied in the assumption that the deformation map is one-to-one), this represents a
physically unacceptable situation. Also note that, at the reference configuration, ¥' = I and,
consequently, J = 1. Thus, a configuration with .J < 0 cannot be reached from the reference
configuration without having, at some stage, JJ = 0. Therefore, in any deformed configuration
of a body, .J satisfies

J>0. (3.31)

Isochoric deformations

Isochoric (or volume-preserving) deformations are deformations that do not produce changes
in volume. A locally isochoric deformation is characterised by

J=1 (3.32)
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Volumetric deformations
Volumetric deformations (i.e. pure contractions/dilations) are deformations consisting purely
of a uniform contraction/dilation in all directions. The deformation gradient of any volumetric
deformation is a spherical tensor:

F=al, (3.33)
where the scalar « is the corresponding contraction/dilation ratio. With lp and ! denoting,
respectively, the undeformed and deformed lengths of a material fibre, for a locally volumetric

deformation we have: ’
—=a (3.34)
lo

in all directions.

3.1.5. ISOCHORIC/VOLUMETRIC SPLIT OF THE DEFORMATION GRADIENT

Any deformation can be locally decomposed as a purely volumetric deformation followed
by an isochoric deformation or as an isochoric deformation followed by a pure volumetric
deformation. To see this, note that the deformation gradient can always be multiplicatively

split as
F = Fiy F,= F, Fi, (3.35)

where ]
F,=(det F)3 I (3.36)

is the volumetric component of F' and
Fio = (det F)™5 F (3.37)

is the isochoric (volume-preserving or unimodular) component. Note that, by construction,
F, corresponds indeed to a purely volumetric deformation (it has the representation (3.33))

and, since l
det F'y = [(det F)3]* det I =det F, (3.38)

F, produces the same volume change as F'. The isochoric component in turn represents a
volume preserving deformation, that is,

det Fiso = [(det F)™5) det F = 1. (3.39)

3.1.6. POLAR DECOMPOSITION. STRETCHES AND ROTATION

By applying the polar decomposition to the deformation gradient, one obtains:
F=RU=VR, (3.40)

where the proper orthogonal tensor R is the local rotation tensor and the symmetric positive
definite tensors U and Vare, respectively, the right and left stretch tensors. The right and left
stretch tensors are related by the rotation

V=RUR". (3.41)
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Figure 3.8. Polar decomposition of the deformation gradient. Stretches and rotation.

The stretch tensors U and V'can be expressed as
U=vC, Vv=vB, (3.42)

where C and B — named, respectively, the right and left Cauchy-Green strain tensors — are
defined by
C=U*=F"F, B=V?=FFT, (3.43)

Example 3.1.2 (A simple plane deformation). To illustrate the meaning of the polar
decomposition of F', a simple example consisting of a body subjected to a homogeneous
deformation, i.e. with F' independent of p, is given in what follows. Consider the rectangular
body of Figure 3.8 subjected to homogeneous stretching/compression in the directions of its
longitudinal and transversal axes (respectively, the directions of 2; and 25 in the reference
configuration) with a superimposed rigid rotation of angle . With p; and x; denoting
coordinates of p and @ in the Cartesian system associated with the orthonormal basis {;, 72},
the deformation map is defined as

T1=pP1 A COSQ— P2 A sina
@: (3.44)

Ty =p1 A1 sina + pa As cos a,
where the factors A; and s determine how much stretching/compression occurs, respec-

tively, along the longitudinal and transversal axes. In the basis {;, 42}, the matrix represen-
tation of the corresponding deformation gradient is given by

Al cosa —Ag sina

F= (3.45)

A1 sina A2 coSa

ELEMENTS OF CONTINUUM MECHANICS AND THERMODYNAMICS

The rotation tensor, obtained from the polar decomposition of F', is represented by

cosa —sina
— (3.46)
sin « Cos o
and the right and left stretch tensors by
A0
U= (3.47)
0 A2
and
A1 cos? a+ A sin® o (A — A2) sina cosa
V= . (3.48)

(M — A2) sina cosa A sin® a+ A2 cos®a
Insight into the meaning of the polar decomposition of the deformation gradient can be gained
by focusing now on the generic infinitesimal fibre represented by dp in Figure 3.8. Under
deformation, dp is mapped into dz = F' dp. With use of the polar decomposition of F, this
mapping can be split into two sequential steps. If the right polar decomposition F' = R U is
used, the two steps are:

1. dp — U dp,
2. Udp— R (U dp)=Fdp.

In the first operation, dp deforms as if the body were being purely stretched (or compressed)
along the directions of its longitudinal and transversal axes (which at this stage coincide with
i1 and i respectively). The second mapping is a pure rotation (of angle o) of the deformed
fibre U dp and corresponds to a rigid rotation of the body. If the left polar decomposition
F =V R is employed instead, the sequence is reversed:

1. dp — Rdp,
2. Rdp — V(Rdp)= Fdp.

In this case, the fibre is first rigidly rotated by an angle o.. The second operation corresponds
to the deformation of the fibre under pure stretching/compression of the body along its axial
and transversal directions. However, due to the previous rotation, these directions coincide
now with i} = R, and i3 = R 42, respectively. Note that if the basis {47, 5} is used, the
matrix representation of V' reads
A1 0
V= ; (3.49)
0 A

so that the transformation (-) — V() indeed corresponds to stretchings along the directions
of 4] and %5.

The above example has illustrated the significance of the polar decomposition of F’. The
discussion has been restricted to a homogeneous deformation only to ease visualisation of the
stretches and rotation involved in the decomposition of the deformation gradient. It should be



52 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

remarked that for a generic deformation of a body, in which F' is a function of p, intermediate
configurations of the body corresponding to pure stretching or pure rigid rotation (such as
those illustrated in Figure 3.8) do not exist in general. Nevertheless, the interpretation of U
and Vas pure stretchings and of R as a rigid rotation remain valid in a local sense. Note that
for any deformation ¢, one may write:

z+dr=p(p+dp)=p+ F(p)dp, (3.50)

that is, within an infinitesimal neighbourhood of a material point p, the deformation
behaves like a homogeneous deformation with gradient F'(p). Thus, within this infinitesimal
neighbourhood of p, U(p) and V (p) measure stretches from p and R(p) measures the local
rigid rotation.

Spectral decomposition of the stretch tensors

Since U and V' are symmetric, it follows from the spectral theorem that they admit the
spectral decomposition

3 3
U= Mliolh, V=) hede, (351)

i=1 i=1

where the {1, A2, A3} are the eigenvalues of U (and V') named the principal stretches.
The vectors [; and e; are unit eigenvectors of U and Vrespectively. The triads {1, 15,13}
and {e}, ea, ez} form orthonormal bases for the space % of vectors in & They are called,
respectively, the Lagrangian and Eulerian triads and define the Lagrangian and Eulerian
principal directions.
Substitution of (3.41) into (3.51) gives the following relationship between the eigenvectors
of Vand U:
L‘ =R €e;, (352)

that is, each vector e; differs from the corresponding I; by a rotation R.

The spectral decomposition of the right and left stretch tensors implies that in any deforma-
tion, the local stretching from a material particle can always be expressed as a superposition
of stretches along three mutually orthogonal directions. In the example discussed above,
illustrated by Figure 3.8, { A1, A2} are the principal stretches and the Lagrangian and Eulerian
bases are, respectively, {21, 22} and {4, i5}.

3.1.7. STRAIN MEASURES

In the above section, we have seen that in a local sense, i.e. within an infinitesimal
neighbourhood of a generic material particle p, pure rotations can be distinguished from
pure stretching by means of the polar decomposition of the deformation gradient. Under the
action of pure rotations, the distances between particles within this neighbourhood remain
fixed. When the distances between material particles are identical to their values in the
reference configuration, we say that the region surrounding p is unstrained. In this case,
the difference between the deformed neighbourhood of p and its reference configuration is a
rigid deformation. Pure stretching, on the other hand, characterised by U or V; changes the
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distance between material particles. Under stretching, we say that the region surrounding p
is strained. To quantify straining, i.e. to evaluate how much U (or V) departs from I (a rigid
deformation), some kind of strain measure needs to be defined.

Let us consider, again, the generic material fibre represented by the infinitesimal vector
dp that emanates from p (Figure 3.8 serves as an illustration). The deformation maps dp into
dx = F dp. Thus, the square of the deformed length of the material fibre in question reads

|dz||? = Fdp- Fdp=Cdp-dp=(I+2E®)dp-dp, (3.53)

where C = F T F = U ? is the right Cauchy—Green tensor and the strain measure E@ (the
meaning of the superscript will be made clear below) is the so-called Green—Lagrange strain
tensor defined as

E® =1(C-1I)
=1Vou+ (%) + (Vpu) Vyu). (3.54)

No straining occurs, that is, the size of any infinitesimal material fibre emanating from
p remains constant (||dz|| = ||dp||, ¥V dp), if and only if E® = 0. This condition is
equivalent to C = U = I, implying that F' is an orthogonal tensor and the deformation is
rigid (pure translation and/or rotation) in the neighbourhood of p. From the definition of
E® its eigenvectors coincide with the Lagrangian triad so that it can be expressed as

3
E®?) — Z %(,\f -1 el; (3.55)

i=1

and, since it measures strains along the principal Lagrangian directions, it is called a
Lagrangian strain measure.

It must be emphasised that the Green—Lagrange strain measure is defined by expression
(3.54). Tt is by no means the unique way of quantifying straining. In fact, the definition of a
strain measure is somewhat arbitrary and a specific choice is usually dictated by mathematical
and physical convenience. An important family of Lagrangian strain tensors, i.e. strain
measures based on the Lagrangian triad, is defined by Seth (1964), Hill (1978) and Ogden
(1984)

l(U m—I) m#0
EM™ = ! m (3.56)
In[U] m=10

where m is a real number and In[ -] denotes the tensor logarithm of | - |. Equivalently, in
terms of its spectral decomposition, (3.56) may be rephrased as

3
E(rn) _ Z f(/\z) li ® li, (357)
i=1
where 1
— (A" =1) m#0
f) = -m( ) 7 (3.58)
In A; m=0.
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Figure 3.9. Strain measures. Principal strain as a function of the principal stretch for various strain
measures.

The Green—Lagrange strain tensor, E? isa particular member of this family (with m = 2).
Other commonly used members of this family are the Biot (7m = 1), Hencky (m =0) and

Almansi (m = —2) strain tensors. Note that for any m, the associated strain tensor vanishes
if and only if the deformation gradient represents, locally, a rigid deformation, i.e.
EM=0 < U=I <— F=R (3.59)

To illustrate the relationship between the stretch and strain tensors, the principal strain for
various strain measures is plotted in Figure 3.9 as a function of the corresponding principal
stretch.

Analogously to the strain measures discussed above, it is also possible to define tensors
that measure strain along the principal Eulerian directions or, simply, Eulerian strain tensors.
Based on the /left stretch tensor, the Eulerian counterpart of the Lagrangian family of strain
measures above is defined by

1
S V?H i I m
E(m) — 77?‘( ) L ?é U (3.60)
In[V) m =0,
or, using the Eulerian triad,
3
™M =3" f(\)ei®e (3.61)
=1
Lagrangian and Eulerian strain tensors are related by
et™ = R '™ RT, (3.62)

that is, they differ by the local rotation R.
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3.1.8. THE VELOCITY GRADIENT. RATE OF DEFORMATION AND SPIN

The spatial field L, defined as
L =V,v, (3.63)

is named the velocity gradient. Equivalently, with application of the chain rule one has

_0(%\ 0 _ g
—3t(ap> 5 =FF " (3.64)

Two important tensors are obtained by splitting L into its symmetric and skew parts. Namely,
the rate of deformation tensor (also referred to as the stretching tensor), D, and the spin
tensor, W, are defined by

D =sym(L), W =skew(L). (3.65)

To gain insight into the physical meaning of the tensors D and W, it is convenient to
consider a body undergoing a motion with uniform (independent of ) velocity gradient. For
such a motion the velocity field reads

v(z, t) =v(y,t) + L(t) (z — y). (3.66)

If the decomposition of L into its symmetric and skew parts is introduced, the velocity field

can be split as ‘
v(w, 1) = v™(z, t) + v°(x, 1), (3.67)

where the following definitions have been used:

oz, 1) =v(y, t) + W(t) (x —y),
; (3.68)
v¥(z, t) = D(t) (z — ).

By recalling expression (3.13), the velocity v®, associated with the spin tensor W, can be
immediately identified as a rigid velocity. The only contribution to straining is then provided
by the term v, associated with the rate of deformation tensor. Note that, due to its symmetry,

D admits the representation
3
D= Z d; e; ® e;, (3.69)
i=1
with d; and {e; }, respectively, the eigenvalues and an orthonormal basis of eigenvectors of D.
With the spectral representation above, the velocity field v° can be decomposed as a sum of
three linearly independent velocities of the form:

d; (e; ® ei) (x—vy),

with no summation implied on i, so that the components of v¥ relative to the basis
{ey, ea, es} are given by

v =d; (zi — ui), (3.70)
again with no summation implied, where 2; and y; denote the coordinates of points & and y
in a Cartesian system associated to {ei, ea, e3}. As schematically illustrated in Figure 3.10,
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Figure 3.10. Straining velocity field.

each v¥ corresponds to a velocity field that purely stretches the body in the direction of e;,
with the plane perpendicular to e; that passes through y fixed. Thus, the rate of deformation
tensor corresponds indeed to a pure stretching of the body.

If a general motion (in which L is not necessarily uniform) is considered, the above
decomposition of the velocity field into the sum of a rigid velocity and a straining velocity
remains valid in the local sense. In this case, consider a point & and a point & + dx lying
within an infinitesimal neighbourhood of z. The velocity field within this infinitesimal
neighbourhood of x is given by

v(x +dz, t) =v(z, t) + L(z, t) dz, (3.71)
so that, in any motion, the velocity field can be locally decomposed as a sum of a rigid velocity
v(zx, t) + Wi(a, t) da,
associated with the spin tensor W, and a straining velocity

D(z, t) dz,

associated exclusively to the rate of deformation tensor D).

3.1.9. RATE OF VOLUME CHANGE

The rate of volume change, J, is related to the rate of deformation tensor through the

expression )
J=JtrD. (3.72)

To derive this expression, we first apply the chain rule to obtain

. - d(det F)

J=(det F) =——2 F =JFT.F, (3.73)
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where we have made use of relation (2.140) (page 36) for the derivative of the determinant.
This, together with definition (2.36) (page 22) of the trace of a tensor and the fact that the

skew symmetry of W implies
tr L=tr D, (3.74)

leading to (3.72).
Also note that from the definition (2.145) of the divergence of a vector field we have

tr D = div, v, (3.75)
so that the rate of volume change can be equivalently expressed as

J = Jdiv,; v. (3.76)

3.2. Infinitesimal deformations

Small or infinitesimal deformations are deformations with sufficiently small displacement
gradient, V,u. For such deformations, the description of kinematics can be substantially
simplified.

3.2.1. THE INFINITESIMAL STRAIN TENSOR

Recall definition (3.43) of the Cauchy—Green tensors. In terms of the displacement gradient,

* one has

c=1I +Vu+ (Vu)! + (Vu)? Vyu,
(3.77)

B=1I + Vyu+ (Vu)" + u (V)T
If the displacement gradient is sufficiently small, the second-order terms in Vj,u of the expres-
sions above can be neglected so that, under small deformations, the following approximation

can be made
Cx=B=xI1+Vyu-+ (V,,u)T. (3.78)

From the above expression and the definitions of the Green—-Lagrange strain tensor E?) and
its Eulerian counterpart €(2), it follows that, to the same order of approximation,

E® ~e® = 1[Vu + (Vyu)T]. (3.79)

This motivates the definition of the infinitesimal strain tensor to measure strains under small
deformations
e =Vyu, (3.80)
where we have introduced the notation
s ; T
Vi) =sym|[V(-)] = %[V() + V()] (3.81)

for the symmetric gradient of a vector field. It is worth pointing out here that € is a linear
functional of w. This fact greatly simplifies the description of small deformations.

In fact, it can be easily shown that not only E™ and €@ but all Lagrangian and Eulerian
strain measures defined by expressions (3.56) and (3.60) have the same small deformation
limit, i.e. for any m and to within an error of second order in V;,u, one has

E(m) o~ E(HI) ~E. (382)
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3.2.2. INFINITESIMAL RIGID DEFORMATIONS

In terms of the infinitesimal strain tensor, the square of the deformed length of a generic
material fibre dp (recall the text preceding expression (3.53)) reads

ldz||* = (I+2¢€)dp- dp + o(Vpu) (3.83)

with o(V})u) a term of second order in V. It is clear from this expression that, to within an
error of o(V,u), only the symmetric part € of V,u is associated with local straining. The skew
part of V,,u produces no straining and is associated exclusively with local infinitesimal rigid
rotations. For a pure local infinitesimal rigid rotation (||dz|| = ||dp||, V ||dp||) the tensor &
vanishes or, equivalently, V,,u is skew.

For a body under an arbitrary homogeneous deformation (V,u independent of p), the
displacement field can be written as

u(p) =u(q) + Vyu (p — q), (3.84)

for all points p and g. For infinitesimal rigid deformations and within an approximation of
second order in the displacement gradient, V1 is skew and the field u can be written as

u(p) =u(q) + A (p—q), (3.85)

for all points p and g with A = V,u a skew tensor. Alternatively, with a denoting the axial
vector of A, u can be expressed as

u(p) =u(g) +ax (p - q). (3.86)

Any displacement that admits the representation (3.85)-(3.86) is called an infinitesimal rigid
displacement field. Note that infinitesimal rigid displacements have the same representation
as rigid velocity fields (see expressions (3.13) and (3.14)).

3.2.3. INFINITESIMAL ISOCHORIC AND VOLUMETRIC DEFORMATIONS

Analogously to the isochoric/volumetric split of the deformation gradient in the finite strain
context (refer to Section 3.1.5), the infinitesimal strain tensor € can also be split into a
purely volumetric and a volume-preserving contribution. The isochoric/volumetric split of the
infinitesimal strain tensor is additive (in contrast to the multiplicative split of the deformation
gradient in the finite strain theory) and reads

e=e4+ey, (3.87)

where
EQ=E— €, (3.88)
is the isochoric component, known as the strain deviator or deviatoric strain, which measures

pure infinitesimal distortions. The tensor

ev=3¢e,1 (3.89)
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is the infinitesimal volumetric strain tensor. The scalar invariant of €, defined as
ee=he)=tre=tuVu=uVu (3.90)

is named the infinitesimal volumetric strain. An infinitesimal deformation is volume-

preserving if and only if 1 (3.91)

The tensors eq and g, can be equivalently written in terms of linear operations on & as
ea=ls—3I01I]:¢, EV:%(I@AI)!E- (3.92)
Tt should be noted that the strain deviator is a rraceless tensor, i.e.

treq = 0. (3.93)

The fourth-order tensor defined as
la=lg—3I®I, (3.94)

is referred to as the deviatoric projection tensor. It projects second-order symmetric tensors
into the deviatoric subspace, i.e. into the space of traceless tensors. Throughout this book we
shall often use the alternative notation

dev(S)
to represent the deviator of a symmetric tensor S, i.e.

dev(S)=1q: 8. (3.95)

From finite to infinitesimal isochoric and volumetric strains

Analogously to Section 3.2.1, where the infinitesimal strain tensor isl deri\_fed f?om‘ t!le
finite strain theory, the above isochoric/volumetric split can also be obtained from its finite
deformation counterpart by neglecting higher order terms in Vj,u.

To show this, let us consider the Green-Lagrange strain tensor, E® . Following the
isochoric/volumetric split of the deformation gradient given by (3.35), we define the cor-
responding isochoric and volumetric Green-Lagrange strains

ER =1(Ceo— 1) EP=}(C,-1), (3.96)
where . )
Ciwo=F.L Figo=(det F)"3 FT F=(det F)"3C (3.97)
and ) "
C,=FIF,=(det F)i L (3.98)

Now we proceed to show that, under small strain conditions (small V,u), the volumetric
Green-Lagrange strain defined above leads to definition (3.90). From (3.96); and (3.98),

we have .
E® =1[(det F)s —1] L (3.99)
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From the standard concepts of differentiation discussed in Section 2.5 together with the
definition F' =1 + V,u and the expression given in (iii) of page 36 for the derivative of
the determinant, we find that

det F' = det(I + V,u)
=det I+ (det I) I: Vyu + o(V,u)
=1+ tr Vyu + o(Vyu) (3.100)

and
(det F)5 =1+ 2 tr Vyu + o(Vyu). (3.101)

With the substitution of the above expression into (3.99), we then obtain
E® =¢, + o(Vyu). (3.102)
Thus, if higher-order terms are neglected, we have the following approximation
EP ~e,. (3.103)

Following a completely analogous procedure with the isochoric Green—Lagrange strain,
we obtain

= 3{(1 - 3 tr Vou + o(Vyu)|[I + V,/'u + Vyu + o(Vyu)] - I'}
=& — 3(tr Vu)T + o(Vyu)
=eq + o(V,u). (3.104)

E® = 1{(det F)~3 (I + VT u+ Vyu + V7 u Vpu) — I

Thus, to within second-order terms in V,u, we have

2
BZ) ey (3.105)

The infinitesimal limits above are valid for all Lagrangian and Eulerian finite strain
measures defined by expressions (3.56) and (3.60).

3.3. Forces. Stress Measures

The previous sections of this chapter have been limited to the mathematical description of the
kinematics of deformation. In particular, concepts such as the deformation gradient, rotations
and the different strain measures used to quantify internal straining are of utmost importance
in the formulation of the mechanical and thermodynamical theory of continua. It should be
noted that, thus far, no reference has been made to forces and how they are transferred within
continuum bodies.

The forcies associated with the mechanical description of a body can be classed into three
categories:*

1Stress couples could also be considered but these are outside the scope of this book and fall within the realm of
the so-called polar continuum theories (Cosserrat and Cosserrat, 1909; Toupin, 1962; Truesdell and Noll, 1965).
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1. Boundary forces. Forces applied to the boundary of the body such as those resulting
from contact with another body. The dimension of boundary forces is force per unit

areca.

2. Body forces. Forces exerted on the interior of the body. Gravitational and magnetic
forces are typical examples of such forces. The dimension of body forces is force per
unit mass (or volume).

3. Internal interactions between adjacent paris of a body. The dimension of such
interactions is force per unit area.

Internal interaction forces arise from the action of one part of the body upon an adjacent
part and are transmitted across the surface that separate them. Boundary forces represent
interactions between the exterior and the interior of a body and, as internal interactions,
are transmitted across a surface (the boundary of the body in this case). Thus, boundary
forces and interactions between distinct parts of a body are forces of essentially the same
type and will be collectively called surface forces. To describe surface forces mathematically,
the concept of stress as well as the different ways of quantifying it are introduced in this

section.

3.3.1. CAUCHY’S AXIOM. THE CAUCHY STRESS VECTOR

Crucial to the description of surface forces is Cauchy’s axiom stated in what follows. Consider
a body Z in an arbitrarily deformed configuration (Figure 3.11). Let .¥” be an oriented
surface of # with unit normal vector m at a point . Cauchy’s axiom states that ‘At x,
the surface force, i.e. the force per unit area, exerted across .#” by the material on the side
of . into which m is pointing upon the material on the other side of & depends on %’ only
through its normal n’. This means that identical forces are transmitted across any surfaces
with normal n at @ (such as surfaces .%” and .7 in Figure 3.11). This force (per unit area) is
called the Cauchy stress vector and will be denoted

t(n),

with dependence on @ and time omitted for notational convenience, If .% belongs to the
boundary of 4, then the Cauchy stress vector represents the contact force exerted by the
surrounding environment on 2.

3.3.2. THE AXIOM OF MOMENTUM BALANCE

Let % now be subjected to a system of surface forces, ¢(x, ), and body forces, b(x). The
spatial field b(z) represents force per unit mass acting on the interior of %. The axiom of
momentum balance asserts that ‘For any part 22 of the deformed configuration of %, with
boundary ., the balance of linear momentum,

[ t(n) da + / pbd-z!:/ pvdv (3.106)
JS JP P

and the balance of angular momentum,

/ ccxt(n)da%—/ :J:Xpbd‘vzf T x pvdv (3.107)
J J 7 J P
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Figure 3.11. Surface forces.

are satisfied, with p = p(x) denoting the mass density field, i.e. the mass per unit volume in
the deformed configuration of 2°. The right-hand sides of (3.106) and (3.107) contain the
inertia terms, with © = it denoting the acceleration field of 4.

3.3.3. THE CAUCHY STRESS TENSOR

One of the most fundamental results in continuum mechanics is Cauchy’s theorem which
establishes that, as a consequence of the axiom of momentum balance, the dependence of
the surface force £ upon the normal 7 is linear, i.e. there exists (recall Section 2.2, starting
page 19) a second-order tensor field o () such that the Cauchy stress vector (see Figure 3.12)
is given by

t(xz,n) =o(x) n. (3.108)

Further, o is symmetric,’
o=07, (3.109)

The tensor o is called the Cauchy stress tensor and is often referred to as the true stress tensor
or, simply, stress tensor. Formal proofs to Cauchy’s theorem can be found, among others, in
Wang and Truesdell (1973), Gurtin (1972, 1981), Gurtin and Martins (1976), Marsden and
Hughes (1983) and Ciarlet (1988).

At this point, it should be emphasised that, in real life bodies, forces are actually
transferred by atomic interactions which are clearly discrete quantities. The continuum
mathematical representation of such interactions by means of a stress tensor is meaningful
only in an average sense and is valid only for a sufficiently large volume of material. This
observation applies equally to quantities such as strain measures or any other continuum
fields associated with the body. The smallest volume of material for which the continuum
representation makes sense is called the representative volume element.

Cauchy stress components

Using an orthonormal basis {81, es, 63}, the Cauchy stress tensor is represented as

o =0 e; X e, (3.110)

$The symmeltry of o is a result of the balance of angular momentum.
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Figure 3.12. The Cauchy stress.

[ e

Figure 3.13. Cauchy stress tensor components and principal Cauchy stresses.

with summation on repeated indices implied and the components o;; given by
a;j:(cre,-)-ej. (311])

From (3.108), it follows that the vector o e; is the force per unit area exerted across a surface
whose unit normal vector is e; at the point of interest. The component o;; of the Cauchy
stress tensor is the magnitude of the projection of o e; in the direction of e;. The schematic
representation of such projections is illustrated in Figure 3.13 where an infinitesimal cube
with faces normal to the base vectors e;, es and eg is considered. The components o711,
a2 and ga3 represent the tractions normal to the faces of the infinitesimal cube whereas the
remaining components, d12, 013, 021, 023, 731 and o9 are the shear tractions acting parallel
to the faces.

Principal Cauchy stresses

Due to its symmetry, the Cauchy stress tensor admits the spectral representation

3
o=Y oie}®e, (3.112)

i=1
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that is, there exists an orthonormal basis {e], e5, e3}, for which all shear components of the
Cauchy stress tensor vanish and only the normal components may be non-zero. The normal
components, o;, are the eigenvalues of o and are called the principal Cauchy stresses. The
directions defined by the basis {e}, e3, e3} are named the principal stress directions. The
schematic representation of the forces acting on the faces of the infinitesimal cube oriented
according to the principal stress directions is shown in Figure 3.13. The forces are exclusively
normal to the faces of this cube. Note that, analogously to the representation of the stress
tensor in terms of principal stresses, the spectral decomposition has been used in Section 3.1
to represent the stretch tensors U and V in terms of principal stretches (see expression
(3.51)).

Deviatoric and hydrostatic stresses

It is often convenient, particularly for the purpose of constitutive modelling, to split the stress
tensor ¢ into the sum of a spherical and a traceless component

o=s+pl, (3.113)

where the invariant
p=3h(o)=3itro (3.114)

is the hydrostatic pressure (also referred to as hydrostatic stress, mean stress or mean normal
pressure), and
s=o—pl=l,:0, (3.115)

with | defined by (3.94), is a traceless tensor named the deviatoric stress or stress deviator.
The tensor
pI=iI®I):0o (3.116)

is called the spherical stress tensor. The above decomposition is analogous to the iso-
choric/volumetric split of the infinitesimal strain tensor discussed in Section 3.2.3.

3.3.4. THE FIRST PIOLA-KIRCHHOFF STRESS

The traction vector £ of expression (3.108) measures the force exerted across a material
surface per unit deformed area. Crucial to the definition of the first Piola—Kirchhoff stress
is the counterpart £ of ¢ that measures, at the point of interest, the force that acts across
any surface whose normal is 1 in the deformed configuration per unit reference area. With
da denoting an infinitesimal element of area of a surface normal to n in the deformed
configuration and with dag being its undeformed counterpart, £ is expressed as (Figure 3.14)

_ la ]
t:(it_di

= : 3.11
dag dag S ( 7

Consider the surface .%” in the reference configuration of % (Figure 3.14). Let dp, and
dp, be infinitesimal (linearly independent) vectors tangent to .’ at the material point p and
let dag be the area element generated by dp; and dp,. With m denoting the unit normal to
& at p, one has
mdag =dp, x dp,. (3.118)
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Figure 3.14. The first Piola-Kirchhoff stress tensor.

Under deformation, the tangent vectors dp; and dp, are mapped, respectively, into F* dp,
and F' dp, so that the unit normal to the deformed configuration of .%’reads

nda = F dp, x F dp,, (3.119)

where da is the corresponding deformed area element. Pre-multiplication of both sides of the
expression above by F' T together with use of the identity

Su x Sv=(det 8) ST (u x v), (3.120)
valid for any invertible tensor S and vectors « and v, leads to
FTnda=.Jdp, x dpy = .J mdao, (3.121)
where .J = det F. This is equivalent to
90— J F~Tmn, (3.122)
day

Finally, with substitution of the expression above into (3.117), £ may be written in terms of
the reference unit normal m as

t=JoF Tm. (3.123)
This last expression motivates the following definition
P=JoF T, (3.124)

so that the force transmitted across .%” measured per unit reference area reads
t=Pm. (3.125)

The tensor P is called the first Piola—Kirchhoff stress and is often referred to as the Piola—
Kirchhoff stress or nominal stress.1 The vector t is obtained by applying the first Pio]-u—
Kirchhoff stress to the unit vector 7, normal to the reference configuration of .%”at the point
of interest. Note that in contrast to the Cauchy stress, P is generally unsymmetric.

YSome authors (Billington and Tate, 1981; Nemat-Nasser, 1999) define the nominal stress as the transpose of the
first Piola—Kirchhoff stress tensor.
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Figure 3.15. The first Piola—Kirchhoff stress. Example.

Example 3.3.1 (The Piola-Kirchhoff stress). Consider a cylindrical bar (Figure 3.15)
with cross-sectional area ag in its initial configuration (taken as reference). During a
uniaxial experiment this bar is stretched along its longitudinal axis (direction of e;) with
a simultaneous reduction of its cross section. Assume that the final deformed configuration
of the bar corresponds to a state of homogeneous deformation with cross-sectional area a.
Furthermore, assume that the bar is subjected to a state of uniaxial stress, with constant o
given by
o=011 € ®ej.

Let f= f e; be the total force applied to the deformed configuration of the bar (by the
experimental equipment). Under the assumption of uniform stress distribution in the cross-
section of the bar, force balance requires that the Cauchy stress component 1, be given by

g11 = —.
a

In practice, the force f (and not the stress component) is what can actually be measured in an
experiment. Thus, after fis measured, the Cauchy stress oy; is determined according to the
expression above. If instead of a, the reference cross-sectional area ay is used, then the first
Piola—Kirchhoff or nominal stress component is determined

P = i
ap

It is obvious that, in this case, the corresponding tractions ¢ and &, respectively per unit
deformed and reference area, are simply

1 - 1
t=cnei=-f, t=Phe=—Ff
a agp

3.3.5. THE SECOND PIOLA-KIRCHHOFF STRESS

The Second Piola—Kirchhoff stress tensor, denoted S, is the tensor defined as

S=JF lgF T, (3.126)
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Note that from this definition, we have
ST =JF 1eTFT, (3.127)

so that the symmetry of o implies that S is symmetric.

3.3.6. THE KIRCHHOFF STRESS

Another important measure of stress is the Kirchhoff stress tensor, T, defined by
T=Jo. (3.128)

Due to the symmetry of o, the Kirchhoff stress is symmetric. Its spectral representation reads
3

=) me;@c¢], (3.129)
i=1

where the principal Kirchhoff stresses, 7;, are related to the principal Cauchy stresses, a;, by
T!':JO'-,'. (3130)

Later in this book, frequent reference to the principal Kirchhoff stresses will be made in the
formulation of various constitutive models.

3.4. Fundamental laws of thermodynamics

In order to state the fundamental laws of thermodynamics, it is necessary to introduce the
scalar fields @, e, s and 7 defined over 48 which represent, respectively, the temperature,
specific internal energy, specific entropy and the density of heat production. In addition, b
and g will denote the vector fields corresponding, respectively, to the body force (force per
unit volume in the deformed configuration) and heat flux.

3.4.1. CONSERVATION OF MASS

The postulate of conservation of mass requires that

p+ pdivg w=0. (3.131)

3.4.2. MOMENTUM BALANCE

In terms of the Cauchy stress tensor, whose existence has been established in Section 3.3.3,
the balance of momentum for 4 can be expressed by the following partial differential
equation with boundary condition: !

divyo+b=pi inep(Q)
(3.132)
t=on in p(08),

| Equations (3.132) are also a result of Cauchy’s theorem, alluded to in page 62.
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where 1 is the outward unit vector normal to the deformed boundary ¢ (952) of 28 and t is the
applied boundary traction vector field on ¢(9€2). Equations (3.132) are often referred to as
the strong, local or point-wise form of equilibrium. Equation (3.132); is known as Cauchy’s
equation of motion.

The above momentum balance equations are formulated in the spatial (deformed) config-
uration. Equivalently, they may be expressed in the reference (or material) configuration of
2 in terms of the first Piola—Kirchhoff stress tensor as

div, P +b=pu inQ

B (3.133)
t=Pm in 952,

where

b=Jb (3.134)

is the reference body force, i.e. the body force measured per unit volume in the reference
configuration,

p=Jp, (3.135)

is the reference density (mass per unit volume in the reference configuration), t is the
reference boundary traction (boundary force per unit reference area) and m is the outward
normal to the boundary of 44 in its reference configuration.

3.4.3. THE FIRST PRINCIPLE

The first principle of thermodynamics postulates the conservation of energy. Before stating
this principle, it is convenient to introduce the product

o: D,

which represents the stress power per unit volume in the deformed configuration of a body.
The first principle of thermodynamics is mathematically expressed by the equation

pe=oc.:D+ pr—div; q. (3.136)

In words, the rate of internal energy per unit deformed volume must equal the sum of the
stress power and heat production per unit deformed volume minus the spatial divergence of
the heat flux.

3.4.4, THE SECOND PRINCIPLE
The second principle of thermodynamics postulates the irreversibility of entropy production.

It is expressed by means of the inequality

p§+ divg [g] - % >0. (3.137)
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3.4.5. THE CLAUSIUS-DUHEM INEQUALITY

By combination of the first and second principles stated above, one easily obtains the
fundamental inequality

pé+divﬂ;[g] - %(pé—cr:D#-div_u q) > 0. (3.138)

The introduction of the specific free energy v (also known as the Helmholtz free energy
per unit mass), defined by
h=ec—0s, (3.139)
along with the identity
. |4a T, 1
le.IT [a] = 'é dlv.‘l? q— '9_2 q- vzg, (3140)
into the above fundamental inequality results in the Clausius—-Duhem inequality
5 : 1
o’:D—p(q,thSH)—aq-gZU, (3.141)

where we have defined g = V0. The left-hand side of (3.141) represents the dissipation
per unit deformed volume. Equivalently, by making use of (3.135), the Clausius—Duhem
inequality can be expressed in terms of dissipation per unit reference volume as

T:D—p(-drﬂé)—%q-gzo. (3.142)

3.5. Constitutive theory

The balance principles presented so far are valid for any continuum body, regardless of
the material of which the body is made. In order to distinguish between different types of
material, a constitutive model must be introduced. In this section, we review the principles
that form the basis of the constitutive theories discussed in later chapters of this book. We
start by stating, in Section 3.5.1, three fundamental axioms that define a rather general class of
constitutive models of continua. The use of internal variables to formulate constitutive models
of dissipative materials is then addressed in Section 3.5.2. We remark that all dissipative
constitutive models discussed in Parts Two and Three of this book are based on the internal
variable approach. Section 3.5.4 summarises a generic purely mechanical internal variable
model. The discussion on constitutive theory ends in Section 3.5.5 where the fundamental
constitutive initial value problems are stated.

3.5.1. CONSTITUTIVE AXIOMS

In the present context, the axioms stated in this section must be satisfied for any constitutive
model. Before going further, it is convenient to introduce the definitions of thermokinetic and
calorodynamic processes (Truesdell, 1969). A thermokinetic process of 4 is a pair of fields

w(p,t) and O(p,1).

A set

{a(p,t), e(p. 1), s(p. t), v(p, 1), b(p, 1), g(p 1)}
of fields satisfying the balance of momentum, the first and the second principles of thermo-
dynamics is called a calorodynamic process of A.
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Thermodynamic determinism

The basic axiom underlying the constitutive theory discussed here is the principle of
thermodynamically compatible determinism (Truesdell, 1969). It postulates that ‘the history
of the thermokinetic process to which a neighbourhood of a point p of % has been subjected
determines a calorodynamic process for & at p’. In particular, we shall be concerned with
so-called simple materials, for which the local history (history at point p only) of F', & and
g suffices to determine the history of the thermokinetic process for constitutive purposes. In
this case, regarding the body force b and heat supply r as delivered, respectively, by the linear
momentum balance (3.132); and conservation of energy (3.136) and introducing the specific
free energy (3.139), the principle of thermodynamic determinism implies the existence of
constitutive functionals F, &, $ and J of the histories of F', § and g such that, for a point p,

a(t) =3 (F', 0, g")
»(t) =B(F 0", g)

3.143
s(t) =H(F', 0", g") e
qt) =3 (F', 6" g")

and the Clausius—Duhem inequality (3.141) holds for every thermokinetic process of 4. The
dependence on p is understood on both sides of (3.143) and (-)* on the right-hand sides
denotes the history of (+) at p up to time ¢.

Material objectivity

Another fundamental axiom of the constitutive theory is the principle of material objectivity
(or frame invariance). It states that ‘the material response is independent of the observer’.
The motion ¢* is related to the motion ¢ by a change in observer if it can be expressed as

©*(p, t) = y(t) + Q(t) [w(p, t) — o], (3.144)

where y(t) is a point in space, Q(t) is a rotation and ¢(p, t) — xo is the position vector
of ¢(p,t) relative to an arbitrary origin @o. This relation corresponds to a rigid relative
movement between the different observers and the deformation gradient corresponding to ™
is given by

F*=QF. (3.145)

Scalar fields (such as @, 7 and s) are unaffected by a change in observer but the Cauchy stress
o (t), heat flux g(t) and the temperature gradient g(¢) transform according to the rules

o —o0'=QaQ"
g — ¢ =Qq (3.146)
g — g =Qg.
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The principle of material objectivity places restrictions on the constitutive functionals
(3.143). Formally, it requires that §, &, $) and 7 satisfy

1 (3.147)
tx
g

t*

) )
)=6(F",0,g")
) '9")
) "9
for any transformation of the form (3. 145, 3.146).

Material symmetry

The symmetry group of a material is the set of density preserving changes of reference
configuration under which the material response functionals §, &, $ and J are not affected,
The symmetry group of a solid material is a subset of the proper orthogonal group & *+, that
is, a set of rotations. Thus, the symmetry group of a solid material is the set of rotations of
the reference configuration under which the response functionals remain unchanged. This
concept is expressed mathematically as follows. A subgroup % of & * is said to be the
symmetry group of the material defined by the constitutive functionals §, &, and J if
the relations : .
F(FL0,9)=3(FQI0.d")
& (F',0,¢") =6(F Q' 6.g"
t t
H(F'L0,9)=9(FQl.6,4g"
I(F0,g) =T (F QL0 g

(3.148)

hold for any time-independent rotation @ € .. A solid is said to be isotropic™™ if its symme-
try group is the entire proper orthogonal group. In the development of any constitutive model,
the constitutive functionals must comply with the restrictions imposed by the symmetries of
the material in question.

3.5.2. THERMODYNAMICS WITH INTERNAL VARIABLES

The constitutive equations (3.143) written in terms of functionals of the history of F’, 6 and
g, in that format, are far too general to have practical utility in modelling real materials
undergoing real thermodynamical process. This is especially true if one has in mind the
experimental identification of the constitutive functionals and the solution of the boundary
value problems of practical interest. Therefore, it is imperative that simplifying assumptions
are added to the general forms of the constitutive relations stated above.

An effective alternative to the general description based on history functionals is the
adoption of the so-called thermodynamics with internal variables. The starting point of
the thermodynamics with internal variables is the hypothesis that at any instant of a
thermodynamical process the thermodynamic state (defined by o, ¥, s and g) at a given

**We remark that most constitutive models discussed in this book are isotropic.
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point p can be completely determined by the knowledge of a finite number of state variables.
The thermodynamic state depends only on the instantaneous value of the state variables and
not on their past history.

Mathematically, state variable models can be seen as particular instances of the general
history functional-based constitutive theory. The relationship between the two approaches
is discussed in detail by Kestin and Bataille (1977) and Bataille and Kestin (1979). In
general terms, state variable models can be obtained from the general history functional-
based description by re-defining the history of the thermokinetic process in terms of a finite
number of parameters (the state variables).

The state variables

For the applications with which we are mostly concerned, it will be convenient to assume that
at any time t, the thermodynamic state at a point is determined by the following set of state
variables:

{F, 8, g, a},

where F, # and g are the instantaneous values of deformation gradient, temperature and the
temperature gradient and
o= {a;} (3.149)

is a set of internal variables containing, in general, entities of scalar, vectorial and tensorial
nature associated with dissipative mechanisms.

Thermodynamic potential. Siress constitufive equation

Following the above hypothesis, the specific free energy is assumed to have the form'7

v=v(F, 0, a), (3.150)
so that its rate of change is given by
. ('){'[J . 01[! . (')U"
W=—:F + — 8+ — ar, 3.
V=2F + a0 + Buis g, (3.151)

where summation over & is implied. In this case, using the connection
c:D=cF T:.F, (3.152)

for the stress power, one obtains for the Clausius—Duhem inequality

N . P\ - N 1
oF T _ huti A ) - s+ )0—p—"G. ——-qg-g>0. 3.
( P OF) p(s U()) p T Op— Z g2 0 (3.153)
Equivalently, in terms of power per unit reference volume, we have
(‘) UJ*' 3 (')[f) % a(fu J
P—-p—|:F —pls+—=|0—-p—acr——=q-g=0.
( p OF) p(s-i— 8()) P Doy Vi 7 qg-g=0 (3.154)

TiThe dependence of 1 on the temperature gradient is disregarded as it contradicts the second principle of
thermodynamics (Coleman and Gurtin, 1967).
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Expression (3.154) is obtained from (3.153), by simply using relation (3.135).
The principle of thermodynamic determinism requires that the constitutive equations must

be such that the above inequality holds for any thermokinetic process. Thus, (3.154) must

remain valid for any pair of functions { F'(t), 6(¢)}. This implies the constitutive equations

_ oY N

LT T

for the first Piola—Kirchhoff stress and entropy. Equation (3.155); is equivalent to the
following constitutive relations for the Cauchy and Kirchoff stress tensors:

P (3.155)

1 _oY _r _

e — 52" T
_J")(')F T 'O(')FF ; (3.156)

o
Thermodynamical forces
For each internal variable «, of the set e, we define the conjugate thermodynamical force

_ oY

Ay p(‘)(—u

(3.157)

With this definition and the identities (3.155), the Clausius—Duhem inequality can be
rewritten as 7
—Ap ® Gy — 7 qg-g=>0, (3.158)

where we recall that the symbol ‘+’ denotes the appropriate product operation between Aj.
and ;.. In what follows, we will adopt for convenience the notation

A={A} (3.159)

for the set of thermodynamical forces, so that (3.158) can be expressed in a more compact
form as

—A>:<d—%q-g?_>0. (3.160)

Dissipation. Evolution of the internal variables

In order to completely characterise a constitutive model, complementary laws associated with
the dissipative mechanisms are required. Namely, constitutive equations for the flux variables
éq and ¢ must be postulated. In the general case, we assume that the flux variables are given
functions of the state variables. The following constitutive equations are then postulated

a=f(F,0,9 a)

1 (3.161)
aq =h(F,0, g, o).

Recalling the principle of thermodynamic determinism, the Clausius-Duhem inequality, now
expressed by (3.158), must hold for any process. This requirement places restrictions on the
possible forms of the general constitutive functions f and /1 in (3.161) (the reader is referred
to Coleman and Gurtin, 1967; Truesdell, 1969, for further details on this issue). It is also



74 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

important to mention that when internal variables of vectorial or tensorial nature are present,
it is frequently convenient to re-formulate (3.161), in terms of so-called objective rates rather
than the standard material time derivative of c. Objective rates are insensitive to rigid-body
motions and may be essential in the definition of a frame invariant evolution law for variables
representing physical states associated with material directions. Objective rates are discussed
in Section 14.10 (starting page 615) in the context of the hypoelastic-based formulation of
plasticity models.

Dissipation potential. Normal dissipativity

An effective way of ensuring that (3.158) is satisfied consists in postulating the existence of
a scalar-valued dissipation potential of the form

=E=Z(A,g; F,0, o), (3.162)

where the state variables F', # and o appear as parameters. The potential = is assumed convex
with respect to each A, and g, non-negative and zero valued at the origin, {4, g} = {0, 0}.
In addition, the hypothesis of normal dissipativity is introduced, i.e. the flux variables are
assumed to be determined by the laws

0= 1 0=

—g=——, (3.163)

Re=—24" T dg

A constitutive model defined by (3.150), (3.155) and (3.163) satisfies a priori the
dissipation inequality. It should be noted, however, that the constitutive description by means
of convex potentials as described above is not a consequence of thermodynamics but, rather,
a convenient tool for formulating constitutive equations without violating thermodynamics.
Examples of constitutive models supported by experimental evidence which do not admit
representation by means of dissipation potentials are discussed by Onat and Leckie (1988).

3.5.3. PHENOMENOLOGICAL AND MICROMECHANICAL APPROACHES

The success of a constitutive model intended to describe the behaviour of a particular
material depends critically on the choice of an appropriate set of internal variables. Since
no plausible model will be general enough to describe the response of a material under
all processes, we should have in mind that the choice of internal variables must be guided
not only by the specific material in question but, equally importantly, by the processes
(i.e. the range of thermokinetic processes defined by strain and temperature histories as
well as the time span) under which the model is meant to describe the behaviour of the
material. The importance of considering the possible thermokinetic processes when devising
a constitutive model can be clearly illustrated, for instance, by considering a simple steel bar.
When subjected to a sufficiently small axial strain at room temperature, the bar exhibits a
behaviour that can be accurately modelled by linear elasticity theory (generalised Hooke’s
law). If strains become larger, however, linear elasticity may no longer capture the observed
response satisfactorily. In this case, a plasticity theory may be more appropriate. With further
increase in complexity of the strain history (by introducing, say, cyclic extension), other
phenomena such as internal damaging and possibly fracturing may take place and more
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refined constitutive models, incorporating a larger number of state variables, will be required.
Due account of the possible temperature histories and time span to be considered is also
fundamental. At higher temperatures, the long-term behaviour of the steel bar subjected to
even a very small strain, may no longer be accurately modelled by the linear elasticity theory.
In this case the introduction of time-dependent effects (creep/relaxation) may be essential to
produce an acceptable model. In an extreme situation, if the temperature rises above melting
point, the bar will cease to be a solid. Under such circumstances, a fluid mechanics theory
will be needed to describe the behaviour of the material.

In general, due to the difficulty involved in the identification of the underlying dissipative
mechanisms, the choice of the appropriate set of internal variables is somewhat subtle and
tends to be biased by the preferences and background of the investigator. In simplistic
terms, we may say that constitutive modelling by means of internal variables relies either
on a micromechanical or on a phenomenological approach. The micromechanical approach
involves the determination of mechanisms and related variables at the atomic, molecular
or crystalline levels. In general, these variables are discrete quantities and their continuum
(macroscopic) counterparts can be defined by means of homogenisation techniques. The
phenomenological approach, on the other hand, is based on the study of the response of
the representative volume element, i.e. the element of matter large enough to be regarded as
a homogeneous continuum. The internal variables in this case will be directly associated
with the dissipative behaviour observed at the macroscopic level in terms of continuum
quantities (such as strain, temperature, etc.). Despite the macroscopic nature of theories
derived on the basis of the phenomenological methodology, it should be expected that ‘good’
phenomenological internal variables will be somehow related to the underlying microscopic
dissipation mechanisms.

The phenomenological approach to irreversible thermodynamics has been particularly
successful in the field of solid mechanics. Numerous well-established models of solids, such
as classical isotropic elastoplasticity and viscoplasticity, discussed in Parts Two and Three of
this book, have been developed on a purely phenomenological basis providing evidence of
how powerful such an approach to irreversible thermodynamics can be when the major con-
cern is the description of the essentially macroscopic behaviour. In some instances, however,
the inclusion of microscopic information becomes essential and a purely phenomenological
methodology is unlikely to describe the behaviour of the material with sufficient accuracy.
One such case is illustrated in Chapter 16, where a microscopically-based continuum model
of ductile metallic crystals is described.

3.5.4. THE PURELY MECHANICAL THEORY

Thermal effects are ignored in the constitutive theories addressed in Parts Two and Three of
this book. It is, therefore, convenient at this point to summarise the general internal variable-
based constitutive equations in the purely mechanical case. By removing the thermally-
related terms of the above theory, we end up with the following set of mechanical constitutive
equations:

h=1(F, a)

_-9 164
P=poF (3.164)
&= f(F,a).
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The infinitesimal strain case

In the infinitesimal strain case, the infinitesimal strain tensor, €, replaces the deformation
gradient and the stress tensor o of the infinitesimal theory replaces the first Piola—-Kirchhoff
stress. We then have the general constitutive law

Y=Y, a)

W
Uzﬁ%—l— (3.165)
a=f(e, a)

3.5.5. THE CONSTITUTIVE INITIAL VALUE PROBLEM

Our basic constitutive problem is defined as follows: ‘Given the history of the deformation
gradient (and the history of temperature and temperature gradient, if thermal effects are con-
sidered), find the free-energy and stress (plus entropy and heat flux, in the thermomechanical
case) according to the constitutive law conceptually expressed by (3.143)°. If the internal
variable approach is adopted in the formulation of the constitutive equations, the generic
constitutive problem reduces to the following fundamental mechanical initial value problem.

Problem 3.1 (The mechanical constitutive initial value problem). Given the initial values
of the internal variables a(to) and the history of the deformation gradient,

F(t), te [to,T),

find the functions P(t) and a(t), for the first Piola—Kirchhoff stress and the set of internal
variables, such that the constitutive equations

P(t)=p b
¢ (3.166)
a(t) = f(F(t), at))
are satisfied for every t € [to, T.
In the infinitesimal case, PP and F' are replaced with o and e, respectively, in the above

initial value problem. For completeness, the infinitesimal constitutive initial value problem is
stated in the following.

Problem 3.2 (The infinitesimal constitutive initial value problem). Given the initial values
of the internal variables ex(to) and the history of the infinitesimal strain tensor,
E,'(t), te [tU,T},

find the functions o(t) and c(t), for the stress tensor and the set of internal variables, such
that the constitutive equations

_
ot)=p e f
- o (3.167)

a(t) = f(e(t), e(t))

are satisfied for every t € [to, T.
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3.6. Weak equilibrium. The principle of virtual work

The strong (point-wise, local or differential) forms of the momentum balance have been
stated in Section 3.4 by expressions (3.132) and (3.133). In this section, we state the
momentum balance equations in their corresponding weak (global or integral) forms. The
weak equilibrium statement — the Principle of Virtual Work — is fundamental to the definition
of the basic initial boundary value problem stated in Section 3.7 and, as we shall see in
Chapter 4, is the starting point of displacement-based finite element procedures for the
analysis of solids.

Again, let us consider the body % which occupies the region €2 C & with boundary 9€} in
its reference configuration subjected to body forces in its interior and surface tractions on its
boundary. In its deformed configuration, # occupies the region ¢(§2) with boundary ()
defined through the deformation map ¢.

3.6.1. THE SPATIAL VERSION

The spatial version of the principle of virtual work states that the body # is in equilibrium
if, and only if, its Cauchy stress field, o, satisfies the equation

/ [J:Vﬂgn—(b—pﬂ)-ﬂ]d‘uff t-nda=0, Vne¥, (3.168)
Jo(92) @(80)
where b and ¢ are the body force per unit deformed volume and boundary traction per unit
deformed area and ¥ is the space of virtual displacements of 28, i.e. the space of sufficiently
regular arbitrary displacements

n:e(fd) - %

Equivalence between strong and weak equilibrium statements

When the stress field o is sufficiently smooth, the virtual work equation is equivalent to the
strong momentum balance equations (3.132). To show this, let us start by assuming that the
field o is sufficiently regular so that we can use the identity (v) of Section 2.5.8 (page 38) to
obtain

o Ven=div.(on) — (diveo) - 1. (3.169)
In obtaining the above identity we have used the fact that o is symmetric. Next, by
substituting the above expression into (3.168), it follows that

/ [div,(on) — (div. o+ b — pit) - 7] dv — [ t-nda=0, Yne¥. (3.170)
Jo(2) Jo(a0)

We now concentrate on the first term within the square brackets of the above equation. The
divergence theorem (expression (2.148), page 37) implies the following identity

/ div,(on)dv= / on-nda. (3.171)
J () Jp(09)

By taking into account the symmetry of o, which implies o7 - . = on - 1, together with the
above identity, equation (3.170) can be rewritten in the equivalent form

/ (div, o+ b— pit) - pdv + / (t—on)-nda=0, Vne¥ (3.172)
Jo(9) J (000
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Finally, since this equation holds for all virtual displacement fields 7, then it follows from the
fundamental theorem of variational calculus (refer, for instance, to Gurtin 1972; Oden 1979
or Reddy 1998) that each bracketed term of the above equation must vanish pointwise within
their respective domains, i.e. we recover the strong equilibrium equations (3.132).
Conversely, the strong form yields the weak form of equilibrium. This can be shown in a
relatively straightforward manner by applying a weighted residual method to the strong form
together with use of the divergence theorem. ‘

3.6.2. THE MATERIAL VERSION

The virtual work equation can be equivalently expressed in the reference configuration of %.
The corresponding material (or reference) version of the Principle of Virtual Work states that
Z is in equilibrium if and only if its first Piola—Kirchhoff stress field, P, satisfies

fQ[P;vpn—(bﬁﬁ)-n]du—f t-npda=0, Vnev, (3.173)

where b and t are, respectively, the body force per unit reference volume and the surface
traction per unit reference area and p is the mass density in the reference configuration. The
space of virtual displacements, ¥; is accordingly defined as the space of sufficiently regular
arbitrary displacement fields

n:Q—%

The material version of the virtual work equation is obtained by introducing, in its spatial

counterpart, the identities

1
o-:jPFT; Vea=V,a F 1, (3.174)

where the second expression holds for a generic vector field a, and making use of the standard
relation (Gurtin, 1981)

[ a(z) dv :/ J(p) a{p(p)) dv, (3.175)
Jp(Q) ) Q

valid for any scalar field a.

The proof of equivalence between (3.173) and the strong form (3.133) under conditions
of sufficient regularity is then analogous to that given for the spatial version discussed in
Section 3.6.1 above.

3.6.3. THE INFINITESIMAL CASE

Under infinitesimal deformations, reference and deformed configurations coincide and the
virtual work equation reads simply

L[U:Vn—(b—pﬁ)-n]d'u—/ t-nda=0, Vne¥ (3.176)
a0
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3.7. The quasi-static initial boundary value problem

Having defined the generic constitutive initial value problems in Section 3.5 and the weak
equilibrium statements in Section 3.6, we are now in a position to state the weak form of
fundamental initial boundary value problems, whose numerical solution by the finite element
method is the main subject of the subsequent chapters of this book. The problems formulated
here are restricted to quasi-static conditions, where inertia effects are ignored. This is the case
on which the numerical methods discussed in this book are focused.

3.7.1. FINITE DEFORMATIONS
Let the body % (Figure 3.16) be subjected to a prescribed history of body forces
b(t), te€lto, T]

in its interior. In the above, dependence of b on @ is implicitly assumed. In addition, the
following boundary conditions are imposed.

(i) The natural boundary condition. The history of the surface traction
t(t), te(to,T),

with dependence on @ implied, is prescribed over the portion of the boundary of 4 that
occupies the region 9 in its reference configuration.

(ii) The essential boundary condition. The motion is a prescribed function on the part of
the boundary of 4 that occupies the region 9§2, in the reference configuration

@(p,t)=p+a(p,t) t€lto,T], p€I,

where 1 is the corresponding prescribed boundary displacement field. For simplicity,
it is assumed here that 92, () 9% = 0. We define the set of kinematically admissible
displacements of 9 as the set of all sufficiently regular displacement functions that
satisfy the kinematic constraint (the essential boundary condition)

H={u:Qx Z— ¥ u(p,t)=u(p,1), t€ [to, T], p € 0.} (3.177)

The body Z# is assumed to be made from a generic material modelled by the internal
variable-based constitutive equations associated with Problem 3.1 (page 76) and the internal
variable field, ¢, is known at the initial time fp, i.e.

a(p, to) = a(p). (3.178)

The fundamental quasi-static initial boundary value problem is stated in its spatial version in
the following.

Problem 3.3 (The spatial quasi-static initial boundary value problem). Find a kinemati-
cally admissible displacement function, w € JE such that, forall t € [to, T, the virtual work
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t(x,1)

QI ,1)

Figure 3.16. The initial boundary value problem. Schematic illustration.

equation is satisfied
/ [o(t) : Vo — b(t) - m] dv — [ t(t)-nda=0, VYne. (3.179)
#(D1) J (a5 1)
The space of virtual displacements at time t is defined by
Vi ={n:@(Q,t) = % |n=0o0np(08,, 1)} (3.180)
and, at each point of B, the Cauchy stress is given by
a(t) = P(O)F ()T /J(t), (3.181)

where P(t) is the solution of constitutive initial value Problem 3.1 (page 76) with prescribed
deformation gradient
F(t) =Vpp(p, t) = I+ Vyu(p, t). (3.182)

The problem can be equivalently formulated in the reference configuration of 4 in terms
of the material version of the principle of virtual work (3.173). For completeness, we state
the material version of the fundamental initial boundary value problem in the following.

Problem 3.4 (The material quasi-static initial boundary value problem). Find a kinemat-
ically admissible displacement function, u. € A such that, for all t € [to, T),

/ [P(t) : Vm — b(t) - m] dv — [ t(t) nda=0, Vnev, (3.183)
Q JOQy
where

Y={n:Q—> % |n=00n0Q,} (3.184)

and the Piola—Kirchhoff stress, P(t), is the solution of initial value Problem 3.1 with
prescribed deformation gradient (3.182).
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3.7.2. THE INFINITESIMAL PROBLEM

Under infinitesimal deformations, the quasi-static initial boundary value problem is based on
the weak form (3.176). It is stated in the following.

Problem 3.5 (The infinitesimal quasi-static initial boundary value problem). Find a
kinematically admissible displacement, u € J, such that, fort € [to, T),

/ [o(t): Vi — b(t) - m] dv — [ t(t) - mda=0, Vne, (3.185)
Q J A

where

‘1’:{7]:9—»‘?/\11:0011893,} (3.186)

and, at each point p, o (t) is the solution of the constitutive initial value Problem 3.2 (page 76)

with prescribed strain

e(t) = Viu(p, t). (3.187)
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6 THE MATHEMATICAL THEORY
OF PLASTICITY

HE mathematical theory of plasticity provides a general framework for the conlinuum

constitutive description of the behaviour of an important class of materials. Basically,
the theory of plasticity is concerned with solids thal, after being subjected to a loading
programme, may sustain permanent {or plastic) deformations when completely unloaded.
In particular, this theory is restricted to the description of matenials (and conditions) for
which the permanent deformations do nat depend on the rate of application of loads and is
often referred to as rate-independent plasticity. Materials whose behaviour can be adequately
described by the theory of plasticity are called plastic (or rate-independent plastic) materials.
A large number of engineering materials, such as metals, concrete, rocks, clays and soils
in general, may be modelled as plastic under a wide range of circumstances of practical
interest. The origins of the theory of plasticity can be traced back to the middle of the
nineteenth century and, following the substantial development that took place, particularly in
the first half of the twentieth century, this theory is today established on sound mathematical
foundations and is regarded as one of the most successful phenomenological constilutive
models of solid materials.

The present chapter reviews the mathematical theory of plasticity. The theory presented
here is restricted to infinitesimal deformations and provides the basis for the numerical
simulation of the behaviour of elastoplastic solids to be discussed in Chapter 7. We remark
that only the most important concepts and mathematical expressions are reviewed. Attention
is focused on the description of mathematical models of elastoplastic materials and, in
particular, issues such as limit analysis and slip-line field theory are not addressed. For a
more comprehensive treatment of the theory of plasticity, the reader is referred to Hill (1950),
Prager (1959), Lubliner (1990) and Jirisek and Bazamt (2002). A more mathematically
oriented approach to the subject is presented by Halphen and Nguyen (1975), Duvaut and
Licns (1976), Matthies (1979), Suquet (1931) and Han and Reddy (1999).

This chapter is organised as follows. In Section 6.1, aspects of the phenomenological
behaviour of materials classed as plastic are discussed and the main properties are pointed
out in the analysis of a simple uniaxial tension experiment. The discussion is followed, in
Section 6.2, by the formulation of a mathematical model of the uniaxial experiment. The
uniaxial model, though simple, embodies all the essential concepts of the mathematical
theory of plasticity and provides the foundation for the gencral multidimensional model
established in Section 6.3. The remainder of the chapter focuses on the detailed description
of the plasticity models most commonly used in engineering analysis: the models of
Tresca, von Mises, Mohr—Coulomb and Drucker-Prager. The comesponding yield critena are
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zscribed in Section 6.4, Plastic low rules and hardening laws are addressed, respectively, in
Sections 6.5 and 6.6,

6.1. Phenomenological aspecis

In spite of their qualitatively distinct mechanical responses, materials as contrasting as metals
and soils share some important features of their phenomenological behaviour that make
them amenable to modelling by means of the theory of plasticity. To illustrate such common
features, a uniaxial tension experiment with a metallic bar is discussed in what follows,

Typically, uniaxial tension tests with ductile metals produce stress—strain curves of the
type shown in Figure 6.1 In the schematic diagram of Figure 6.1, where the axial stress,
¢, is plotted against the axial strain, £, a load programme has been considered in which the
bar is initially subjected to a monotonic increase in axial stress from zero Lo a prescribed
value, ag. The bar is then unloaded back to an unsiressed state and subzequently reloaded
to a higher stress level my. The stress—strain curve follows the path Oy Yo £ 0h Y7 4, shown,
In this path, the initial line segment Yy is virwally straight and, if the bar is unloaded
from point Yy (or before it is reached), it returns to the original unstressed state €. Thus, in
segment (3 Yy the behaviour of the material is regarded as finear efasric. Beyond Y5, the slope
of the stress—strain curve changes dramatically and if the stress (or strain) loading is reversed
at, say. point £y, the bar returns to an unstressed state via path Zg0). The new unsiressed
state, Oy, differs from the initial unstressed state, {Jy, in that a permanent change in the shape
of the bar is observed. This shape change is represented in the graph by the permanent (or
plasticy axial strain =P. Monotonic reloading of the bar o a stress level oy will follow the
path €4 ¥} £, . Similarly to the initial efasiic segment Oy Y5, the portion O Y7 is also virwally
straight and unloading from Y5 (or before Y7 is reached) will bring the stress—strain state back
to the unstressed configuration Oy, with no further plastic straining of the bar. Therefore,
the behaviour of the matenal in the segment (4 Y] may also be regarded as linear elastic.
Here, it is important to emphasise that, even though some discrepancy between unloading
and reloading curves (such as lines Zy() and O Y)) is observed in typical experiments, the
actual difference between them is in fact much smaller than that shown in the diagram of
Figure 6.1. Again, loading beyond an elastic limir (point Y7 in this case) will canse lurther
increase in plastic deformation.

Some important phenomenological properties can be identified in the above described
uniaxial test. They are enumerated below:

I. The existence of an elastic donain, i.e. a range of stresses within which the behaviour
of the material can be considered as purely elastic, without evolution of permanent
(plastic) strains. The clastic domain is delimited by the so-called yield siress. In
Figure 6.1, segments Oy Yy and €4 ) define the elastic domain at two dilferent siates.

The associated yield stresses correspond to points Y5 and Y.

2. If the material is further loaded at the yield stress, then plastic vielding (or plastic flow),
i.e. evolution of plastic strains, takes place.

3. Accompanying the evolution of the plastic strain, an evelition of the vield stress itsell
is also observed (note that the yield stresses corresponding to points Yy and Y are
different). This phenomenon is known as hardening.
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a
A
ﬁl
]
i, £
£
g

Figure 6.1. Uniavial tension experiment with doctile metals,

It is emphasised that the above properties can be observed not only in metals but also in
a wide variety of materials such as concrete, rocks, soils and many others. Obviously, the
microscopic mechanisms that give rise to these common phenomenological characteristics
can be completely distinet for different types of matenial. It is also important to note lhfu,
according to the type of material, different experimental procedures may be required for
the verification of such properties. For instance, in materials such as soils, which typically
cannot resist tensile stresses, uniaxial tension tests do not make physical sense. In this case,
experiments such as iriavial shear tests, in which the sides of the specimen are 5.uhjc-cted toa
conlining hydrostatic pressure prior to the application of longitudinal compression, are more
appropriate. . o

The object of the mathematical theory of plasticity is to provide continuum conshitulive
models capable of describing (gualitatively and quantitay ely) with sufficient accuracy the
phenomenological behaviour of materials that possess the characteristics discussed in the

above,

6.2. One-dimensional constitutive model

A simple mathematical model of the uniaxial experiment discussed in the previous section is
formulated in what follows. In spite of its simplicity the one-dimensional constitutive model
contains all the essential features that form the basis of the mathematical theory of plasticity.

At the outset, the original stress—strain curve of Figure 6.1, that resulted from the loading
programme described in the previous section, is approximated by the idealised version
shown in Figure 6.2. The assumptions involved in the approximation are summarised in the
following. Firsily, the difference between unloading and reloading curves (segments Zath
and €Y7 of Figure 6.1) is ignored and points £ and Y3, that correspond respectively to
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8]

'y

Figure 6.2. Uniavial tension experiment. Mathematical model.

the beginning of unloading and the onset of plastic yielding upon subsequent reloading, are
assumed to coincide. The transilion beiween the elastic region and the elastoplastic regime
is now clearly marked by a non-smooth change of slope (points Y5 and ¥7). During plastic
yielding, the stress—strain curve always follows the path defined by (2;¥5Y7.2,. This path is
normally referred to as the virgin curve and is obtained by a continuous monotonic loading
from the initial unstressed state O,
_ Under the above assumptions, after being monotonically loaded from the initial unstressed
| state 1o the stress level oy, the behaviour of the bar between states () and Y7 is considered to
be linear elastic, with constant plastic strain, =7, and yield limit, ag. Thus, within the segment
() ¥, the uniaxial stress cormesponding to a configuration with fofaf sirain = is given by

a=FE(z— P}, {6.1)

| where F denotes the Young's modulus of the matenial of the bar. Note that the difference
between the total strain and the current plastic strain, = — =7, is fillly reversible; that is,
upon complete unloading of the bar, £ — =¥ is fully recovered without further evolution of
plastic strains. This motivates the additive decomposition of the axial strain described in the
following section.

| 6.2.1. ELASTOPLASTIC DECONMPOSITION OF THE AXIAL STRAIN

One of the chiel hypotheses underlying the small strain theory of plasticity is the decompo-
sition of the total strain, =, into the sum of an elastic (or reversible) component, £*, and a
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plastic (or permanent) component, £,

g==¢c" +&F, {6.2)

where the elastic strain has been defined as

6.2.2. THE ELASTIC UNIAXIAL CONSTITUTIVE LAW

Following the above definition of the elastic axial strain, the constitutive law for the axial
stress can be expressed as
a=E:". {6.4)
The next step in the definition of the uniaxial constilutive model is to denive formulae
that express mathematically the fundamental phenomenological properties enumerated in
Section 6.1, The items | and 2 of Section 6.1 are associated with the formulation of a yield
criterion and a plastic flow rule, whereas item 3 requires the formulation of a handening law.
These are described in the following.

6.2.3. THE YIELD FUNCTION AND THE YIELD CRITERION

The existence of an elastic domain delimited by a yield stress has been pointed out in ilem |
of Section 6.1. With the introduction of a yield function, ®, of the form

Mo, ay) =o| — 7y, (6.5)

¥

the elastic domain at a state with uniaxial yield stress o, can be defined in the one-
dimensional plasticity model as the set

&={a|d(o, a,) <0}, (6.6)
or, equivalenily, the elastic domain is the set of stresses o that satisfy
|} < ay. (6.7)

Generalising the results of the uniaxial fension test discussed, it has been assumed in the
above that the yield siress in compression is identical to that in tension. The corresponding
idealised elastic domain is illustrated in Figure 6.3.

It should be noted that, at any stage, no stress level is allowed above the current yield
stress, i.e. plastically admissible siresses lie either in the elastic domain or on its boundary
{the yield limit), Thus, any admissible stress must satisfy the restnction

Pla. a,) <0, (6.8)
For stress levels within the elastic domain, only elastic straining may occur, whereas on its

boundary (at the yield stress), either elastic unloading or plastic yielding (or plastic loading)
takes place. This vield criterion can be expressed by

Mo, oy) <0 = eF =1,
7 =1 for elastic unloading. (6.9)

fP(o.a,)=0= ¢ . . :
P £ 0 for plastic loading.
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Figure 6.3, Uniaxiz! model. Elastic domain.

6.2.4. THE PLASTIC FLOW RULE. LOADING/UNLOADING CONDITIONS

Expressions (6.9) above have defined a criterion for plastic yielding. i.e. they have set the
conditions under which plastic straining may occur. By noting in Figure 6.3 that, upon
plastic loading, the plastic strain rate £V is positive (stretching) under tension (posilive ) and
negalive (compressive) under compression (negative ), the plasiic flow rule for the uniaxial
model can be formally established as

£F =4 signfa), (6,10}
where sign is the signnm function defined as
) Ll ifa=0
signfa) = ) _ (G.11}
1 ifa<0

for any scalar o and the scalar 5 is termed the plastic mudtiplicr. The plastic multiplier is
noi-negative,
=0, (6.12)

4 =10 (6.13)

The constitutive equations (6.10) to (6.13) imply that, as stated in the yield criterion (6.9), the
plastic strain rate vanishes within the elastic domain, i.e.

d<l = §=0 = P =0, (6.14)

and plastic flow (£F # 0) may occur only when the stress level o coincides with the cumrent
yield stress
lol=0, =» =0 = 520. (6.15)
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Expressions (6.8), (6.12) and (6.13) define the so-called loadingfunloading condirions of
the elasticplastic model; that is, the constraints

b 1 0. 2=, -'Ilqs — . (6. 16)

establish when plastic flow may occur,

6.2.5. THE HARDENING LAW

Finally, the complete characterisation of the uniaxial model is achieved with the introduction
of the hardening law. As remarked in item 3 of Section 6.1, an evolution of the yield stress
accompanies the evolution of the plastic strain. This phenomenon, known as hanlening, can
be incorporated into the uniaxial model simply by assuming that, in the definition (6.5) of 4,
the yield stress o, is a given function

ay, = ay (&) (6.17)

of the accumlared axial plastic strain, 7. The accumulated axial plastic strain is defined as
t

= [ lerat, (6.18)
J0

thus ensuring that both tensile and compressive plastic straining contribute to 2. Clearly, in
a monotonic tensile test we have

iF = cF, (6.19)

= gl {6.20)

The curve defined by the hardening function o, (2¥) is usvally referred to as the handening
cunve (Figure 6.4).
From the definition of 27, it follows that its evolution law is given by

P — |£P|, (6.21)

by 1
which, in view of the plastic flow rule, is equivalent to

P =4, (6.22)

6.2.6. SUMMARY OF THE MODEL

The overall one-dimensional plasticity model is defined by the constilulive equa-
tions (6.2}, (6.4), (6.5), (6.10), (6.16), (6.17), and (6.22). The model is summarised in Box 6.1
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/ hardening shope,
L

k

o )

Figure 6.4. One-dimensional model. Hardening curve,

Box 6.1, One-dimensional elastoplastic constitutive model.

1. Elastoplastic split of the axial strain

[E¥]

. Uniaxial elastic law
2o g
a=Fz
3. Yield function
Plo.a,)=a| —ay,

4. Plastic flow mle
iF =4 sign(e)

i

Handening law
ay, = a,(EF)

6. Leadingfunloading criterion

6.2.7. DETERMINATION OF THE PLASTIC MULTIPLIER

So far, in the uniaxial plastucity model introduced above, the plastic multiplier, 5, was lell
indeterminate during plastic yielding. Indeed, expressions (6.12) and (6.13) just tell us that 5
vanishes during elastic straining but may assume any non-negative value during plastic flow,
In order to eliminate this indetermination, it should be noted firstly that, during plasiic flow,
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the value of the yield function remains constant

$ =10, (6.23)
as the absolute value of the current stress always coincides with the current yield stress.
Therefore, the following additional complementarity condition may be established:

|i| -'., =1 {6.24)
which implies that the rate of ¢ vanishes whenever plastic yielding occurs (% 7 0),

lil =1, (6.25)
and, during elastic straining, (5 = U}, § may assume any value. Equation (6.25) is called the
consistency condition. By taking the time derivative of the yield funciion (6.5), one obtains

§ = sign(a) o — H 2P, (6.26)
where H is called the hardening modufus, or hardening slope, and is defined as (refer to
Figure 6.4)

H=H(*) = f;} (6.27)

Under plastic yielding, equation (6.25) holds so that one has the following expression for the
siress rate -
sign(er) o= H 2V, {6.28)
From the elastic law, it follows that
o =E(g - &F). (6.29)

Finally, by combining the above expression with (6.22), (6.28) and (6.10), the plastic
multiplier, 4, is iniquely determined during plastic yielding as

E >
= ign(a) & = 4] 6.30)
SHen T EE ‘

6.2.%. THE ELASTOPLASTIC TANGENT MODULUS

Let us now return to the stress—strain curve of Figure 6.2. Plastic flow at a generic yield limit
produces the following tangent relation between strain and siress

a = EF 2 (6.31)

where E<# is called the elastoplosiic tangent modulus. By combining expressions (6.31),
{6.29), the flow rule (6.10) and (6.30) the following expression is oblained for the elastoplastic
tangent modulus B

FiF = T (6.32)
Equivalently, the hardening modulus, H, can be expressed in terms of the elastic modulus
and the elastoplastic modulus as

Eep

S —— - (6.33)
| — E<#JE

H -
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6.3. General elastoplastic constitutive model

A mathematical model of a uniaxial tension experiment with a ductile metal has been
described in the previous section. As already mentioned, the one-dimensional equations
contain all basic components of a general elastoplastic constitutive model:

o the elastoplastic strain decomposition;
& an elastic law;
& ayield criterion, stated with the use of a yield function:
o a plastic low rule defining the evolution of the plastic strain: and
s a hardening law, characterising the evolution of the yield limit.
The generalisation of these concepts for application in two- and three-dimensional siluations

15 described in this seclion.

6.3.1. ADDITIVE DECOMPOSITION OF THE S5TRAIN TENSOR

Following the decomposition of the uniaxial strain given in the previous section, the
cormesponding generalisation is obtained by spliting the strain fensor, £, into the sum of
an elastic component, £°, and a plastic component, e¥; that is,

g=g% +&F, (6.34)

The tensors £ and P are known, respectively, as the elastic strain tensar and the plastic
strarinn tensar. The corresponding rate form of the additive split reads

£=¢g" 4 &F, (6.35)
Note that (6.35) together with the given initial condition
elto) = "(ta) + £"(tn) (6.36)

at a (pseudo-jtime fy is equivalent to (6.34).

6.3.2. THE FREE ENERGY POTENTIAL AND THE ELASTIC LAW

The formulation of general dissipative models of solids within the framework of thermody-
namics with an internal variable has been addressed in Section 3.5 of Chapter 3. Recall that
the free energy potential plays a crucial role in the derivation of the model and provides the
constitutive law for stress. The starting point of the theories of plasticity treated in this book
is the assumption that the free energy, ¢", is a function

vle. eV, o),

of the total strain, the plastic strain (taken as an intemnal varable) and a set o of internal
variables associated with the phenomenon of hardening. It is usual to assume that the free
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energy can be split as

vile, €, a) = U5 (e — e7) + 1 P(a)
=1"(e%) + ¢ :'l:_l‘.l_fl (6.37)

into a sum of an clastic contribution, ¢, whose dependence upon strains and internal
variables appears only through the elastic strain, and a contribution due to hardening, t%.
Following the above expression for the free energy, the Clausius-Duhem inequality reads

(a-—_ﬂ‘;{‘ ):é’ to:eP—Asaz0, (6.38)
e

where
A=pihia (6.39)

is the hardening thermodvaamical force and we note that —a is the thermodynamical force
associated with the plastic strain while the symbaol * indicates the appropriate product
between A and &&. The above inequality implies a general elastic law of the form

e

e A 6.4
Rl ier’ (

so thal the requirement of non-negative dissipation can be reduced to
TV o, A: 2P, &) = D, (6.41)
where the function T7, defined by
TP, A:gP. a)=o:6F — A= a, (6.42)

is called the plastic dissipation finction,
This chapter is focused on matenals whose elastic behaviour is finear (as in the uniaxial
maodel of the previous section) and isotropic. In this case, the elastic contribution to the free

energy is given by

AUt(e)=3€":D: ¢
B I g oty

- {7 Eg-Eg 5 I |:'-.'. ]' (6.43)
where D is the standard isotropic elasticity tensor and 7 and /X are, respectively the
shear and bulk moduli. The tensor £5 is the deviatoric component of the elastic strain and
= = tr[e*] is the volumetric elastic strain. Thus, the general counterpart of uniaxial clastic

law (6.4) is given by
ag=0:&°

=25 e+ K=,

I (6.44)



o r."_Lma ‘g

150 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

6.3.3. THE YIELD CRITERION AND THE YIELD SURFACE

Recall that in the uniaxial yield criterion it was established that plastic flow may occur when
the uniaxial stress attains a critical value. This principle could be expressed by means of a
yield function which is negative when only elastic deformations are possible and reaches
#ero when plastic flow is imminent. Extension of this concept to the three-dimensional case
is obtained by stating that plastic flow may occur only when

flo, A)=10, (6.45)

where the scalar yield function, ¥, is now a lunction of the stress rensor and a set A of
hardening thermodynamical forces. Analogously to the uniaxial case, a yield function defines
the elastic domain as the sel

&= {o|d(e. A) <0} (6.46)

of stresses for which plastic yielding is notl possible. Any stress lying in the elastic domain
or on its boundary is said to be plastically admissible. We then define the set of plastically
admissible stresses (or plastically admissible domain) as

£ ={o|de. A) <0} (6.47)

The yield locus, 1.e. the set of stresses for which plasiic yielding may occur, is the boundary
of the elastic domain, where ®(eo, A) = 0. The yield locus in this case is represented by a
hypersurface in the space of stresses. This hypersurface is termed the yield surface and is
defined as

V= {o | D, A) =0} (6.4%)

6.3.4. PLASTIC FLOW RULE AND HARDENING LAW

The complete charactensation of the general plasticity model requires the definition of the
evolution faws for the internal variables, i.e. the variables associated with the dissipative
phenomena. In the present case, the internal variables are the plastic strain tensor and the
sel o of hardening variables. The following plastic flow rule and hardening law are then

postulated

EP=4N (6.49)
=75 H, {6.50)

where the tensor
N=DNio A) (6.51)

is termed the flow vector and the function
H=Ha, A) (6.52)

is the generalised handening modulns which defines the evolution of the hardening variables.
The evolution equations (6.49) and (6.50) are complemented by the loadingfunloading
conditions
<0, 430, B=0, (6.53)
that define when evolution of plastic strains and internal variables (4 = () may occur.
For convenience, the general plasticity model resulting from the above equations is listed
in Box 6.2,
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Box 6.2, A general elastoplastic constitutive modeal.

1. Additive decomposition of the strain (ensor
ge=eg"+ef

oL -
E=E"+E&", &(to)=€(to) + &°(la)

b

. Free-energy fundtion
v =", ox)

where o1 is a set of handening intemal vanables
3. Constilutive equation for o and hardening thermodynamic forces A
oy _ M

T =i & A=p
F e i

4. Yield function

d =3, A)
5. Plastic Aow rule and hardening law
EF =4 Mo, A)

=< Hia, A)

6. Lozdingfunloading criterion

6.3.5. FLOW RULES DERIVED FROM A FLOW POTENTIAL

In the formulation of multidimensional plasticity models, it is often convenient to define the
flow rule (and possibly the hardening law) in terms of a flow (or plastic) potential. The starting
point of such an approach is to postulate the existence of a flow potential with general form

=19 A) (6.54)

from which the flow vector, IV, is obtained as

_av

N= (6.53)

il
If the hardening law is assumed to be derived from the same potential, then we have in
addition
e (6.56)
T i = L
A
When such an approachis adopted, the plastic potential, ¥, is required to be a non-negative
convex function of both & and A and zero-valued at the origin,

P, 0) = 0. (6.57)
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These restrictions ensure thait the dissipation inequality (6.41) is satisfied a prieri by the
evolution equations (6.49) and (6.50).

Associative flow rule

As we shall see later, many plasticity models, particularly for ductile metals, have their yield
function, 4, as a flow potential, i.e.
= . (6.55)

Such models are called assaciative (or associated) plasticity models. The issue of associativ-
ity will be further discussed in Section 6.5.1.

6.3.6. THE PLASTIC MULTIPLIER

Here we extend to the muliidimensional case the procedure for the determination of the plastic
multiplier, %, described in Section 6.2.7 for the one-dimensional plasticity model. Following
the same arguments employed in Section 6.2.7, the stanting point in the determination of 5 is
the considzration of the additional complementarity equation

&5 =0, (6.59)

which implies the consistency condition

d =10 (6.60)

under plastic yielding (when 5 # 0). By differentiating the yield function with respect to time,
we obtain

= ab . dd

i Caadl
By taking into account the additive split of the strain tensor, the elastic law and the plastic
flow rule (6,49}, we promptly lind the obvious rate form

(6.61)

ag=0":(-")=D":le —5 N ). (6.62)

This, together with the definition of A in terms of the free-energy potential (refer o
expression (6.39)) and the evolution law (6.50), allow us to write (6.61) equivalently as

. O b v
b=—D i (E—EY)+— = - ¥
do )+ 94 P 0aT
il - bl !.Jzi'_"-'.
= D (- N)+H ot s H. 6.63
go ' ET TN gt P har (063

Finally, the above expression and the consistency condition (6.60) lead to the following clozad
formula for the plastic muliiplier
di/ila D" £

¥= - - . .64
b g D" N — /A = pil e fia? « H Lial)
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6.3.7. RELATION TO THE GENERAL CONTINUUM CONSTITUTIVE THEORY

Al this point, we should emphasise that the general rate-independent plasticity mode]
described above can under some conditions be shown to be a particular instance of the general
constitutive theory postulated in Section 3.5.2, starting page 71. The link between the two
theories can be clearly demonstrated when rate-independent plasticity is obtained as a limit
case of rate-dependent plasticity (or viscoplasticity).

However, since the theory of elasto-viscoplasticity is introduced only in Chapter 11,
we find il convenient to carry on focusing on rate-independent plasticity and postpone the
demonstration until that chapter. Those wishing to see now the link between rate-independent
plasticity and the general constittive theory are referred to Section 1103, starling on
page 452, We remark. though, that the concept of subdifferential, introduced below in
Section 6.3.9, is fundamental to the demonstration. Readers not yet familiar with this concept
are advised to read through Section 6.3.9 before moving to Section 11.4.3.

65.3.8. RATE FORM AND THE ELASTOPLASTIC TANGENT OPERATOR
In the elastic regime, the rate constitutive equation for stress reads simply

a=D:£ (6.65)
Under plastic flow, the corresponding rate relation can be obtained by introducing expres-
sion (6.64) into (6.62). The rate equation reads

a=D":g (6.66)
where D®F is the elastaplastic tangent modilus given by

(D : N = (D 2 i)
df /e D N — b /A= piforfda’+ H

D¥ =D (6.67)
In obtaining the above expression, we have made use of the fact that the symmetry (refer to
equation (2.87), page 29) of the elasticity tensor implies

b fida D =D 08 /ilo: £. (6.68)

The fourth-order tensor D°F is the multidimensional generalisation of the scalar modulus
E<¥ associated with the slope of the uniaxial stress—strain curve under plastic flow. In the
computational plasticity literature, D*F is frequently referred to as the contimunm elastoplastic
tangent operator.

Remark 6.1 (The symmetry of D7), Note that if the plastic flow rule is associative, 1e.
il N = dd/ila, then the continuum elastoplastic tangent operator is symnretric. For models
with non-associative plastic flow, D*F is generally unsymmetric.

6.3.9. NON-SMOOTH POTENTIALS AND THE SUBDIFFERENTIAL

It should be noted that expressions (6.55) and (6.56) only make sense if the potential ¥
is differentiable. When that happens, the flow vector, IV, can be interpreted as a vector



Figure 6.5. The flow vector. Smooth potential,

normal to the iso-surfaces of function ¥ in the space of stresses (with lixed 4). A schematic
representation of N in this case is shown in Figure 6.5. The generalised modulus, H, can be

interpreted in a completely analogous way.

The requirement of differentiability of the flow potential is, however, too restrictive and
many practical plasticity models are based on the use of a non-differentiable W. Specific
examples are given later in this chapter. For a more comprehensive account of such theories
the reader is referred to Duvaut and Lions (1976), Eve ef al. (1990} and Han and Reddy
{1999). In such cases, the function ¥ is called a pseteda-potential or generalised potentiol
and the formulation of the evolution laws for the intemal variables can be dealt with by
introducing the concept of subdifferential sets, which generalizes the classical definition of
derivative.

Subgradients and the subdifferential

Let us consider a scalar function y : 58" — 5. The subdifferential of y at a point Z is the set

dy(x)={se@" |ylx) - y(&)=s-(x—&). Yo eF"}. (6.69)
IFthe set dy is notempty at &, the function y is said to be siebdifferentiable al . The elements
of dy are called subgradienss of y. If the function yis differentiable, then the subdifferential
contains a unignee subgradient which coincides with the derivative of A

- 11
dy = { e } (6.70)
dr

A schematic illustration of the concept of subdifferential is shown in Figure 6.6 for n = 1.
In this case, when y is subdifferentiable (but not necessarily differentiable) at a point 7, the
subdifferential at that point is composed of all slopes s lying between the slopes on the right
and left of 7 (the two one-sided derivatives of i a1 7).

The concept of subdifferential sets is exploited extensiy ely in comvex analysis. The reader is referred to
Rockafellar (1970), Part V, for a detsiled sccount of the theory of subdifferentizble functions.
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Figure 6.6. The subdifferential of a convex function.

Plastic flow with subdifferentiable flow potentials

Assume now that the (pseudo-) potential ¥ is a subdifferentiable function of & and A. At
points where W is non-differentiable in o, the isosurfaces of ¥ in the space of stresses contain
asingulanty (comer) where the normal direction is not uniguely defined. A typical siluation is
schematically illustrated in Figure 6.7 where two distinct normals, Ny and N5, are assumed
to exist. In this case, the subdifferential of ¥ with respect to o, denated 8,0, is the set of
vectors contained in the cone defined by all linear combinations (with positive coefficients)
of Ny and N5, The generalisation of the plastic flow rule (6.49) is obtained by replacing
expression (6.35) for the flow vector with

Ned b, {6.71)

i.e. the flow vector IV is now assumed to be a subgradient of . Analogously, the evolution
law (6.50) Tor ox can be generalised with the replacement of the definition (6.56) by

He -y, (6.72)

At this point, it should be remarked that differentiability of & with respect to the stress
tensor is violated for some very basic plasticity models, such as the Tresca, Mohr-Coulomb
and Drucker-Prager theories to be seen later. Therefore, the concepis of subgradient and
subdifferential sets introduced above are important in the formulation of evolution laws
for gF,

An alternative definition of the plastic flow rule with non-smooth potentials, which
incorporates a wide class of models, is obtained as follows. Firstly assume that a finite
number, n, of distinct normals (Vy, Na, . ... V) is defined at a generic singular point of an
izosurface of ' In this case, any subgradient of ¥ can be written as a linear combination

Ny FeeNs - e Y,
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Figure 6.7. The Aow vector. Non-smooth potential.

with non-negative coellicients o, ca, ..., eyt Based on this observation, the low rule (6.49)
can be generalised as

EP=) 4NN (6.73)
i=l1
with all i plastic multipliers required to be non-negative

=0, i=1,..., . (6.74)

¥

The generalization of the plastic Row law, in this format, was originally proposed by Koiter

(1953).

Multisurface models

The above concepts are particularly useful in defining evolution laws Tor mnftisnrface
plasticity models. In a generic multisurface model, the elastic domain is bound by a ser of
n surfaces in the space of stresses which intersect in a non-smooth fashion. In this case, n
yield functions (3, i=1,..., i) are defined so that each bounding surface is given by an
equalion

Pifo. A)=10. (6.75)

The elastic domain in this case reads
d={a|Pilo, A) <0, i=1...., n}, (6.76)

and the yield surface, i.e. the boundary of £, is the et of all stresses such that $;{er, A) =10
for at least one § and ®;(o. A) < 0 for all other indices j # i

I should be emphasised that this representation is nod valid for cenzin ppes of singularity where the

cofresponading subdifferential set cannad be generatad by a finite number of vetors
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Assuming associativity (% = @), the situation discussed previously, where the subgradient
of the flow potential is a linear combination of a finite number of normals, is recovered. Thus,
the plastic flow rule can be written in the general form (6.73) with the normals being defined

here as
iy

it

Ni= (6.77)

In the present case, the standard loadingfunloading criterion (6.53) is replaced by the
generalisation
$i<0, 420, 05 =0, (6.78)
which must hold for each i =1,...,n. Note that summation on repeated indices is not
implied in the above law.

6.4, Classical yield criteria

The general constitutive model for elastoplastic materials has been established in the previous
section. There, the yield criterion has been stated in its general form, without reference to any
particular criteria. In this section, some of the most common yield criteria used in engineenng
practice are described in detail: namely, the critenia of Tresca, von Mises, Mohr-Conlomb and
Dirnicker—Prager.

6.4.1. THE TRESCA YIELD CRITERION

This criterion was proposed by Tresca (1868) to describe plastic yielding in metals. The
Tresca yield criterion assumes that plastic yvielding begins when the maxinm shear stress
reaches a critical value.

Recall the spectral representation of the stress tensor,

3
o= Z 0By e, (6.79)
i=1
where ; are the principal stresses and e; the associated unit cigenvectors, and let ey and
i be, respectively, the maximum and minimum principal stresses

min

Finae = AKXy, Ta, Tg )i

- (6.80)
Frnin = MIN[Ty. T2 T3).
The maxintunt shear SIFEss, Tya, 15 2iven by
Tmax = _-EI:K'F“! % S ”I::i:a]' [G-S“

According to the Tresca criterion, the onset of plastic yielding is defined by the condition
-]_r[‘le:-n. — Tpin) = Tyl )s (6.32)

where 7, is the shear vield siress, here assumed to be a function of a hardening internal
variahle, o, to be defined later. The shear yield stress is the yield limit under a state of pure
shear.
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In view of {(6.82), the yield function associated with the Tresca yield eriterion can be
represented as
11":“] = %':"Truu: 5 'r'r1.u|||.,:| B TI_J[‘:. ). {6-33}

with the onset of yiclding characterised by © = 0. Altemnatively, the Tresca yield Tunction
may be defined as
Do) = (Fmax — Tmin) — dylar). (6.54)

where @, is the nniaxiol yield stress
(6.85)

oy, =27

that is, it is the stress level at which plastic yielding begins under nnfaxial stress conditions.
That o, is indeed the uniaxial yield stress for the Tresca theory can be established by noting
that, when plastic yielding begins under uniaxial stress conditions, we have

Tnin = 0. (6.80)

Trnax = Ty,

The substitution of the above into (6.82) gives (6.85). The elastic domain for the Tresca

criterion can be delined as
&={o|dlo,a,) <0} (6.87)

Pressure-insensilivily

Due to its definition exclusively in terms of shear stress, the Tresca criterion is pressiere
insensirive, that is, the hydrostatic pressure component,

p= Lol =3 (o) + a2+ 03). (6.88)

of the stress tensor does not affect yielding. Indeed, note that the superposition of an arbitrary
pressure, p*, on the stress tensor does not affect the value of the Tresca yield function

Mo+ p'T) =) (6.59)

We remark that the von Mises criterion described in Section 6.4.2 below is also pressure-
insensitive. This property is particularly relevant in the modelling of metals as, for these
materials, the influence of the hydrostatic stress on yielding is usually negligible in practice.

fsofropy

One very important aspect of the Tresca criterion is its isetropy (a propenty shared by the
von Mises, Mohr—Coulomb and Drucker-Prager criteria describad in the following sections).

Note that, since ® in (6.83) or (6.84) is defined as a funciion of the principal stresses,
the Tresca yield function is an isefropic function of the stress tensor (refer to Section A.l,
page 731, for the definition of isotropic scalar functions ol a symmetric tensor), i.e. it satisfies

P(a) =B (QeQT) (6.90)

for all rotations €Q; that is, rotations of the state of stress do not affect the value of the yield
function.

At this point, it is convenient to introduce the following definition: A plastic yield criterion
is said to be isotropic if it is defined in terms of an isotropic yield function of the stress tensor,
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Graphical representation

Since any isolropic scalar function of a symmetric tensor can be described as a function of
the principal values of its argument, it follows that any iso-surface (i.e. any subset of the
function domain with fixed function value) of such functions can be graphically represented
as a surface in the space of principal values of the argument. This allows, in particular, the
yield surface (refer to expression (6.48), page 150) of any isotropic yield criterion to be
represented in a particularly simple and usefu] format as a three-dimensional surface in the
space of principal stresses,

(a) (b)

von Mises

Tresca

f I\f »
{fa

Figure 6.9. (a) The =-plane in principal stress space and, (b) the 7-plane representation of the Tresca
and von Mises yield surfzces.
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In principal stress space, the Tresca vield surface, i.e. the set of stresses for which & =0,
is graphically represented by the surface of an infinite hexagonal prism with axis coinciding
with the hyvdrostatic line (also known as the space diagonal), defined by oy = @2 = 3. This
is illustrated in Figure 6.8. The elastic domain (for which @ < 0) comesponds to the interior
of the prism. Due to the assumed insensilivily to pressure, a further simplification in the
representation of the yield surface is possible in this case. The Tresca yield surface may
be represented, without loss of generality, by its projection on the subspace of stresses
with zero hydrostatic pressure component () + @z + a3 = ). This subspace is called the
deviatoric plane, also referred to as the =-plane. It is graphically illustrated in Figure 6.9(a).
Figure 6.9(b) shows the 7-plane projection of the Tresca yield surface.

Multisurface representation
Equivalently to the above representation, the Tresca yield criterion can be expressed by means
of the following six yield functions

Milo.oy)=0 —a3 —ay

Pala, o) =03 —a3 —ay

gy (e, Oyl =02 — 01 — 0y

(6.91)
'I.ll:":r- "T'_,':I =gz — N oy,
Taie. n.ﬂ.] =3 — d3 — d,
Polor.a,)=ay — 72 — .
so that, for fixed o, the equation
Pilo, a,) =0 (6.92)
corresponds to a plane in the space of principal stresses foreach i = 1, . ., G (Figure 6.10).

In the multisurface representation, the elastic domain for a given a, can be defined as
&= {o|dile.a,) <0, i=1,..., 6}. (6.93)

Definitions (6.87) and (6.93) are completely equivalent. The yield surface — the boundary of
& —is defined in this case as the set of stresses for which 8 (o, ., ) = 0 for at least one @ with
di(o.a,) =< 0lor j#i.

Tnvariant representation

Altematively to the representations discussed above, it is also possible to describe the yield
locus of the Tresca criterion in terms of stress invariams. In the invariant representation,
proposed by Nayak and Zienkiewicz (1972) (see also Owen and Hinton 1980, and Crisfield
1997}, the yield Munction assumes the format

g = f\,‘fl.fg cos f — Ty, (6.94)
where J2 = Ja(s) is the invariant of the siress deviator, s, defined by

o

4‘_;:—.‘3{3]—%[{5-"]—%S:S=% 5| (6.95)
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Figure 610, The Tresca criterion. Multisurface representation in principal stress space,

Recall that the stress deviator is given by

E=a— %{Ho‘]f. (6.90)
The Lode angle, #, is a function of the deviatoric stress defined as
—3\/3.J
n;%bi.r’( : -;—"). (6.97)
.

5
where J3 is the third principal invariant of stress deviator®

Ji=Ii(s) =det s = 1 tr(s)”. (6.98)
The Lode angle is the angle, on the deviatoric plane, between s and the nearest pure shear
line (a pure shear line is graphically represented in Figure 6.11). It satisfies

- <
G ™

(6.99)

=1

Despite being used often in computational plasticity, the above invariant representation results
in rather cumbersome algorithms for integration of the evolution equations of the Tresca
model. This is essentially due to the high degree of nonlinearity introduced by the tngono-
metrie function involved in the definition of the Lode angle. The muliisurface representation,
on the other hand, is found by the authors to provide an optimal parametrisation of the
Tresca surface which results in a simpler numerical algorithm and will be adopted in the
compuiational implementation of the model addressed in Chapter 8.

The equivalence between the two 0 wi Lerms in (6930 05 estzblished by womming
jon (273 (page 2 foc i = 1,2, 3 taking into acoount the fact that fi{s) = 00(SF is a waceless tensor)
and that te{ & )? = ¥, &) for any symmetric tensor 5.
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6.4.2. THE VON MISES YIELD CRITERION

Also appropriate to describe plastic yielding in metals, this critenion was proposed by
von Mises (1913). According to the von Mises criterion, plasiic yielding begins when
the Ja stress deviator invariant reaches a critical valwe. This condition is mathematcally
represented by the equation

gy = Ra), (6.100)

where R is the critical value, here assumed to be a function of a hardening internal variable,
ar, to be defined later.

The physical interpretation of the von Mises criterion is given in the following. Since the
elastic behaviour of the materials described in this chapter is assumed to be linear elastic, the
stored elastic strain-energy at the generic state defined by the stress @ can be decomposed as
the sum

Ut = A+ (6.101)

ol a distertional contribution,
5 . 6.102
.f“-,r—.'_]'ﬁb-f"—r;-f;h (6.102)

and a velunietric contribution,

. l 4
pyL=—=p, (6.103)
I

where (¢ and K are, respectively, the shear and bulk modulus. In view of (6.102), the
von Mises criterion is equivalent to stating that plasiic vielding begins when the distortional
elastic strain-energy reaches a critical valiwe. The comesponding cntical value of the

distortional energy is
1

G
It should be noted that, as in the Tresca criterion, the pressure component of the stress tensor
does not take part in the definition of the von Mises criterion and only the deviatoric stress
can influznce plastic yielding. Thus, the von Mises criterion 15 also pressure-tnsensifive.
In a state of pure shear, i.2. a state with stress tensor

it

a + 0
[l=|7 0 0], (6.104)
0O o0
we have, s = o and
Ja=1". (6.105)

Thus, a yield function for the von Mises criterion can be defined as

(o) = \/Ja(s(a)) — 7, (6.106)
where 7, = VR is the shear yield stress. Let us now consider a state of uniaxial stress:
a 00
[o]=1[0 0 of. (6.107)

g o0 o0
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In this case, we have

200 0
[s]=1]0 —%t‘l 0 (6.108)
1] 0 --%a
and
Ja= 14" (6.109)

The above expression for the Ja-invariant suggests the following alternative definition of the
von Mizes yield funciion:
o) = gla) — ay, (6.110)

where o, = V3R is the uniavial yield stress and
qla) = /3 Lis(a)) (6.111)

is termed the van Mises effective or equivelent stress, The uniaxial and shear yield stresses
for the von Mises criterion are related by

a,=v3ar,. (6.112)

Mote that this relation difters from that of the Tresca criterion given by (6.85). Obviously, due
to its definition in terms of an invariant of the stress tensor, the von Mises yield function is an
isotropic function of o,

The von Mises and Tresca criteria may be sel to agree with one another in either uniaxial
stress or pure shear states, IF they are set by using the yield lunctions (6.84) and (6.110) so
that both predict the same uniaxial yield stress oy, then, under pure shear, the von Mises
criterion will predict a yield stress 2/+/3 (= 1.155) times that given by the Tresca criterion.
On the other hand, if both criteria are made to coincide under pure shear (expressions (6.83)
and (6.106) with the same 7}, then, in uniaxial stress states, the von Mises cnterion will
predict yielding at a stress level v/3/2 (= 0.866) times the level predicted by Tresca's law.

The yield surface (¢ = 0) associated with the von Mises criterion is represented, in the
space of principal stresses, by the surface of an infinite circular cylinder, the axis of which
coincides with the hydrostatic axis, The von Mises surface is illustrated in Figure 6.8 where
it has been set to match the Tresca surface (shown in the same figure) under uniaxial stress.
The corresponding =-plane representation is shown in Figure 6.9(b). The von Mises circle
intersects the vertices of the Tresca hexagon. The yield surfaces for the von Mises and
Tresca criteria set to coincide in shear is shown in Figure 6.11. In this case, the von Mises
circle is tangent to the sides of the Tresca hexagon. It is remarked that, for many metals,
experimentally determined yield surfaces fall between the von Mises and Tresca surfaces.
A more general model, which includes both the Tresca and the von Mises yield surfaces as
particular cases (and, in addition, allows for anisotropy of the yield surface), is describad in
Section 10,34 (starting page 427).

6.4.3. THE MOHR-COULOMB YIELD CRITERION

The criteria presented so far are pressure-insensitive and adequate to describe metals, For
materials such as soils, rocks and concrete, whose behaviour is generally characterized by
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Figure 6.11. Yicld surfaces for the Tresca and von Mices criteria coinciding in pure shear.

a strong dependence of the yield limit on the hydrostatic pressure, appropriate description
of plastic yielding requires the introduction of pressure-sensitivity. A classical example of
a pressure-sensitive law is given by the Mohr-Coulomb yield criterion described in the
following.

The Mohr—Coulomb criterion is based on the assumption that the phenomenon of
macroscopic plastic yielding is, essentially, the result of frictional sliding between material
particles. Generalising Coulomb’s friction law. this criterion states that plastic yielding begins
wihen, an a plane in the body, the shearing stress, T, and the nornal siress, @, redach the

criticetl combination
7= —d, tan o, (6.113)

where ¢ is the colesion and & is the angle of fnternal friction or frictional angle. In the above,
the normal stress, a,,, was assumed tensile positive.

The yield locus of the Mohr—Coulomb criterion is the set of all stress states such that there
exists a plane in which (6.113) holds. The Mohr—Coulomb yield locus can be easily visualised
in the Mohr plane representation shown in Figure 6.12. Itis the set of all stresses whose largest
Mohr circle, i.e. the circle associated with the maximum and minimum principal stresses
(0o and iy, respectively), is tangent to the critical line defined by 7= ¢ — a;, tang,
The elastic domain for the Mohr-Coulomb law is the sei of stresses whose all three Mohr
circles are below the critical line. From Figure 6.12, the yield condition (6.113) is found to
be equivalent to the following form in terms of principal stresses

Frax — Fmin Tmax T Tmir Frnax — Tmin .
: "t.’—ll CO5 0 =0 — (% + o 2 == s g ) LA o (6.114)

which, rearranged, gives

(Tmax — Fmin) + (Fmax + Fmin) sing =2 cos o, (6.115)

In view of (6.115), a yield function expressed in terms of the principal stresses can be
immediately defined for the Mohr—Coulomb criterion as

dar. ¢) = (Frax — Tmin) + (Trmax + Fin) sing — 2e coso. (6.116)
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Figure 6.12. The Mohr-Coulomb eriterion. Mobir plane representation.

Due to its definition in terms of principal stresses, this yield function is an isolropic function
of e. The corresponding yield surface (3 =0) is a hexagonal pyramid aligned with the
hydrostatic axis and whose apex is located at

=i Cofl o {6.1]:“

on the tensile side of the hydrostatic axis. The Mohr-Coulomb surface is illustrated in
Figure 6.13. Its pyramidal shape, as opposed to the prismatic shape of the Tresca surface, is
a consequence of the pressure-sensitivity of the Mohr—Coulomb criterion, It should be noted,
however, that both criteria coincide in the absence of internal friction, 1.e. when o =L As no
stress state 1s allowed on the outside of the yield surface, the apex of the pyramid (point A in
the figure) defines the limit of resistance of the material to tensile pressures. Limited strength
under tensile pressure is a typical characteristic of materials such as concrete, rock and soils,
to which the Mohr-Coulomb criterion is most applicable.

Multisurface represeittation

Analogously to the multisurface representation of the Tresca criterion, the Mohr-Coulomb
criterion can alzo be expressed by means of six functions:

g, c)l=oy —az + (ay + az) sime — 20 cos o
oo, c)=a3 —agz+ (o2 +a3)sing — 2c cosg
Fia.cl=as —oy +{az +a)sing —2¢ coso
" : (6.1158)
. cl=a3—ay +{ag+am)sing —2¢ coso
defa.c)=a3 —ada+ (agg+az)sing —2 ¢ coso
Iala, ) =a) —aa + [0y faz)sing — 20 cos o,

whose roots, 9;(er, c) =10 (for lixed ¢), define six planes in the pnncipal siress space.
Each plane contains one face of the Mohr—Coulomb pyramid represented in Figure 6.13.



166 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APFLICATIONS

-0, R

Figure 6.13. The Mohr-Coulomb yield surface in principal stress space,

The definition of the elastic domain and the yield surface in the multisurface representation
is completely analogous to that of the Tresca criterton.

Tnvariant representation

Analogously to the invariant representation (6.94) of the Tresca criterion, the Mohr-Coulomb
yield function can be expressed as (Owen and Hinton 1980, and Crislield 1997):

1 ; _, - .
= (-.'u_-c i _i sin # sin 4::) W Ja(8) + pla) sing — ¢ cos o, (6.119)
W

where the Lode angle, #, is defined in (6.97). As for the Tresca model, in spite of its
frequent use in computational plasticity, the invariant representation of the Mohr-Coulomb
surface renders more complex numerical algonthms so that the multisurface representation is
preferred in the computational implementation of the model described in Chapter 8.

6.4.4. THE DRUCKER-PRAGER YIELD CRITERION

This criterion has been proposed by Drucker and Prager (1952) as a smooth approximation to
the Mohr—Coulomb law. It consists of a modilication of the von Mises criterion in which an
extra term is included to introduce pressure-sensitivity. The Drucker—Prager criterion states
that plastic vielding begins when the J5 invariant of the deviatoric siress and the hydrostatic
stress, p, reach a critical combination. The onset of plastic yielding occurs when the equation

Vsl +np=-¢ (6.120)

is satisfied, where 5 and ¢ are material parameters. Represented in the principal stress space,
the yield locus of this criterion is a circular cone whose axis is the hydrostatic line. For i =0,
the von Mises cylinder is recovered. The Drucker-Prager cone is illustrated in Figure 6.14.
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Figure 6.14. The Drucker—Prager yield surface in principal stress space,

In order to approximate the Mohr-Coulomb yield surface, it is convenient to define the
Drucker—Prager yield lunction as

d(a. c) =/ h(sla)) +yplo) — £ o (6.121)

where ¢ is the coliesion and the parameters 5 and £ are chosen according to the required
approximation to the Mohr-Coulomb criterion. Note that the isotropy of the Mohr-Coulomb
yvield function follows from the fact that it is defined in terms of invarianis of the stress
tensor (Jz(s) and p). Two of the most common approximations used are obtained by making
the yield surfaces of the Drucker-Prager and Mohr-Coulomb criteria coincident either at
the outer or inner edges of the Mohr—Coulomb surface. Coincidence at the ouwter edges is
obtained when ¥k :

ik ._l.l sin o e ._I.l ‘-U:‘Ijl _ (6.122)
Va3 —sing) VA (3 —sing)

whereas, coincidence al the fnner edges is given by the choice

G sin o G cos o
p=——————, =—m——. (6.123)
V334 sing) Va3 (3 4+ sind)

The outer and inner cones are known, respectively, as the cempression cone and the
extension cone. The inner cone matches the Mohr—Coulomb criterion in uniaxial tension and
biaxial compression. The outer edge approximation matches the Mohr-Coulomb surface in
uniaxial compression and biaxial tension. The 7-plane section of both surfaces is shown in
Figure 6.15. Another popular Drucker-Prager approximation to the Mohr—Coulomb criterion
is obtained by forcing both criteria to predict identical collapse loads under plane sirain
conditions. In this case (the reader is referred to Section 4.7 of Chen and Mizuno (1990} for
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derivation) the constants i and £ read

3 tano 3
e o, (6.124)
VO 412 tan” & VO 12 tan” o

For all three seis of parameters above, the apex of the approximating Drucker-Prager cone
coincides with the apex of the corresponding Mohr-Coulomb yield surface. It should be
emphasised here that any of the above approximations to the Mohr-Coulomb criterion can
give a poor description of the material behaviour for certain states of stress, Thus, acconding
to the dominant stress state in a particular problem to be analysed, other approximations may
be more appropriate. For instance, under plane stress, which can be assumed in the analysis
of structures such as concrete walls, it may be convenient to use an approximation such that
both criteria match under, say, uniaxial tensile and uniaxial compressive siress states. For
the Mohr-Coulomb criterion to fit a given uniaxial tensile strength, f, and a given uniaxial
compressive strength, f!, the parameters ¢ and ¢ have to be chosen as

() :_ai]]_l(%)_ = :‘_r;f...l fir; Tan o tﬁ-lj-:"]'
e T M c It

The corresponding Drucker—Prager cone (Figure 6.16) that predicis the same uniaxial failure
loads is obtained by setting

:] =1 O 20080
Ne=—m——, £=—7. (6.126)
‘.."':I \-":f

Iis apex no longer coincides with the apex of the original Mohr—Coulomb pyramid. For
problems where the failure mechanism is indeed dominated by uniaxial tension/compression,
the above approximation should produce reasonable results. However, if for a panticular
problem. failure occurs under biaxial compression instead (with stresses mear point _,Ir;
of Figure 6.16), then the above approximation will largely overestimate the limit load,
particularly for high ratios f!/f which are typical for concrete. Under such a condition,
a different approximation (such as the inner cone that matches point fi_yneeds to be adopted
to produce sensible predictions. Another useful approximation for plane stress, where the
Drucker—Prager cone coincides with the Mohr-Coulomb surface in biaxial tension (point
1.y and biaxial compression (point f;_), is obtained by setting

3 sino D oos o
= —~ = it 71 16127
i S .
24/3 v

Drucker-Prager approximations to the Mohr—Coulomb criterion are thoroughly discussed by
Chen (1982), Chen and Mizuno (1990) and Zienkiewicz et al. (1978).

6.5. Plastic flow rules
6.5.1. ASSOCIATIVE AND NON-ASSOCIATIVE PLASTICITY

It has already been said that a plasticity model is classed as associative il the yield function,
i, is taken as the low potential, i.e.

(6.128)
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Figure 6.15, The w-plane section of the Mohr—Coulomb surface and the Dvucker-Prager approsima-
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Figure 6.16, Plane stress, Drucker-Prager approximation matching the Mohr-Coulomb surfzce in
uniaxial tension and uniavial compression.
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Any other choice of flow potential characterizes a non-associative (or non-associated)
plasticity model.

In associative models, the evolution equations for the plastic strain and hardening variables
are given by

; T
EY =7 =, (6.129)
il
and
. L i (6.130)
= By - . - 4L
taA

Associativity implies that the plastic strain rate is a tensor mormal to the vield surface in the
space of stresses. In the generalised case of non-smooth yield surfaces, the flow vectoris a
subgradient of the yield function. i.e. we have

EP=4N;: Nea,d. (6.131)

In non-associative models, the plastic strain rate is not normal to the yield surface in general,

6.5.2. ASSOCIATIVE LAWS AND THE PRINCIPLE OF MAXIMUMN PLASTIC
DISSIPATION

It can be shown that the associative laws are a consequence of the principle of maximiim
plastic dissipation. Before stating the principle of maximum plastic dissipation, recall that
for a state defined by a hardening force A, the admissible stress states are those that satisfy
Per, A) < 0. Thus, it makes sense to define

“={le. A) | P#(a, A) <0} (6.132)

as the set of all admissible pairs (combinations) of stress and hardening force. The principle
of maximum dissipation postulates that amaong all admissible pairs (e, A") € & the actual
state (o, A) maximises the dissipation function (6.42) for a given plasiic strain rate, £°, and
riite & of hardening interal variables. The principle of maximum plastic dissipation requires
that, for given (&, &),

Te, A7, a) =2 TP (o", A &7 a), Vo, A") e o 6.133)

In other words, the actual state (er, A) of stress and hardening force is a solution to the
following constrained oplimisation problem:

maximise TH(a*, A", &7, &)
_ (6.134)
subjectto Bo®. A") < (L

The Kiln—Tucker optimality conditions (Luenberger, 1973, Chapter 10) for this optimisation
problem are precisely the associative plastic flow rule (6.129), the associative hardening

rule (6.130) and the loadingfunloading conditions

Bla, A) <0, 420, dla. A =0. (6.135)
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Remark 6.2. The postulate of maximum plastic dissipation, and the corresponding asso-
ciative laws, are not universal. Based on physical considerations, maximum dissipation
has been shown to hold in crystal plasticily and is particularly successful when applied to
the description of metals. Nevertheless, for many materials, particularly soils and granular
materials in general, associative laws frequently do not correspond to experimental evidence,
In such cases, the maximum dissipation postulate is clearly not applicable and the use of
non-associative laws is essential.

6.5.3, CLASSICAL FLOW RULES
The Prandil-Reuss equations

The Prandtl-Reuss plasticity law is the flow rule obtained by taking the von Mises yield
function (6.110) as the fow potential. The comresponding Mlow vector is given by

ad il f4 &
T 2o ' R
WN=—=—|[+/3.fls {3 ; {(6.130)
g0~ a3l = vz
and the Aow rule results in
T &
EF =4 ,f3 —. (6.137)
Vo2 I8

Here, it should be noted that the Prandtl-Reuss flow vector is the derivative of an isotropic
scalar funciion of a symmeiric tensor — the von Mises yield lTunction. Thus (refer Lo
Section A.1.2, page 732, where the derivative of isotropic functions of this type is discussed),
N and o are coaxial, i.e. the principal directions of IV coincide with those of a. Due to the
pressure-insensitivity of the von Mises yield function, the plastic flow vector is deviatoric,
The Prandil-Revss flow vector is a tensor parallel to the deviatoric projeciion s of the siress
tensor. lts principal stress representation is depicted in Figure 6.17. The Prandil-Reuss mle
is usually employed in conjunction with the von Mises criterion and the resulting plasticity
maodel is referred to as the von Mises associative model or, simply, the von Mises model.

Assaciafive Tresca

The associative Tresca flow rule utilises the yield function (6.84) as the flow potential. Since
& here is also an isotropic function of o, the rate of plastic strain has the same principal
directions as . The Tresca yield function is differentiable when the three prncipal stres<es
are distinct (o) 3 o2 # 73) and non-differentiable when two principal stresses coincide (a1
the edgzes of the Tresca hexagonal prism). Hence, the Tresca associative plastic low rule 15
generally expressed as

E¥ = 4N, (6.138)

where [V is a subgradient of the Tresca function
Ned, D {6.139)
[ts multisurface-based representation reads
f ] .
- 4 qull-
LY =1 FE __ 21
ET = E ¥ Nt = ¥ _ﬂﬂ' % (6. 1400

i=1 i=1



Figure 6.17. The Prandil-Reuss Aow vectorn

with the yield functions &, defined by (6.91). Each vector V' is normal to the plane defined
by & = ().

The above Mlow rule can be alternatively expressed as follows. Firstly assume, without loss
of generality, that the principal stresses are ondered as 7y = 73 = a3, so that the discussion
can be concentrated on the sextant of the 7-plane illustrated in Figure 6.18, Three different
possibilities have to be considered in this sextant:

{a) yielding ata stress state on the side (main plane) of the Tresca hexagon (4 = 0,42 <0
and P < O);

ib) yielding from the right cormer, it (8 =0, e = Oand $3 < 0); and
{c) Yielding from the left camer, L (3 =0, %2 = 0and g < 0),

When the stress is on the side of the hexagon, only one multiplier may be non-zero and the
plastic fow rule reads

eF =4 IN", (6141}
where the flow vector is the normal to the plane 4 =0, given by
LT .
N°=N'=—=+= (0 - 03)
ild  do
=e) e —e; ey, (6.142)

with &; denoting the eigenvector of ar associated with the principal stress a;. In deriving the
last right-hand side of (6.142), use has been made of the expression (A.27) of page 736 for
the derivative of an eigenvalue of a symmelric tensor.

At the right and left corners of the hexagon, where two planes intersect, two multipliers
may be non-zero, Thus, the plastic flow equation is

1}

EP =4 N +4° N° (6.143)
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Figure 6.18. The associative Tresca flow male,

The vector VY is the normal to the plane 4 =0, already defined. In the right comer
o . . b o

(repeated minimum principal stress), the second vector, N7, is normal to the plane @ =0

and is obtained analogously to (6.142) as

N'=N%=g @ e —es @ ea. (6.144)
3, * a b = ¥
In the left cormer (repeated maximum principal stress), N, is normal to the plane 42 =10,
N =N?= E: 7 82 — €3 T Ba. (6.145)

It should be noted that, as for the Prandil-Reuss rule, the plastic flow predicied by the
associative Tresca law is velume-preserving. Indeed, note that, in the above, we have tnivially

trN®=tr NP =0, (6.146)

This is due o the pressure-insensitivity of the Tresca yield funcuon.

Associative and non-associative Mohir-Conlomb

In the associative Mohr-Coulomb law, the Mohr—Coulomb yield function (6.1 16} is adopted
as the Mow potential, s multisurface representation is based on the yield functions (6.118),
The flow rule, which requires consideration of the intersections between the yield surfaces,
is derived in a manner analogous to the Tresca law described above, However, it should be
noted that in addition to the edge singularities, the present surface has an extra singulanty in
its apex (Figure 6.13). Plastic yielding may then take place from a face, rom an edge or from
the apex of the Mohr—Coulomb pyranid.

Again, in the derivation of the flow rules at faces and edges, it 1s convenient o assume
that the principal stresses are ordered as oy = @3 = o3 so that, without loss of generality, the
analysis can be reduced o a single sextant of a cross-section of the Mohr-Coulomb pyramid
as illustrited in Figure 6,19, The sitwation is identical to Tresca’s (Figure 6.18) except that
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sarisnd wih

Figure 6.19. The Mohr-Coulomb flow rule; (a) fzces and edges, and (b) apex.

the normal vectors IV * and W are no longer deviatoric, i.e. they have a non-zero componenl
along the hydrostatic axis (the vectors shown in Figure 6.19 are deviatoric projections of the
actual normals). For plastic yielding from the face, the flow rule is given by

gF =4 N*, (6.147)

where W7 is normal to the plane &, =10,

i il .
N®= rﬂa. = [;—a_ 71 — a3 + (o1 + a3) sin g
= (1l +sing)e; @ep — (1 —singles O e, (6.148)

At the comers, the above flow rule is replaced by
&P =47 N +4° N, (6.149)

At the right (extension) comner, R, the second vector, N7, is normal to the plane &5 = 0 and
is given by
Ni=(14+sind)e @e — (1= sing)es @ e, (6.150)
5 b -
whereas, at the feft (compression) comer, L, the tensor N7 is normal to the plane $; =10,
b " ! a -
N=(14+singd) e = es— (1 —singd) ez = es. (6.151)

At the apex of the Mohr—Coulomb surface, all six planes intersect and, therefore, six
normals are defined and up to six plastic multipliers may be non-zero. This situation is
schematically illustrated in Figure 6.19(b). The plastic strain rate tensor lies within the
pyramid defined by the six normals:

L
E=%" 4N, (6.152)
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It is important to note that, dug to the pressure sensitivity of the Mohr—Coulomb eriterion,
the associative Mohr—Coulomb rule predicts a non-zeco valwnetric plastic straining. This is in
contrast to the Prandtl-Reuss and associative Tresca laws, The volumetric component of the
plastic strain rate in the associative Mohr—Coulomb law can be obtained by expanding (6.152)
in principal stress space taking into account the definitions of N, This gives

:I'l
]l fa 0 2 3 0 a] |7,
gl=10 a a 0 3 3| |, (6.153)
e 3 30 a a0
=6
!
where
a=1+sing, F=-1+4sing. (6.154)
The above trivially vields
L]
=+ +f=2sin¢ Y 4 (6.155)
i=1

As all 5''s are non-negative, the volumetric plastic strain rate is positive and, therefore,
dilatani. The phenomenon of dilatancy during plastic flow is observed for many materi-
als, particularly geomatenals. However, the dilatancy predicted by the associative Mohr-
Coulomb law is often excessive. To overcome this problem, it is necessary (o use a non-
associated Mow rule in conjunction with the Mohr—Coulomb criterion. The non-associated
Mohr-Coulomb law adopts, as Mow potential, a Mohr—Coulomb yield function with the
frictional angle ¢ replaced by a different (smaller) angle . The angle o is called the difatancy
angle and the amount of dilation predicted is proportional to its sine, Note that for ¢ = 0, the
plastic low becomes purely deviatoric and the fow rule reduces to the associative Tresca law.

Associative ond non-associative Dricker-Prager

The associative Drucker—Prager model employs as flow potential the yield function defined
by (6.121). To derive the corresponding flow rule, one should note first that the Dirucker
Prager function is singular at the apex of the yield surface and is smooth anywhere else.
Thus, two situations need to be considered:

{a) plastic yielding at (smooth portion of) the cone surface; and
(b) plastic yielding at the apex.

At the cone surface, where the Drucker-Prager yield funciion is differentiable, the flow
vector is obtained by simply differentiating (6.121) which gives (Figure 6.20(a))

N =

I, (6.156)
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Figure 6.20, The Drocker—Prager flow vector; (a) cone surface, and (b) apes.

where 1 is given by (6.122)y, (6.123); or (6.124),. according to the chosen approximation to
the Mohr-Coulomb surface. The flow rule is then

EF =4 N, (6.157)

The deviatoric/volumetric decomposition of the Drucker-Prager (low vector gives

Ny = .—1- s N.= 1. (6.158)
2 \.-"r.-f_:{ﬁ:l

At the apex singularity, the flow vector is an element of the subdifferential of the yield
function (6.121}:
Ned,b. (6.159)

It lies within the complementary cone to the Drucker-Prager yield surface, i.e. the cone
whose wall is normal to the Ducker—Prager cone illustrated in Figure 6.200b), From standard
propertics of subdilferentials (Rockafellar, 1970; Rockafellar and Wets, 1998) it can be
established that the deviatoric/volumetric split of IV in this case is given by

Niei, Py, No=1, (6.160)

where &y = 4/ Jals). Expressions (6.157), (6.158) and (6.160) result in the following rate of
(dilatant) volumetric plastic strain for the associative Drucker—Prager Now rule:

=4, (6.161)
This expression is analogous to (6.155).

Similarly to the associative Mohr—Coulomb flow rule, the often excessive dilatancy
predicted by the associated mule in the present case is avoided by using a non-associated
baw. The non-associative Diucker—Prager law is obtained by adopting, as the flow potential,
a Drucker—Prager yield funciion with the frictional angle ¢ replaced by a dilatlancy angle
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11 < o that is, we define _ -
e, o) =/ Jalsla)) + 5 p. (6.162)

where ij is obtained by replacing & with ¢ in the definition of i given by (6.122)y, (6.123),
or (6.124)1. In other words,
G osin g

e i (6.163)
V3 (3 - sin )

I
when the outer cone approximation to the Mohr-Coulomb criterion is employed. When the
inner cone approximation is used,

G sin v

==y {(6.164)
Va3 4+ sin)

whereas, for the plane strain match,

3 tan -

(6.165)

[ = m—————————,
V9412 tan?® (s

The non-associated Drucker-Prager Mow vector differs from its associated counterpart
only in the volumetric component which, for the non-associated case, reads

Ne= . (6.166)

If the dilatancy angle of the non-associative potential is chosen as ¢ = 0, then the volumetric
component, N, vanishes and the Aow rule reduces to the Prandil-Reuss law that predicts
volume-preserving plastic ow (refer to Figure 6.20{a)).

6.6. Hardening laws

The phenomenon of hardening has been identified in the uniaxial experiment described in
Section 6.1. Essentially, hardening is characterised by a dependence of yield stress level
upon the history of plastic straining to which the body has been subjected. In the uniaxial
model, formulated in Section 6.2, this phenomenon has been incorporated by allowing
the uniaxial yield stress to vary (as a function of the axial accumulated plastic strain)
during plastic flow. In the two- and three-dimensional situations, hardening is represented
by changes in the hardening thermodynamical force, A, during plastic yielding. These
changes may. in general, affect the size, shape and orientation of the yield surface, defined by
e, A) =1

6.6.1. PERFECT PLASTICITY

A material model is said to be perfectly plastic if i hardening is allowed, that is, the yield
stress level does nor depend in any way on the degree of plastification. In this case, the yield
surface remains fixed regardless of any deformation process the matenal may experience
and, in a uniaxial test, the elastoplastic modulus, E*F, vanishes. In the von Mises, Tresca,
Dirucker—Prager and Mohr-Coulomb models described above, perfect plasticity corresponds
to a constant uniaxial yield stress, o, (or constant cohesion, ). Figure 6.21 shows the stress—
strain curve of a typical uniaxial cyclic (tension—compression) test with a perfectly plastic
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Figure 6.21. Perfect plasticity. Uniavial test and =-plane representation.

von Mizes model along with the comesponding =-plane reprezentation of the yield surface,
Perfectly plastic models are particularly suitable for the analysis of the stability of struclures
and soils and are widely employed in engineering practice for the determination of limit loads
and safety factors.

6.6.2. ISOTROPIC HARDENING

A plasticity model is said to be isotropic hardening if the evolution of the yield surface is
such that, al any state of hardening, it corresponds to a uniform (isotropic) expansion of the
initial yield surface, without translation. The uniaxial model described in Section 6.2 is a
typical example of an isotropic hardening model. For that model, the elastic domain expands
equally in tension and compression during plastic flow. For a multiaxial plasticity model
with a von Mises yield surface, isotropic hardening corresponds to the increase in radius of
the von Mises cylinder in principal stress space. This, together with a typical stress—strain
curve for a uniaxial cyclic test for an isotropic hardening von Mises model is illustrated in
Figure 6.22.

The choice of a suitable set (denoted o in Section 6.3) of hardening internal vanables
must be obviously dependent on the specific characteristics of the material considered. In
metal plasticity, for instance, the hardening internal variable is intrinsically connected with
the density of dislocations in the crystallographic microstructure that causes an isolropic
increase in resistance to plastic flow. In the constitutive description of isotropic hardening,
the set o normally contains a single scafar variable, which determines the size of the yield
surface. Two approaches, strain hardening and work hardening, are paticularly popular in
the treatment of isotropic hardening and are suitable for modelling the behaviour of a wide
range of materials. These are described below.

Strain hardening

In this case the hardening intemal state variable is some suitably chosen scalar measure of
strain. A typical example is the von Mises effective plastic strain, also referred to as the
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hardered sortzoe —

Figure 6.22. Isotropic hardening. Uniaxial test and =-plane representation.

von Mises equivalent or accunndated plastic strain, defined as

] —
/ 1-=;'= &p dr_/ .,.,.-'r;-—;||.ef'|:m_ (6.167)
1]

The above definition generalises the accumulated axial plastic strain (6.18) (page 145) of the
one-dimensional model to the multiaxially strained case. Iis rate evolution equation reads

= [2erer= 2], (6.168)

or, equivalently, in view of the Prandil-Reuss flow equation (6.137),

- (6.169)

Accordingly, a von Mises isotropic strain-hardening model is obtained by letting the uniaxial
yield siress be a function of the accumulated plastic strain:

a, = ay (7). (6.170)

This function defines the strain-hardening curve (or strain-hardening fintction) that can be
obtained, for instance, from a uniaxial tensile test.

Behaviour under nnfaxial siress conditions

Under uniaxial stress conditions the von Mises model with isotropic strain hardening
reproduces the behaviour of the one-dimensional plasticity model discussed in Section 6.2
and summarised in Box 6.1 {page 146). This is demonstrated in the following. Let us assume
thal both models share the same Young's modulus, E, and hardening function o, = o, (7).
Clearly, the two models have identical uniaxial elastic behaviour and initial yield stress.
Hence, we only need to show next that their behaviour under plastic yielding is also identical.
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Under a uniaxial stress state with axial stress o and axial stress rate & in the direction of the
base vector ey, the malnx representations of the siress tensor and the stress rale tensor in the
three-dimensional model are given by

1 00 1 00
ol=a |0 0 0], [#g=a(0 0 0. (6.171)
LI V| 0 o 0

The comresponding stress deviator reads

1 0o 0
s]=2a |0 -3 0]. (6.172)
0 0 -3

In this case, the Prandil-Reuss low equation (6.137) gives

1 0 0]
[€F]=¢F |0 -5 0O, (6.173)
0 0o =1
wherne
£F = 4 sign|a) (6.174)

is the axial plastic strain rate. Note that the above expression coincides with the one-
dimensional plastic flow rule (6.10). Now, we recall the consistency condition (6.60), which
must be satisfied under plastic flow. In the present case, by taking the derivatives of the
von Mises yield function (6.1 10}, with o, defined by (6.170), we obtain

G =N:a— HF=0, (6.175)

where &V = 9 /de is the Prandil-Reuss flow vector (6.136) and H = H{Z") is the hard-
ening modulus defined in (6.27). To conclude the demonsiration, we combine (6.175)
with (6,136}, (6.171); and (6.172) 1o recover (6.28) and, then, following the same arguments
as in the one-dimensional case we find that, under uniaxial stress conditions, the isolropic
strain hardening von Mises model predicts the tangential axial stress—strain relation
EH .
¢=eTm 16.176)

which is identical to equation (6.31) of the one-dimensional model.

VWork hardening

In work-hardening models, the vanable defining the state of hardening is the dissipated plaseic
work, Y w?, defined by

(6.177)

Mste mai
1 a3 work-Fandening marerials, In this text, bowever, the term work Bardening is reserved for plastic

which the dissipated plastic work is t2ken as the state vanshle associztad with kardening

, 1. matenizls whose yield stress level depends on the history of strai

ity madels in
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a

Figure 6.23, The plastic work.

In a uniaxial test, for instance (Figure 6.23), the 1otal work 10 necessary to deform the material
up to point P is given by the total area under the corresponding stress—strain curve. Part of this
work, w®, is stored in the form of elastic energy and is fully recovered upon elastic unloading.
The remaining (shaded) area, wF, is the plasiic work. It comesponds to the energy dissipated
by the plastic mechanisms and cannot be recovered. From the definition of w®, its evolution
equation is given by

il =g &R (6.178)

An isotropic werk-hardeiing von Mises model is obtained by postulating
oy, = ay(uF). (6.179)

This defines the work-hardening ciurve (or work-hardening function).

Eguivalence between strain and work hardening
Under some circumstances, the strain-hardening and work-hardening descriptions are equiv-
alent. This is shown in the following for the von Mises model with associative flow
rule (6.137).

The substitution of (6.137}) into (6.178), together with the identity V’:I;’? || = @, valid
for the von Mises model under plastic Row, gives

w® = oy £F, (6.180)

or, equivalently,

'jL =g, (6.181)

As g, is sirictly positive (o, > 0}, the above dillerential relation implies that the mapping
between w and 27 is ong-to-one and, therefore, invertible so that

w? = w” () (6.182)

and
£ = P (u). (6.183)
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This allows any given strain-hardening function of the type (6.170) to be expressed as an
equivalent work-hardening function,

a, (%) = ay(w®) = 0, ((w?)), (6.184)

and any given work-hardening function of the type (6.179) to be expressed as an equivalent
strain-hardening function,

ay(uw”) = a,(7) = g, (uF(EF)). (6.185)

Expressions (6.184) and (6.185) establish the equivalence between the strain and work-
hardening descriptions for the von Mises model with associative flow rule.

Linear and nomfinear hardening

A model is said to be linear hardening if the strain-hardening function (6.170) is linear, i.e.
il it can be expressed as
a () =wa,, + H, (6.186)

yp !
with constant o, and H. The constant o, is the initial vield stress, i.e. the uniaxial yield
stress at the initial (virgin) state of the material, and I is called the linear isotropic handening
modilus. Any other hardening model is said to be nonlinear hardening. Note that perfect
plasticity (defined in Section 6.6.1) is obtained if we set H = 0 in (6.186).

It should also be noted that a linear wark-hardening function corresponds in general to an
equivalent nonfinear strain-hardening function (i.e. a nonlinear hardening model). This can
be easily established by observing that (6.181) defines a nonlinear relation between n” and
£F if @, is not a constant.

6.6.3. THERMODYNAMICAL ASPECTS. ASSOCIATIVE ISOTROPIC HARDENING

Within the formalism of thermodynamics with intemnal variables, the above isotropic strain-
hardening law corresponds to the assumption that the plastic contribution, 7, to the free
energy (recall expression (6.37), page 149) is a function of a single scalar argument — the
accumulated plastic strain. That is, the set o of hardening variables is defined as

o = &) (6.187)

and
v = oV [EP). (6.188)

The set of hardening thermodynamic forces in this case specialises as
A= {x}, (6.189)
where the scalar thermodynamic force, », associated to isotropic hardening is defined by

_ ovF

=P o = (7). (6.190)

K
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The hardening curve is postulated in terms of & as
a,(EF) = ay, + K(EF). (6.191)

If the state of hardening is defined in terms of cohesion (or shear yield stress), « (or 7,)
replaces o, in (6.191). Note that the hardening modulus H. initially defined in (6.27}),
represents the rate of change of the hardening thermodynamic force with respect to the
hardening internal variable, i.e.

ila, s

R

H(EF) (6.192)

For the strain-hardening von Mises model the evolution law (6.168) and (6.16Y) for the
internal variable, 27, follows from the hypothesis of assaciativity, that relies on the choice of
the yield function as the plastic potential. The associative evolution equation for 2% in this
case is a specialisation of (6.130); that is, we have

F=4H=4. (6.193)
The associative generalised modulus H is given by

‘:_J'Iil _ j:l‘:l: _
a4 s

1, (6.194)

where @ is the von Mises yield function (6.110). A hardening law defined by means of the
associativity hypothesis is called an associative hardening law. Any other hardening rule is
said 1o be nan-associative.

Multisurface models with associative hardening

Analogously to the associative plastic flow rule definition (6.73), (6.77) and (6.78), associa-
tive hardening for multisurface plasticity models can be defined by postulating the following
generic evolution equation for the accumulated plastic strain:

b e
Rt et 7 (6.195)
i

i=]l

Note that, here, the accumulated plastic strain, 27, is being defined by evolulion equa-
tion (6.195). Its actual physical meaning depends on the specific format of the functions
&, and is generally different from that of (6.167) adopted for the von Mises model.

A simple example of associative isotropic hardening law of the type (6.195) is obtained
for the Tresca model. Here, we refer to the plastic flow equations (6.141) and (6.143),
defined respectively on the side (smooth portion) and comer of the Tresca yield surface.
The corresponding associative evolution equations that define the accumulated plastic strain
EF are ;

F=—4 ﬂ =+ (6.196)
iy

and

L0 dPg

e
ity TS

4 4%, (6.197)
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respectively, where functions € and $s are defined by (6.91) with 7, related o &
through (6.191}).

For Mohr-Coulomb plasticity, one of the possibilities in defining a hardening law is to
assume the cefiesion, o, that takes part of the yield function (6.1 16) or (6.121) to be a function
of the hardening internal variable:

e = ¢ 2P). (6.198)

This type of hardening description is often used in practice in the modelling of soils — for
which cohesion is a fundamental strength parameter. This assumption will be adopted in
the computer implementation of Mohr—Coulomb and Drucker-Prager models described in
Chapter 8. Il hardening associativily is also assumed, then similarly 1o (6.191) we define

e(2P) = co + K(2P), (6.199)

and the intemnal vanable £ - the accumulated plasiic strain for associative Mohr—Coulomb
hardening — is defined by the corresponding particularization of general evolution law (6.195).
This gives the gencral expression
G
= a5y y "' {ﬁ:ml
i=1

P

When Aow takes place at the smooth poriion of a Mohr—Coulomb pyramid face, this is
reduced 1o

EF =2 005 :.'- (6201 ]
At the corners (refer to the plastic flow equation (6.149)), we have

F=2coso (5" 4 *J

). (6.202)

Note that if it is insisted to adopl the von Mises accumulated plastic strain rate defini-
tion (6.167) in conjunclion, =ay, with the Tresca mode] with associative plastic flow, (6.141)
to (6. 143), the evolution equation for 27 will resultin

—

- \.a". ePier= L4 (6.203)

Lalwd

for Mow from the smeoth portions of the Tresca surface, and

. W T
P =5 €7 8P = 2 /(1) + 923 + (14)2 (6.204)

for flow from a comer. In this case, the isotropic hardening law is non-associative in spite of
the associativity of the plastic flow rule.

=

Drucker-Prager associative hardening

Associative hardening for Drucker-Prager plasticity is obtained by combining assump-
tion (6.199) and the yield lunction definition (6.121) with the general associative evolution
law (6.130) for the hardening intermal variable. The accumulated plastic strain in this case is
then defined by the evolution equation

Ly 2
3 =5E. (6.205)

P — 4
Dk
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Other hardening models

Further refinements to capture hardening behaviour more accurately can be incorporated in
Mohr-Coulomb based plasticity models by assuming, in addition, the frictional angle to be a
function, for example, of the accumulated plastic strain:

&= a{ 2P, (6.2040)
For Drucker-Prager-based models, the above would correspond to having
n=n(e"), §=E(F). (6.207)

The direction of plastic low is generally affected by the history of plastic straining in
miaterials such as soils and rocks. This phenomenon can be accounted for in non-associative
How Mohr—Coulomb type models by letting the dilatancy angle, v, be a function of the
hardening intemal variable. For Drucker-Prager-based models, this can be obtained by having
the parameter ij as a function of the hardening variable,

6.6.4. KINEMATIC HARDENING. THE BAUSCHINGER EFFECT

When the yield surfaces preserve their shape and size but fransfate in the stress space as a
rigid body, kinematic handening is said to take place. Itis frequently observed in experiments
that, after being loaded (and hardened) in one direction, many materials show a decreased
resistance to plastic yielding in the opposite direction (Lemaitre and Chaboche, 1990). This
phenomenon is known as the Bauschinger effect and can be modelled with the intreduction
of kinematic hardening. A number of constilutive models have been proposed to describe
elastoplastic behaviourunder cyclic loading conditions (Lemaitre and Chaboche, 1990; Mroz,
1967; Skreypek, 1993). The typical result of a uniaxial cyclic test showing the Bauschinger
effect is illustrated in Figure 6.24. The evolution of a kinematically hardening von Mises-type
yield surface (in the deviatoric plane) used to medel the phenomenon is shown alongside. The
yield function for the kinematically hardening model is given by

'I"[O’. ﬂ} = \;"::_:'I .-.;31 I]‘-:_ﬂ'. |sz:l] — Ty, (6.208)

where

e 3 =sla)—-03 (6.209)
is the refative stress tensor, defined as the difference between the stress deviator and the
symmetric deviatoric (stress-like) tensor, 3, known as the back-stress tensor. Note that, by
definition, the relative stress is deviatoric. The back-stress tensor is the thermodynamical
force associated with kinematic hardening and represents the translation (Figure 6.24) of the
yield surface in the space of stresses. The constant o, in (6.208) defines the radius of the yield
surface. When 3 = 0, we have i = s and the yield surface defined by 4 = 0 is the isotropic
von Mises yield surface with uniaxial yield stress ,,.

It is important to observe that, unlike the isotropically hardening von Mises medel, the
vield function & defined by (6.208) is not an isotropic Tunction of the stress tensor for
kinematically hardened states (3 # 0). The function (6.208) is an isotropic function of the
relative stress, 1. Analogously to expression (6.208), it is possible to introduce Kinematic
hardening in other plasticity models simply by replacing o with a relative stress measure,
defined as the difference o — (3, in the definition of the corresponding yield function.
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Figure 6.24. Kinematic hardening and the Bauschinger effect. Unianial test and 7-plane representation,
I_llidll'iln_: in one direciion results in devreased resizstance to p]_'..'ttjl_'- }je]lhng in the |_'|i'|.];.‘u_.|';4_- direction.

Plastic flow rule with kinematic hardening

The von Mises model with kinematic hardening is used in conjunction with an assaciative
flow rule. The flow vector in this case reads

_9®_ 51

N= — = il E8
N=o =i (6.210)

and we have the following plastic strain rate equation:

s [ + o ¥

e =i N=4,/31 (6.211)
This rule extends the Prandtl-Reuss equation to account for kinematic hardening. Note thal

the plastic flow is in the direction of the (deviatoric) relative stress, 17, and coincides with the
Prandil-Reuss equation if 3 = 0.

Prager’s linear kinematic hardening
To complete the definition of the kinematic hardening plasticity model, evolution equations

for @ are required. One of the most commonly used laws is Prager's linear Einematic
hardening rule, where the rate evolution equation for 3 is given by

f-

Elr

p_ =+ fa "
Hébwa, 2 g 6.212
'1L 3 n (6.212)
The material constant H is the linear kinematic hardening modulus.

Belaviowr under monotonic uniavial stress loadin I

For monotonic loading under uniaxial stress conditions, the stress—strain behaviour of the
model defined by equations (6.208), with constant ay =y, (6.211) and (6.212) and initial
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state of hardening defined by F = 0 is identical to the behaviour of the purely isotropic
hardening von Mises model with linear hardening curve (6.186) and initial state of hardening
£ = 0. Itis assumed in this statement that both models share the same Young's modulus, £,
Under the above conditions, it is clear that both models have the same elastic behaviour and
uniaxial yield stress, .. To show that their plastic behaviour also coincides, let us consider
again a vniaxial test with loading in the direction of the base vector e;. In this case, the
stress, stress rate and stress deviator tensors have the matnx representations given in (6.171)
and (6.172). Now note that the integration of the rate equation (6.212) with initial condition
B =0(ie. p=s)and s as in (6.172) gives a back-stress tensor of the form

1 0 0
@=a3l0o-1 0], (6.213)
0 0 -1

where 3 is the axial back-stress component. With the above, we obtain for the relative stress
tensor

1 0 0
=5 |0 —% 0y, 16.214)
0 o0 -1
where
r,i':gn—.i (6.215)

is the axial relative stress. From (6.212) and (6.214) we obtain

_ 1 0 0
Bj=2H: |0 -1 0], (6.216)
0 0 -3

where ¥ is the axial plastic strain rate given by
£F = 4 signin). (6.217)

Now, by recalling (6.60) and specialising (6.61) for the present case we have that, under
plastic yielding, the following consistency condition must be satisfied:

L7k L # i
i (e L

b= —:+-—:3=0. (6.218)
il d‘ﬂ ir
After some straightforward tensor algebra, taking into account (6.171); and the above

expressions for 3, 3, the definition of #, and the identity

b ar  [3p
a3~ aa N2|g| (6.219)
equation {6.218) yields
F=HE (6.220)

Then, with the intreduction of the elastoplastic split of the axial strain rate, together with the
equation
a=FE:, (6.221)
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of the linear elastic model under uniaxial stress conditions, into (6.220), we obtain
F=——2F, (6.222)

which coincides with the stress rate equation (6.176) of the von Mises isotropic strain-
hardening model with constant i, To complete the demonstration, let us assume that the
uniaxial loading is monotonic, i.e. we have either £ > D or £ < 0 throughout the entire loading
process. In this case, the integration of (6.222) having the initial yield siress (7., for both
maodels) as the initial condition produces the same stress—strain curve as the isotropic model.

Armstrong-Frederick hardening

A refinement upon the linear kinematic hardening law proposed by Armstrong and Frederick
(1966} 1s obtained by intreducing an extra term in the above expression (refer to Lemaitre
and Chaboche (1990), Chapter 5, or Jirisek and BaZant (2002), Chapter 20, for details) with
the evolution of 3 given by

i~ 2 ] - o
B=ZHE —qbp
¥ ]
= (:H d—' f _ﬁ). (6.223)

I

where bris a material constant, The extra term — & 3 introduces the effect of saturation in the
kinematic hardening rule. In the case of the von Mises criterion, the saturation corresponds to
a maximum limit value for the norm of 3, at which the material behaves as perfectly plastic.

Nonlinear extension to Prager's rule
Another possible improvement upon Prager’s linear kinematic hardening rule is the introduc-

tion of nonlinearity by replacing the constant kinematic hardening modulus, H, of (6.212)
with a generic function of the accumulated plastic strain, 27,

= 2 R - o
A= _HFF)EF =5 _H(zF) —. (6.224)
3 3 it
In this case, a scalar funclion
3= 3(zP), (6.225)
such that
i di
H(z) = = 16.226)

defines the kinematic hardening curve. This curve can be oblained from simple uniaxial tests
in a manner analogous to the determination of the hardening curve for the purely isotropic
hardening model,
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Thermodynamical aspects of kinematic hardening

From the thermodynamical viewpoint, the above kinematic hardening laws follow from the
assumption that the plastic contribution, ¥, to the free energy is a function of a second-order
tensor-valued internal variable, X,

v =P (X)), (6.227)
The variable X is related 1o self-equilibrated residual stresses that remain afler elastic
unloading. These stresses may increase or decrease resistance to plastic slip according to

the direction considered. The kinematic hardening thermodynamical force = the back-stress
tensor, (3 - is then defined as the denivative

e
3=—. (6.228)
| X
For the Armstrong-Frederick kinematic hardening law (6.223), for instance, we have
WH(X) =5 XX, (6.229)

where the material constant a has been defined as

H. (6.230)

il =

Galnd

The back-stress tensor (6.228) is then a scalar muliiple of X, given by
J=aX. (6.231)

The evolution law for the intermal variable X is obtained by poswilating a flow potential

b
§=d+ Tﬁ:ﬁ. (6.232)
2a
and assuming normal dissipativity
) g1 b 1
L ) ;3), (6.233)
a3 i3 a

i

Obviously (since ¥ £ @), this evolution law is nen-asseciative. The equivalence between the
above equation and (6.223) can be established by taking into account (6.231) and the fact thay,
since & is obtained from a non-kinematic hardening yield funciion by replacing the argument
o with o — 3, we have : :

ﬂ - = ﬁ : (6.234)
i3 iter

6.6.5. MIXED ISOTROPIC/KINEMATIC HARDENING

Rather than purely isotropic or purely kinematic hardening, real-life materials show in general
a combination of both; that is, under plastic straining. the yield surface expands/shrinks
and translates simullancously in stress space. Thus, more realistic plasticity models can be
obtained by combining the above laws for isotropic and Kinematic hardening.
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G foad
reversal

Figure 6.25. Mixed hardening. Uniaxial test with load reversal.

For example, a relatively simple von Mises-based model with mixed isotropic/kinematic
hardening can be devised by adopting the yield function (6.208) and allowing o, to be a
function of 27, If the nonlinear rule defined by (6.224) and (6.225) is adopted, the hardening
behaviour of the model is determined by the curves

a, =a,(zP), 3= 3z, (6.235)

which can be obtained from relatively simple uniaxial tests with load reversal (see schematic
illustration of Figure 6.25). Al each point &7, the kinematic hardening stress, 3, is the
kinematic contribution to overall hardening.

A more refined mixed hardening model can be devised by coupling the Armstrong-
Frederick law (6.223) with the von Mises-type yield function (6.208) where o, as in (6.235),,
is a function of the accumulated plastic strain. A model including mixed hardening of
this type is discussed in Section 12.3 (starting on page 478) in the context of damage
mechanics.

7 FINITE ELEMENTS IN
SMALL-STRAIN PLASTICITY
PROBLEMS

N the previous chapter, the mathemaltical theory of plasticity has been reviewed. A general

small-strain elastoplastic constitutive model has been established within the formalism of
thermodynamics with internal variables and the most popular theories, namely, the von Mises,
Tresca, Mohr—Coulomb and Drucker—Prager models, have been described in detail.

Obviously, due to the mathematical complexity of such constitutive theories, an exact
solution to boundary value problems of practical engineering interest can only be obtained
under very simplified conditions. The existing analytical solutions are normally restricted
to perfectly plastic models and are used for the determination of limit loads and steady
plastic flow of bodies with simple geometries (Chakrabany, 1987 Hill, 1950; Lubliner,
1990; Prager, 1959; Skrzypek, 1993). The analysis of the behaviour of elastoplastic structures
and soils under more realistic conditions requires the adoption of an adequate numencal
framework capable of producing approximate solutions within reasonable accuracy. As
pointed out in Chapter 4, the approximate solution to such problems is addressed in this
book within the context of the Finite Element Method. In fact, the Finite Element Methed is
by far the most commonly adopted procedure for the solution of elastoplastic problems. Since
the first reported applications of finite elements in plasticity in the mid-1960s, a substantial
development of the related numerical techniques has occurred. Today. the Finite Element
Method is regarded as the most powerful and reliable tool for the analysis of solid mechanics
problems involving elastoplastic materials and is adopted by the vast majority of commercial
software packages for elastoplastic stress analysis.

This chapter describes in detail the numerical/computational procedures necessary for
the implicit finite element solution of small strain plasticity problems within the framework
of Chapter 4. For the sake of generality, the methodologies presented in this chapter are
initially derived taking the general plasticity model introduced in Chapter 6 {(summarized
in Box 6.2, page 151) as the underlying constitutive model. Practical application of the
theory and procedures introduced, including a complete description of the algorithms and
corresponding FORTRAN subroutines of the HYFLAS program, is then made to the particular
case of the von Mises model with nonlinear isotropic hardening. The choice of this model
is motivated here by the simplicity of its computational implementation. A set of numencal
examples is also presented. Further application of the theory is made at the end of the chapter
to a mixed isotropic/kinematic hardening version of the von Mises model. This model 1s also
included in the HYPLAS program. Application to the Tresca, Mohr-Coulomb and Drucker-
Prager models is left for Chapter 8.
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11 VISCOPLASTICITY

HE elastoplastic constitutive theories presented so far in Part Two of this book are
classed as rate independent or time independent, that is, the material response is
regarded as independent of the rate of application of loads and/or the timescale of the
problems considered. Time (or, more precisely, pseudo-time) is used merely to describe the
sequence of events that defines the history of the loading process. For such theories, identical
solutions are produced when a given load (or sequence of loads) is applied at different rates.

However, the observed behaviour of real materials is generally time dependent; that is,
the stress response always depends on the rate of loading and/or the timescale considered.
The extent of such dependence may or may not be significant according to the physical
conditions of the problem. In situations where the rates of loading and/or the timescale of the
analysis remain within a range where the time-dependent phenomena can be neglected, rate-
independent elastoplasticity models can provide good descriptions of the material behaviour
(Lemaitre and Chaboche, 1990; Lubliner, 1990; Skrzypek, 1993). If such conditions are
not met, then accurate predictions can only be obtained if rate dependence is adequately
accounted for by the constitutive model. Rate-dependence effects are described by means of
so-called viscoplasticity (or rate-dependent plasticity) models, to which the present chapter
is devoted.

This chapter is organised as follows. Section 11.1 presents a brief introduction to phe-
nomenological aspects of viscoplasticity. It motivates the establishment of a one-dimensional
mathematical model of viscoplasticity in Section 11.2. Here, some simple analytical solutions
are presented to demonstrate the ability of the one-dimensional model in capturing the
fundamental phenomenological features of viscoplastic behaviour. In Section 11.3 the one-
dimensional viscoplastic theory is generalised to the multidimensional case within the context
of von Mises plasticity. A more general multidimensional model is presented in Section 11.4.
The general model can be rigorously described within the constitutive framework of internal
variable theories initially referred to in Chapter 3 (Section 3.5.2, from page 71). Rate-
independent plasticity is shown to be, under some circumstances, a limit case of the general
viscoplasticity model. This establishes a formal link between rate-independent plasticity
and the general constitutive framework of Chapter 3. Section 11.5 proceeds to introduce
a numerical framework to treat the general viscoplasticity model within the finite element
environment of Chapter 4. This includes the numerical integration algorithm for the general
viscoplastic constitutive equations as well as a symbolic form of the associated consistent
tangent modulus. Then, in Section 11.6, the general numerical framework is specialised
to a von Mises-based model presented in Section 11.3. The integration algorithm and
the associated consistent tangent operator are derived step by step. In addition, an error
assessment of the numerical integration procedure is presented by means of iso-error maps.
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(© 2008 John Wiley & Sons, Ltd
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We remark that Section 11.6 is essential for the reader interested in the computational
implementation of viscoplasticity. The chapter ends with finite element examples being
shown in Section 11.7. In the reported examples, the procedures of Section 11.6 are used.,

11.1. Viscoplasticity: phenomenological aspects

Many of the microscopic phenomena underlying the inelastic deformation of solids depend
on time. Materials such as metals, rubbers, geomaterials in general, concrete and composites
may all present substantially time-dependent mechanical behaviour under many practical
circumstances. In metals, for instance, the phenomenological effects of time-dependent
mechanisms become apparent typically at absolute temperatures higher than around one third
of the melting point and can be clearly identified by a number of experimental procedures. To
illustrate this fact, typical results of simple uniaxial tension tests with metallic bars at higher
temperatures are schematically represented in Figure 11.1. Figure 11.1(a) shows stress—strain
curves obtained in uniaxial tensile tests carried out under different prescribed strain rates. In
general, the elasticity modulus is largely independent of the rate of loading but, clearly, the
initial yield limit as well as the hardening curve depend strongly on the rate of straining. This
rate-dependence is also observed at low temperatures, but usually becomes significant only
at higher temperatures. Strain-rate dependence may be of crucial importance, for instance, in
metal-forming operations such as hot forging and may have to be taken into consideration
in the design of the process. It is also important to emphasise that, although not shown in
Figure 11.1(a), the rupture limit, that is, the strain at which the specimen breaks, can also be
strongly dependent on the rate of straining.

Another aspect of time dependence is the phenomenon of creep. This is illustrated in
Figure 11.1(b). The curves of Figure 11.1(b) show the evolution of plastic strains over time
in experiments where tensile specimens have been loaded to different stress levels and left at
constant stress during long periods of time. The material experiences a continuous plastic flow
that is accelerated for higher stress levels, The high strain rates shown towards the end of the
schematic curves for high and moderate stresses is the phenomenon known as rertiary creep.
Tertiary creep leads to the final rupture of the material and is associated with the evolution
of internal damage. Internal damage will be discussed in Chapter 12. Prediction of creep
behaviour is important, for instance, in situations where load-carrying metallic components
are subjected to long duration loads at hi gh temperatures, The need for consideration of creep
response arises typically in the design and analysis of nuclear reactor and jet turbine engine
components.

The third aspect of rate dependence, illustrated in Figure 11.1, is the phenomenon of stress
relaxation. The graph of Figure 11.1(c) shows the typical evolution of stress in a relaxation
test. The relaxation test consists of stretching the specimen (virtually instantaneously) to a
prescribed axial strain and maintaining it strained (at constant strain) over a long period of
time. The time-dependent response in this case is characterised by the continuous decay of
stress in time. The prediction of stress relaxation can be vital, for instance, in the design
of pre-stressed load-carrying components. We remark that the strain rate dependence of the
stress response as well as the phenomena of creep and stress relaxation illustrated above for
metals can also be observed for other materials by means of appropriate experiments.
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Figure 11.1. Viscoplasticity. Phenomenological aspects: uniaxial tensile tests at .high temperature.
(a) Strain rate dependence. Uniaxial tests at different strain rates. (b) Creep. Plastic flow at constant
stress. (¢) Relaxation. Stress decay at constant strain.

11.2. One-dimensional viscoplasticity model

Similarly to what has been done in Chapter 6 for ratc—in(lepe_ndent plflslticity (I'efE:l" to
Section 6.2, from page 141), we find it convenient to introd.uce v:lscoplustlcny b)./ f(_)cusu-lg
first on a simple one-dimensional theory. Thus, we devote this se-ctlon. to t}?(.e de§c1'1pF1911 of a
simple uniaxial viscoplastic constitutive model. As we shall see, in sp_lte of its sunph.cny, the
uniaxial model possesses all the basic ingredients of the multidimensional models ‘(hscusse.d
in the remainder of this chapter. In particular, the model is able to capture many of the main
features of the viscoplastic behaviour depicted in Figure 11.1.

11.2.1. ELASTOPLASTIC DECOMPOSITION OF THE AXIAL STRAIN

As for the rate-independent case, the decomposition of the total axial strain into a sum of an
elastic (recoverable) and a plastic (permanent) component is introduced,

e=¢e® 4 &P, (11.1)
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11.2.2. THE ELASTIC LAW

The axia! stress is again assumed to be related to the elastic component of the axial strain by
means of the standard linear elastic constitutive relation

oc=FE¢&" (11.2)

11.2.3. THE YIELD FUNCTION AND THE ELASTIC DOMAIN

Here, the existence of an elastic domain for the stress within which the material behaviour is
!Jurely elastic is also experimentally observed in many cases.! Thus, analogously to the rate-
111_dependent model of Section 6.2, the elastic domain can be conveniently defined by means
of a yield function

(o, 0y) =|o| — a7y, (11.3)
where oy, is the yield stress. The elastic domain is defined as the set

E={o|®(g,a,) <0}, (11.4)

so that the behaviour is purely elastic whenever |o| < .

11.2.4, VISCOPLASTIC FLOW RULE

T.he crucial difference between the uniaxial elastoplastic model of Section 6.2 and the
viscoplasticity model introduced here lies in the definition of the flow rule, which describes
the evolution of e”. The viscoplastic flow rule can be postulated with a format similar to that
of the rate-independent case (see equation (6.10), page 144)

&P = 4(0, o) sign(0), (11.5)

where sign is the signum function defined by (6.11).

In spite of its similarity to the rate-independent flow rule, the above constitutive equation
for e? differs fundamentally from (6.10). Firstly, it needs to be emphasised that in the rate-
}ndependent model the plastic strain rate is in fact a pseudo-time rate; that is, £ in the rate-
independent theory is the derivative of the plastic strain in respect to a pseudo-time parameter
used solely to describe the sequence of events. In that case, the actual timescale is irrelevant.
In contrast, the plastic strain rate in (11.5) is the actual time derivative of £”. In addition to this
conceptual difference, 7 — named the plastic multiplier and determined by the procedure of
Section 6.2.7 (page 146) in the rate-independent theory — is here a given explicit function of &
and. oy. Essentially, the explicit function for 4 should model how the rate of plastic straining
varies with the level of stress. Many forms are possible for % and a discussion on this issue
will be left for Section 11.3. Here, we will define the one-dimensional viscoplasticity model
by adopting the following particular definition

1{(@)‘/6 1] 350 5] 6
- — — i ®o,04) 2
Yo, oy) =< H LATy ! (11.6)

0 if ®(o, 0y) <0,

As we .::hal] see [5m?r.1n [hl:': chapter, some models of viscoplasticity do not have an elastic domain. Such models
do not require the definition of a yield function.
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where the material constants are the viscosity-related parameter 1, whose dimension is time,
and the non-dimensional rate-sensitivity parameter, e. Both parameters are strictly positive.
This particular form has been introduced by Peri¢ (1993) similarly to the power law form of
the viscoplastic potential proposed by Perzyna (1963). It is important to emphasise that the
material parameters p and e are temperature dependent. As a general rule, as temperature
increases (decreases) p and € increase (decrease). For many metals, p, e — 0 for sufficiently
low temperatures, when the material behaviour may be assumed rate-independent.

11.2.5. HARDENING LAW

In the rate-independent case, the phenomenon of hardening describes the changes in yield
stress that result from plastic straining. In the viscoplastic model, hardening can be incorpo-
rated in the same manner as in the elastoplastic case by letting the yield stress, o, be a given
(experimentally determined) function

oy = 0y(E") (11.7)

of the accumulated plastic strain
t
e‘”:f |éP] dt. (11.8)
0

Note that (11.6) implies that at a given constant applied stress o, an increase (decrease) in oy,
will produce a decrease (increase) in the plastic strain rate €P. As in the elastoplastic case,
an increase of o, will be referred to as hardening whereas its reduction will be described as
softening. If a,, is a constant, the model is referred to as perfectly viscoplastic.

11.2.6. SUMMARY OF THE MODEL

The overall one-dimensional viscoplasticity model is defined by the constinutive equa-
tions (11.1)—(11.8). For convenience we summarise the model in Box [1.1.

11.2.7. SOME SIMPLE ANALYTICAL SOLUTIONS

Section 11.1 discussed some of the phenomenological aspects of viscoplastic behaviour. One
important aspect to be emphasised here is that, in spite of its simplicity, the above-defined
one-dimensional model can capture the key phenomenological features of rate-dependent
plasticity shown in Figure 11.1. To illustrate this and give the reader a better insight into
the theory, we derive in this section analytical solutions for three simple problems where the
basic properties of creep at constant stress, strain rate dependence of the stress response and
stress relaxation under constant strain are reproduced by the one-dimensional model.

Creeping at constant stress

Let us consider the case of a bar subjected to an axial load that produces a uniform stress
o > a, over its cross-section. The load is applied instantaneously and, after being applied,
remains constant in time.

With the instantaneous loading (at time ¢ = 0), the bar will initially deform (also instan-
taneously) in a purely elastic manner. The fact that the model behaviour is elastic under




COMPUTATIONAL METHODS FOR PLASTICITY; THEORY AND APPLICATIONS

Box 11.1. One-dimensional viscoplastic constitutive model.

1. Elastoplastic split of the axial strain

™

2. Uniaxial elastic law
o=F¢c*
3. Yield function
(0, 0y) =|o| — Ty

~

. Plastic flow rule

£P = 4 sign(o)

A
Y=95nl\oy - if (0, 04) >0

0 if (e, 0,) <0

5. Hardening law

ay = ay(&")

7
LA

Instantaneous loading is formally demonstrated in the next example when the strain rate
dependence of the stress response is discussed. However, even without a formal proof, it
Fnakes sense to accept that, as there is no time for plastic strains to develop over an (idealised)
mstantz.meous loading event, the behaviour must be purely elastic under such a condition.
Assuming zero initial plastic strain, it follows from the elastoplastic split of the total strain
Fogether with the elastic law that the total strain in the bar at ¢ = 0, immediately after the
instantaneous application of load, will be

— € _
=fp=

[=01]

5 (11.9)

SIS

where the zero subscript denotes quantities at ¢ = 0. From this moment on, the bar is
!«:pt under a constant stress above the yield limit. Under constant stress, the elastic law
implies that the elastic strain will also remain constant. Thus, the straining of the bar after
the instantaneous loading will be due purely to viscoplastic flow and will be modelled by
constitutive equations (11.5), (11.6). Assuming that & is positive (tensile), we then have

-pkl - 1/¢

For a lperfe‘clly viscoplastic material (constant o), the integration of the above equation,
in conjunctm.n with the elastoplastic decomposition of the total strain and the initial condi-
tion (11.9), gives the following solution for the straining of the bar

P 1 " 1/¢
Em:EJFI_![(U_y) lit. (11.11)
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The creep rate in this case is constant and proportional to (¢/a,)"/ — 1. The material
constants ;¢ and ¢€) could be calibrated, for instance, so as to capture the initial branches
of the creep curves of the material (refer to Figure 11.1(b)). The initial branches describe
the phenomenon of primary creep. A hardening law could be incorporated to include the
follow-up of the curves to their second straight branch that describes secondary creep.

Strain-rate dependence of the stress response

Here we analyse the monotonic stretching of an initially unstrained (and unstressed) bar at
constant strain rates. These are the conditions typically encountered in conventional tensile
tests. The objective here is to show that the one-dimensional model is capable of predicting
the strain-rate dependence of the stress response as generally illustrated in Figure 11.1(a).

Before stating the associated initial value problem, let us first recall that the material
response within the elastic domain (o < ) is purely elastic. Thus, at the initial stages of the
monotonic stretching process, the stress response does not depend on the rate of stretching.
The stress—strain response during this phase is expressed simply as

o=Fe if o<oy, (11.12)

or, equivalently,
oc=Fe if e<e*, (11.13)
where ¢* is the strain at which the yield stress is reached

_ Oy

=z

®
<

(11.14)
Viscoplastic flow (and rate-dependent behaviour) may only take place when ¢ > g, or,
in terms of the applied strain, when ¢ > ¢*. Then, as our purpose is to illustrate the rate
dependence predicted by the model, our initial value problem will be defined only over
the portion of the loading process where ¢ > g, (or € > ¢*). To simplify the problem, we
will assume that the material is perfectly viscoplastic (constant o) and, in addition, the rate
sensitivity parameter will be set to
e=1,

so that an analytical solution to the initial value problem can be easily found.

The initial value problem.

The evolution of the plastic strain for the present model is defined by equation (11.10). Under
the above assumptions, the associated initial value problem consists of finding a function
e?(t) such that

E-p(,_)zl[“(f) ~ 1] _E{M _1} ZI[M #1}. (11.15)

| Oy H Ty

where the total strain is the prescribed function

s(t):(rf+s*:at+f‘, (11.16)
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corresponding to monotonic stretching with arbitrary (constant) strain rate o > 0. Note that
t = 0 corresponds to the onset of viscoplastic flow (¢ = 0, & € = ¢”). The initial condition
for P (the plastic strain at the onset of viscoplastic flow) is obviously

P(0) = 0. (11.17)

The analytical solution.

By substituting (11.16) into the differential equation (11.15), the initial value problem can be

written as 1
er(t) = [t —eP(t)]); €P(0)=0. (11.18)

HE®

The analytical solution can then be promptly obtained by standard methods for first-order
ordinary linear differential equations as

Ep(t)za[t—,us*(l—e%)]. (11.19)

By placing the above solution together with (11.16) into the elastic law, o = E(e — "), we
obtain, after a straightforward manipulation, the following solution for the stress as a function
of time
g 08
o(t) = oyl + ap(l —er)). (11.20)

The stress—strain response.

The strain rate dependence of the stress response can be more clearly illustrated by expressing
the stress as a function of strain for an arbitrary (but constant in time) strain rate, so that curves
such as those depicted in Figure 11.1(a) can be produced. In the present case, such a function
can be obtained by means of a simple variable transformation in (11.20). Indeed, note that by
inverting the function defined by (11.16), we have

e —¢g*

= fe) = — =, 11.21
t=t(e) - ( )
With the introduction of this relation into (11.20), we obtain

5(e) = o(t(e)) = oy {1 + a p[l —em=1=F)]}, (11.22)

which gives the stress—strain curve for an arbitrary strain rate a. Insight into the problem can
be gained by looking into the limit stress—strain curves, i.e. the curves obtained at infinitely
slow rates (v — 0) and infinitely fast processes (& — co). In order to obtain the limit for
infinitely slow rates, we first observe that, in the present monotonic loading process, the term

1—¢g/e*

in (11.22) is always negative. In addition, g and « are positive so that the last term on the
right-hand side of (11.22) is the exponential of a negative number. The limit is then easily

obtained as
lim () =ay; (11.23)

a—0
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Figure 11.2. One-dimensional viscoplasticity model. Analytical solution showing the dependence of
the stress response on the applied strain rate/viscosity parameter.

that is, at infinitely slow rates the perfectly viscoplastic model rigorously recovers the
behaviour of the rate-independent plasticity model with yield stress o,. The rate-independent
model was described in Section 6.2 (page 141). It is also very important to note that the same
limit is obtained for the vanishing viscosity parameter, i.e. when g — 0. At infinitely fast
rates, the limit is derived by a standard limiting procedure which gives

lim &(g) =FEe, (11.24)

Qa— 00
i.e. the process is purely elastic and the stress—strain curve after the yield limit is the
continuation (with the same slope, F) of the elastic curve. Also note that the identical limit
is found for 2 — co (infinitely viscous material). For any other rate (or viscosity parameter),
the corresponding stress—strain curve will lie between these two limits with higher stress
obtained at higher strain rates (or higher viscosity). To illustrate better the behaviour of the
model under the present conditions, the analytical solution (11.22) is shown in the graph of
Figure 11.2, where the non-dimensional stress, o /o, is plotted against the relative strain,
g/e*, for various normalised strain rates pv. The limits v — O (infinitely slow rates or non-
viscous material) and pov — oo (infinitely fast rates or infinitely viscous material) are also
included. Clearly, the model is able to capture the experimentally observed rate-dependence

phenomenon illustrated in Figure 11.1(a).

Remark 11.1. In fact, even though it is not formally shown here, the above limits remain
valid for any hardening curve and any rate sensitivity parameter ¢; that is, at infinitely slow
strain rates, the model recovers the rate-independent behaviour of the plasticity model of
Section 6.2 (this limit is also obtained for ¢+ — 0) and, at infinitely fast rates (or when g —
o), the model behaves in a purely elastic manner, regardless of the given hardening curve
and rate-sensitivity parameter. In addition (again not formally shown in this section), the
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rate-independent behaviour is also recovered with vanishing rate-sensitivity, i.e. when € —
0. This last property will be demonstrated in Section 11.4.3 in the context of the general
multidimensional theory.

Stress relaxation at constant strain

In this final example, we consider the case of a bar which is instantaneously stretched
(stretched at an infinitely fast strain rate) to a total strain € and then kept stretched indefinitely
at that constant strain. The instantaneous stretching to ¢ is assumed to produce a stress above
the yield limit of the material. Here the model should be able to capture the phenomenon of
stress relaxation alluded to in Figure 11.1(c).

Over the instantaneous stretching (at time ¢ = 0), the bar will deform purely elastically
(refer to the limit expression (11.24) and the text surrounding it). Thus, assuming that the
plastic strain is zero at t = 0 (immediately after the instantaneous stretching), we have

€& =-¢, (11.25)
and, in view of the elastic law, the corresponding stress is given by
og=Fey=Fe. (11.26)
From this point on, the stress in the bar will be governed by the law
o=FEle—e")=09— E&P, (11.27)

where P evolves in time according to the differential equation (11.10) which, in view of the
above expression can be equivalently written as

] — Ee? ke
P = i[(“"—) = 1]. (11.28)
ﬂ. O'y

To simplify the problem, we will assume, as in the previous example, that the material is
perfectly viscoplastic (constant @) and e = 1. In this case, the initial value problem is to find
a function e”(t) such that

eP(t) =e1 — ca eP(2), (11.29)

with initial condition
eP(0) =0, (11.30)

where the constants ¢; and ¢y are defined as

(.l_l(@_l), iy = (11.31)

Ty HOy

The analytical solution to (11.29-11.30) can be trivially obtained as

P(t) = 2—2(1 g, (11.32)
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Figure 11.3. One-dimensional viscoplasticity model. Analytical solution to the stress relaxation
problem.

Finally, by placing the above solution into (11.27), and taking into account the definition of
c1 and co, we obtain the stress as a function of time

o(t) =09 — (00 — oy)(1 —e’“’%»"). (11.33)

Clearly, the above function describes the stress relaxation process of the bar, with the stress
taking the value ¢ = gy > 0, at t =0 and subsequently relaxing asymptotically to o, as
t — co. This is illustrated in Figure 11.3 where a graph of the analytical function o (¢) (with
og = 2 gy,) is plotted. The analytical solution with the present one-dimensional model clearly
captures the experimentally observed behaviour referred to in Figure 11.1(c).

11.3. A von Mises-based multidimensional model

This section introduces a multidimensional extension of the one-dimensional model dis-
cussed above (and summarised in Box 11.1). Rather than define a generic extension at the
outset (as in Section 6.3 (page 148) where a general multidimensional extension of the one-
dimensional rate-independent plasticity model of Section 6.2 (page 141) was presented),
we chose here to focus first on a von Mises-based generalisation of the uniaxial theory. A
discussion of a more generic model, including its potential structure and its relation to time-
independent plasticity as a limit case, will be left for Section 11.4.

11.3.1. A VON MISES-TYPE VISCOPLASTIC MODEL WITH ISOTROPIC STRAIN
HARDENING

The multidimensional generalisation of the uniaxial viscoplastic model follows the same
basic steps as the generalisation presented in Section 6.3 for the rate-independent theory;
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Box 11.2. A von Mises-type viscoplastic constitutive model.

1. Elastoplastic split of the strain tensor

£ = EE + Ep
2. Linear elastic law
o=D°:¢g°
3. Yield function
O(o,0y) =q(s(a)) —0ay; q= % 8:8

and elastic domain
&={o|®(o,0,) <0}

H_g@,z#ii
“Tac = V2 s

1 1/e
_ ,[(i) _ 1] if &(c, 7,) > 0
T=4 HL\Oy .

0 if ®(er, 0,) <0

4. Plastic flow rule

5. Isotropic strain hardening law

t
a=o@ &= [ Jerfa
0

6. Evolution of accumulated plastic strain

P — A

ET=Y

that is, the elastoplastic split of the total strain, the linear elasticity law, the flow rule and
yield function are recast in terms of the corresponding fensor quantities (total, elastic and
plastic strain tensors, stress tensor and flow vector). The yield function is also redefined as a
function of variables of appropriate tensorial order. The usual concept of an elastic domain
bounded by a yield surface in the rate-independent theory will remain valid in the viscoplastic
case. Here, as our multidimensional extension is von Mises-based, the yield function and the
plastic flow rule (including the hardening internal variable) will have the same format as
that of the standard rate-independent von Mises model with (associative) Prandtl-Reuss flow
vector. The resulting model is a viscoplastic version of the rate-independent isotropically
hardening von Mises model summarised in Section 7.3.1 (from page 216). The constitutive
equations of the von Mises-based extension are listed in Box 11.2.

Remark 11.2. Analogously to its rate-independent counterpart, under uniaxial stress condi-
tions, the model of Box 11.2 reduces exactly to the one-dimensional theory of Box 11.1. It is
also important to emphasise that the basic properties of creep, stress relaxation and strain-rate
dependence of the stress response (including the behaviour at limits) as demonstrated for the
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uniaxial model in Section 11.2.7 are reproduced by the multidimensional theory under any
state of stress.

11.3.2. ALTERNATIVE PLASTIC STRAIN RATE DEFINITIONS

So far, the explicit function for - that takes part in the definition of the plastic flow equation
(see expression (11.6) and item 4 of Boxes 11.1 and 11.2) has been assumed to be of
the form proposed by Peri¢ (1993). As mentioned in Section 11.2.4, many forms for 7
have been proposed and, in practice, a particular choice should be dictated by its ability
to model the dependence of the plastic strain rate on the state of stress for the material under
consideration. In this section, we list some of the most widely used forms. Clearly, each form
of 7 defines a different model of viscoplasticity. However, within the framework of von Mises
viscoplasticity, the format of the flow rule

EP =4 N, (11.34)
with associative flow vector IV defined by
o \/§ s
N=—=/=—, 11.35
90 ~\ 2 sl (113
and yield function
(0, 0y) = q(s(a)) — 0y, (11.36)

will remain unchanged for any definition of 4.

Bingham model

The Bingham model is the simplest model of viscoplasticity. The multiplier % in this case is
defined as

1 T (] .
- ®(a,0,) = q(g)lig" if ®(o,0,) >0

. 7 -

e oy=5 T ! (11.37)
0 if ®(o, o,) < 0.

The only material constant in this case is the (temperature-dependent) viscosity parameter 7
and the strain rate is modelled as a linear function of the von Mises effective stress. Note
that this law is obtained from Perié’s model given in item 4 of Box 11.2 (and also from the
Perzyna model described below) by setting

7
gy =k, (11.38)
Ty
In the uniaxial case, the plastic strain rate for the Bingham model is a linear function of the
axial stress:

Ef = % (lo| — ay) sign(a). (11.39)

This may severely limit the ability of the model to fit experimental data as, in many cases,
the observed strain rate may be a markedly nonlinear function of the stress. However, over
a relatively narrow range of stresses, the linear approximation may give good results. Other
models, with more material constants, have, in general, better flexibility to allow a wider
range of experimental data to be fitted.
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Perzyna model

This model was introduced by Perzyna (1966, 1971) and is widely used in computational
applications of viscoplasticity. It is defined by

1/e
L [—(’(") - 1] if (o, o) > 0
Y(o,0y) =4 ftL Oy ‘ (11.40)
0 if ®(c, 0,) < 0.

As in Perié’s model, the material constants are the viscosity-related parameter, i, and the rate
sensitivity, . We remark here that, in spite of its similarity to Peri¢’s definition, as the rate-
independent limit is approached with vanishing rate-sensitivity e — 0 (refer to Remark 11.1
on page 443), the Perzyna model does not reproduce the uniaxial stress—strain curve of the
corresponding rate-independent model with yield stress o,. As shown by Peri¢ (1993), in
this limit, the Perzyna model produces a curve with o = 2 g, instead. However, for vanishing
viscosity (1 — 0) or vanishing strain rates, the response of both Perzyna and Peri¢ models
coincide with the standard rate-independent model with yield stress oy,.

11.3.3. OTHER ISOTROPIC AND KINEMATIC HARDENING LAWS

In the viscoplasticity model of Box 11.2, only isotropic strain hardening has been taken into
account. Other hardening laws, such as isotropic work hardening (where the plastic work
is taken as the internal variable) as well as kinematic hardening and more general mixed
isotropic/kinematic hardening rules can be considered in a manner completely analogous to
that of the rate-independent theory as described in Section 6.6 (page 177); that is, isotropic
work hardening is obtained by having o, as a given function of the plastic work, w”, defined
by expression (6.177)

oy = oy(w?). (11.41)

Kinematic hardening is introduced by simply replacing the von Mises effective stress, g, with
the relative effective stress
q=+/3m:m, (11.42)

where 77 is the relative stress
n=s5-—0, (11.43)

and 3 is the backstress tensor. Evolution laws for 3, such as Prager’s rule and the Armstrong—
Frederick kinematic hardening law, can be defined as in Section 6.6.

11.3.4. VISCOPLASTIC MODELS WITHOUT A YIELD SURFACE

The assumption of the existence of an elastic domain bounded by a yield surface is essential in
the formulation of rate-independent plasticity models. For viscoplasticity models, however,
such an assumption is by no means required. In fact, particularly at higher temperatures,
many materials can be modelled as flowing whenever under stress; that is, the yield stress
is effectively zero. For example, many metals at high temperatures will flow at virtually
any stress state with a non-zero deviatoric component. In such cases, a yield surface and
a corresponding elastic domain do not need to be introduced in the formulation of the
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theory. Viscoplasticity models without a yield surface have been used widely, especially in
the analysis of creep and hot metal forming operations. Within the present framework, such
models can be defined simply by postulating the explicit function for 4 accordingly.

Norton’s creep law

The classical Norton creep law has been employed extensively in the analysis of creep of
metals. It is used mainly in the description of secondary creep. In its original (uniaxial)
version, the flow rule is given by

N
eP = (@) sign(a), (11.44)

where N and A are temperature-dependent material constants. Clearly, plastic flow is assumed
to occur whenever o # 0. Its multidimensional generalisation, sometimes referred to as
Odqvist’s law, is obtained by simply replacing the definition of the function for 4 in item
4 of Box 11.2 with the following

(o) = [@} g (11.45)

Here, plastic flow takes place for any stress with non-zero deviator. Note that, by setting
oy =01in (11.37) the Bingham model recovers the Norton law with N =1 and A = .

Lemaitre—-Chaboche law

A modification of Norton’s law in order to improve its ability to model secondary creep over a
wider range of stresses and strain rates is provided by the Lemaitre-Chaboche law (Lemaitre
and Chaboche, 1990). The function  in this case reads

N
Ao) = {Q(;)] expla g(a) V1. (11.46)

In addition to the material parameters N and A required by Norton’s law, the present model
has a third (also temperature-dependent) parameter .

Other creep laws

A rather general class of viscoplastic laws can be obtained by assuming that # is a function
of the stress, time and temperature, with the following multiplicative format

5 =40, t,T) = fa(0) fi(t) fr(T), (11.47)

where ¢ and T" denote, respectively, the time and absolute temperature and f,,, f; and fr are
experimentally defined functions. A comprehensive list of proposed empirical functions is
given by Skrzypek (1993), to which the interested reader is referred. For instance, f, could
be Norton’s law or the Lemaitre-Chaboche relation above. The temperature function fr is
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normally defined by the Arrhenius law

fr(T) = CexP[ (11.48)

RT ]
where C' is a constant, () is the activation energy usually independent of the temperature, R is
the gas constant 8.31 J mol™" K ~1. A typical example of an empirical relation of the above
format is given by the law (Boyle and Spence, 1983)

: —Q M N
=Cexp|———[t™ ¢, 11.49
7 P[ BT /] ( )
with M and N being material parameters.
Another interesting viscoplastic model used primarily in the description of the behaviour
of metallic alloys at high temperatures is the Bodner—Partom model (Bodner and Partom,

1975). An implicit computational implementation of the Bodner—Partom model has been
recently described by Anderson (2003).

11.4. General viscoplastic constitutive model

Having described in the previous section some of the most commonly used viscoplasticity
models, we proceed here to formulate a more general constitutive theory of viscoplasticity.
The theory presented here is a viscoplastic version of the general rate-independent model
described in Section 6.3 (from page 148) and summarised in Box 6.2 (page 151). At this point,
note that we will use here the notation of Section 6.3. The reader who is not familiar with
that notation, or concepts used in that section, is advised to review them before proceeding
further. The formulation of the viscoplastic model is analogous to that of its rate-independent
counterpart. It follows the same considerations as Sections 6.3.1 to 6.3.4, except that the flow
rule and hardening law are defined as

&P = G(a, A)
& = J(o, A);

(11.50)

that is, the plastic strain rate and the evolution law for the set ce of hardening internal variables
are defined by means of the explicit constitutive functions G and J of o and the set A of
hardening thermodynamic forces. In addition, as we have seen above, an elastic domain may
not exist. Thus, a yield function is not necessarily present in the viscoplastic formulation. The
constitutive equations of the general viscoplasticity model are listed in Box 11.3.

Note that the von Mises-based model of Box 11.2 (which incorporates an elastic domain)
is trivially recovered by defining the functions G and J as well as the free-energy potential
1 and the internal variable set c accordingly. The same applies to all other models (with or
without an elastic domain) described in Section 11.3.

11.4.1. RELATION TO THE GENERAL CONTINUUM CONSTITUTIVE THEORY

The above viscoplasticity model fits within the generic internal variable-based constitutive
framework discussed in Section 3.5.2 (from page 71). Indeed, it can be trivially established
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Box 11.3. A general viscoplastic constitutive model.

1. Additive decomposition of the strain tensor
e=e°+e’
2. Free-energy function
= 1;"}(5“: O:J
where x is a set of hardening internal variables

3. Constitutive equation for o and hardening thermodynamic forces A

W 4O

dee P e

o=p

4. Plastic flow rule and hardening law
e’ =G(o, A)

a=Jo, A)

that the model of Box 11.3 is a particular case of the general purely mechanical infinitesimal
constitutive law defined by (3.165) on page 76. The general viscoplasticity model is obtained
by simply defining the set ce of (3.165) as composed of the plastic strain tensor and the set of
hardening internal variables (as described in Section 6.3.2) and then introducing the explicit
constitutive functions for the rates of plastic strain and hardening variables listed in item 4 of
Box 11.3.

11.4.2. POTENTIAL STRUCTURE AND DISSIPATION INEQUALITY

A specialisation of the general theory of Box 11.3 can be obtained by endowing the model
with a potential structure (refer to the discussion surrounding expression (3.162) on page 74).
In this case, we define a dissipation potential

= =2(a, A), (11.51)

from which, through the hypothesis of normal dissipativity, the evolution of the internal
variables of the problem are derived as

L
" o
_ (11.52)
P |
dA

At this point, it is important to recall that the plastic dissipation in the present case is given
by (again, refer to Section 6.3.2)
o’ —Axaq,
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so that the dissipation inequality reads
T (e, A; €7, a) > 0, (11.53)

where
TP(o, A; e, a)=0: 6P —Axa (11.54)

is the dissipation function.

By defining = such that it is convex with respect to both variables, non-negative and zero-
valued at {or, A} = {0, 0} it is ensured that the dissipation inequality is satisfied a priori by
the model.

11.4.3. RATE-INDEPENDENT PLASTICITY AS A LIMIT CASE

In this section we show that rate-independent plasticity can be recovered as a limit case of
the above general viscoplastic theory with a potential structure. As emphasised above, the
general viscoplastic model is a particular instance of the internal variable-based constitutive
framework of Section 3.5.2. Thus, the demonstration that follows here shows effectively
that, as anticipated in Section 6.3.7, the elastoplastic model of Box 6.3 (page 151) can be
rigorously described, under some circumstances, as a particular case of the general continuum
constitutive theory of Section 3.5.2.

The indicator function of a convex set

The demonstration presented here is based on arguments of convex analysis.? Crucial to the
proof to be shown is the concept of indicator function of a convex set. In this context, let us
consider the closure, .7, of the elastic domain defined by means of a yield function &:

o ={(o, A) | B(c, A) < 0}. (11.55)

In rate-independent plasticity, & is the set of all admissible states (o, A) of stress and
hardening thermodynamical forces. The set & is convex, i.e. it defines a convex region in the
space of stresses and hardening forces. Following the above considerations, we now introduce
the indicator function, W, of the convex set & as the scalar-valued function defined by

0 if(o,A)e
Uy (o, A) = (11.56)
oo if (o, A) ¢ o

The indicator function is clearly non-differentiable.

The rate-independent limit

In what follows, we shall see that an associative rate-independent plasticity model is obtained
by adopting W, as the dissipation potential in the general viscoplastic theory; that is, we

choose
Z(o, A) =V, (o, A). (11.57)

fReaders not familiar with convex analysis are referred to Rockafellar (1970).
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At this point we need to make use of the concept of subdifferential ® In view of the non-
differentiability of the indicator function, the constitutive equations (11.52), which follow
from normal dissipativity, are replaced with the subdifferential relations

ép S arr‘p.w’
(11.58)
(NS _BA lII.c.‘/u

where d, ¥, and 04 U, are the subdifferentials of W,, with respect to o and A, respectively.
From the subdifferential definition (6.69) together with (11.56) it can easily be established
that (11.58) is equivalent to the inequality

el (c—oc*)+ax(A—A")>0, V(o' A") ey, (11.59)
or, equivalently, in terms of the dissipation function (11.54)
TP(o, A; €7, ) > TP(o*, A" éP, &), V(o A")e (11.60)

This last inequality states that, among all states (o, A™) € « the actual stress and hardening
force (o, A) maximise the dissipation function. This is known as the principle of maximum
plastic dissipation, discussed in Section 6.5.2 (page 170) to which the reader is referred for
details. The solution to the maximisation problem associated with the principle of maximum
plastic dissipation is the classical associative laws

L
#=1%
(11.61)
. . 0P
&= -Y5r
together with the loading/unloading conditions of rate-independent plasticity
O(o, A) <0, 4>0, (o, A)y=0. (11.62)

In summary, it has been shown above that the classical rate-independent associative plasticity
equations are rigorously recovered from the general viscoplasticity model when the indicator
function of the set &7 is taken as the dissipation potential.

Example: von Mises-based model

Let us now consider the von Mises-based model of Box 11.2 and, for simplicity, assume
that the model is perfectly viscoplastic (constant ¢,). Our purpose here is to illustrate
the above ideas by demonstrating that the viscoplastic model can be defined in terms of
a dissipation potential whose limit when € — 0 or y — 0 is the indicator function of the
set of admissible stresses of the perfectly plastic von Mises model. Thus, in such limits,
the perfectly viscoplastic model rigorously recovers the classical perfectly elastoplastic
von Mises model.

§Refer to Section 6.3.9 (from page 153) for the definition of subdifferential.
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We start by defining the dissipation potential as

14e
€

1 1 .
E@)=¢ # 1+e 1ltel oy Ty (11.63)
0 if g/o, <1,
where o is the only variable. With the above definition, the flow rule
J=
P = — | 11.64
€ do’ ( )

is found through a straightforward differentiation to be that of item 4 of Box 11.2; that is, the
above potential indeed defines the von Mises-based viscoplasticity model of Box 11.2 when
hardening is not considered.

Finally, by simple inspection, we can easily see that, when ¢ — 0 or y¢t — 0, the limit of
the potential = of (11.63) is the indicator function of the set of admissible stresses defined by
the von Mises yield function:

1'11'1'(1] E(o) = lim0 Z(o) = Uy (o), (11.65)
e— n—
where

& ={o|q(o) — o, <0}. (11.66)

This completes the demonstration. The schematic illustration of Figure 11.4 shows the
potential = for various choices of the rate-sensitivity parameter e. Clearly, as € — 0, = tends
to the indicator function of <.

11.5. General numerical framework

This section describes the basic ingredients needed to incorporate the general viscoplasticity
model of Box 11.3 into the finite element framework of Chapter 4. The basic requirements
are:

(i) an algorithm for numerical integration of the viscoplastic constitutive equations, to be
used to update stresses and other state variables of the model;

(ii) the associated consistent tangent modulus, to be used in the assemblage of the finite
element stiffness matrix.

For further discussions and analysis of various aspects of the numerical treatment of vis-
coplasticity, we refer to Simo and Govindjee (1991), Peri¢ (1993), Chaboche and Cailletaud
(1996), Simo and Hughes (1998), Simo (1998), Runesson and Mahler (1999), and Alfano
and Rosati (2001).

11.5.1. A GENERAL IMPLICIT INTEGRATION ALGORITHM

Before proceeding to the derivation of an integration algorithm for the general viscoplastic
model, it seems convenient, for the sake of clarity, to start by stating the underlying initial
value problem we wish to solve. The problem here is analogous to its rate-independent
counterpart, Problem 7.1, stated on page 193.
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s
= €0
small €
large €
e ———_-_-___-_-_-_-—--_- -
0 ! 4(0) /o,
-+

elastic domain

Figure 11.4. Viscoplastic potential = for various rate-sensitivity parameters e.

Problem 11.1 (The viscoplastic constitutive initial value problem). Given the initial
values €°(to) and (ty) and given the history of the strain tensor; €(t), t € [to, T}, find the
functions e¢(t) and c(t), for the elastic strain tensor and hardening internal variable set that
satisfy the reduced general viscoplastic constitutive equations

E°(t) = é(t) — G(a(t), A(t), aft)=J(a(t), A(t)) (11.67)
for each instant t € [tg, T, with

vy

i _ oy
o(t) =7 5

A)=pp_|- (11.68)
t

t

As in the definition of the rate-independent problem, the reduced system (11.67) of
ordinary differential equations has been obtained by incorporating the viscoplastic flow
equation (11.50); into the elastoplastic split of the total strain rate so that the plastic strain
does not appear explicitly in the initial value problem. Clearly, once the history of elastic
strain is determined in the solution to the above problem, the history of the plastic strain is

promptly obtained as
eP(ty =e(t) — e°(1). (11.69)

The fully implicit algorithm for the numerical solution of the above problem is derived
by simply applying a standard backward Euler time discretisation of the rate equations. The
resulting incremental problem is presented in Box 11.4, where a typical step over the time
interval [t,. tna1] is considered. The time and strain increments are defined in the usual
way as

At=t,r1 —tn, Ae=¢€nq41—€En. (11.70)
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Box 11.4. Fully implicit algorithm for numerical integration of general viscoplastic
constitutive equations.

Given the strain and time increment, Ae and At, over [ty t,.+1] and the state variables at t,,,
compute the updated state by solving the nonlinear system of equations

Eip1 — Eo — A + At G(O 41, Anyr) 0

Qny1 — 0n — AL J(T g1, Ang) 0

for €%, and o1, with

_ 81!.’ _ Ut,")
On41=P 5 g — ., Anpi=p 90
€ n+1 oo n+1

Models with a yield surface

Note that in the algorithm of Box 11.4 no assumption is made on the existence of an
elastic domain. The algorithm is valid for models with or without a yield surface. If a yield
surface is present, however, the specialisation of the algorithm of Box 11.4 takes a two-
stage format completely analogous to the elastic predictor/return-mapping procedure of the
rate-independent case. To see this, let us first consider that for a general model with a yield
surface, the constitutive functions G and J can be defined with the following form

G(o, A) = 4(, A) N(a, A)
(11.71)
J(O’, A) - F:'{o- A) H(G-* A)a

where, following the terminology of the rate-independent theory, IV is the flow vector and H
is the generalised hardening modulus. The scalar ¥ is zero within the elastic domain or on the
yield surface and may only be non-zero outside the elastic domain. Clearly, evolution of e”
and c may only occur here at states with ®(o, A) > 0, i.e. states lying neither in the elastic
domain nor on the yield surface. Then, as in the rate-independent case, it makes sense to first
compute an elastic trial state by assuming that the material behaviour is purely elastic within
the interval [t,,. tn+1]). If the trial state is within the elastic domain or on the yield surface,
then no viscoplastic flow takes place within the considered time step and the trial state is the
actual state at the end of the step. Otherwise, the evolution of €” and « is computed by means
of the standard backward Euler method. The resulting algorithm, which we shall refer to as
the elastic predictor/viscoplastic corrector or elastic predictor/viscoplastic return mapping
algorithm, is listed in Box 11.5.

Remark 11.3. The viscoplastic return mapping differs from its elastoplastic (rate-
independent) counterpart (refer to Box 7.1, page 199) in that, here, the updated stress state at
t.+1 generally lies on the outside of the yield surface, i.e.

(I)(O-HJrlx An+1) > 0.

This is in contrast with the rate-independent case in which the consistency equation, ¢, 41 =
0, forces the updated state to be on the yield surface when there is plastic flow over
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Box 11.5. Fully implicit elastic predictor/viscoplastic return-mapping algorithm
for numerical integration of general viscoplastic constitutive equations with a yield
surface over a generic time interval [¢,, t,41] with At =t 1 — tn.

(i) Elastic predictor. Given Ag and the state variables at ¢, evaluate the elastic trial state

enil =€ + Ae

trial

Qi) = Qp
rial P trial
trial o 81!’ e trial dd’
G'”_H:pﬁ-—;- ) A_h:ﬁ,—‘
aE ) n+1 " da n+41
(i) Check for viscoplastic flow
IF oo, Ay <0
THEN set  (-)ne1 = (1) and EXIT
(iii) Viscoplastic return mapping. Solve the system
Ent1 _5;-{;{“[ + Axy N(O',,+1,A,,+1) 0
Qi1 _a::j»“ll — Ay H(UJI+I:A1:+1) 0

for €41, and Ot;, 41 with
Ay =Avy(ontr, A,,+1) =At¥(Ont1, An+l)

and
N oL
Opr1=p — , A = =
! : () £ n+l‘ e ¢ da

n+1
(iv) EXIT

the considered interval. Nevertheless, the terminology viscoplastic return mapping remains
justifiable in the present case since, upon application of the procedure, the updated stress is
obtained by moving (or returning) the trial stress towards the yield surface.

11.5.2. ALTERNATIVE EULER-BASED ALGORITHMS

Similarly to the rate-independent case (refer to Section 7.2.7, page 201), different numerical
integration algorithms can be employed in the stress updating procedure. In what follows we
list the basic equations of the generalised trapezoidal and midpoint algorithms. For further
details on alternative integration algorithms we refer to Cormeau (1975), Zienkiewicz and
Cormeau (1974), Hughes and Taylor (1978), Marques and Owen (1983), Peirce et al. (1984)
and Koji¢ and Bathe (1987).
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The generalised trapezoidal algorithm

Here, the backward Euler discrete equations of Box 11.4 are replaced with the following
System

E?H-l = 5?1 + Ae — At [(I - 9) Gn + 4 CTTn+l}
Q] = oy + At [(1 = 9) J,+ 80 J,,+1],

where 0 is a prescribed parameter

(11.72)

0<e<1. (11.73)

For the choice § = 1, the implicit algorithm of Box 11.4 is recovered and § = 0 corresponds
to the explicit algorithm,

The generalised midpoint algorithm

For the generalised midpoint rule, the discrete system of equations reads

Eni1 =65+ Ac— At G0

(11.74)
Qpi1 =y + At Juto,
where the prescribed parameter, 8, also lies within the interval [0, 1] and
Gn+6‘ - G((l - 6’)ohn+1 I 0 Ty, (1 - Q)An + 7 An—i-l) (1 | 75)

Jn+0 :J((I = 9)0'114-1 + (90',” (1 - G)A-n + 9An+1)-

Again, for f = 1, the implicit algorithm of Box 11.4 is recovered and ¢ = 0 defines the explicit
algorithm.

11.5.3. GENERAL CONSISTENT TANGENT OPERATOR

To complete the requirements for the implementation of the model within an implicit finite
element environment, the tangent modulus consistent with the general algorithm is needed.
Let us then consider the algorithm of Box 11.4. Given all variables of the problem at t, and
a prescribed time increment At, the task here is to find the exact tangent operator

dC"nJrl do'n-f—l

D=
de,1 dAe ’

(11.76)

consistent with the stress updating procedure defined by the backward Euler algorithm of
Box 11.4.
Analogously to the general procedure for the rate-independent case (refer to Section 7.4 4,

from page 238), we start by linearising the system of time-discrete equations of Box 11.4,
The linearised system reads

oG 0G
& f— b — dA
de® + At pp do‘+A1‘aA*dA £
= , (11.77)
oJ aJ
- & — At =2 0
da — At oy do — At A *dA
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where the symbol * denotes the product of the appropri
have been omitted for notational convenience. With th
relations (7. 129) (page 239), the linearised system is equi

ate type and the subscripts n + 1
e introduction of the differential
valently written as

G
C+ At — B-i—AiEQE do dAe

do JA
= . (11.78)
aJ aJ
A— At == —~ AF dA
gy J— At 54 0

By inverting the linearised system above, we finally obtain a t

. . angent relation which can be
written symbolically as

do D11 Dlg dAe

= ) (11.79)
dA Dgl DQQ 0

where D;; are tensors of appropriate order resulting from the inversion of (11.78). The
consistent tangent operator we are looking for is the fourth-order tensor

do,,.
DE—TdAE“:DM. (11.80)

Models with a yield surface

For models with a yield surface, the tangent modulus is elastic if the state

: : ) : is within the elastic
domain; that is, as in rate-independent plasticity, when Plopyy, A

n+1) < 0, we have

_ 9%
Undejr visFoplastic flow, i.e. when (o4, Ant1) >0, the stress is the result from the
solution of the equation system of item (iii) of Box 11.5. In this case, the tangent operator is a
wecmiisation of the general tangent modulus (11.80) where the functions G and .J taking part
in the symbolic matrix (11.78) are defined by (11.71). The derivatives of G then specialise as

G  ON 93
90 1 9s TV® 5,
11.82
G . ON N a7 ( )
94~ 7oA T N* 54
Similarly, the derivatives of .J specialise as
QL_T _ . 0H ay
do ' do " 9o
11.83
9A "~ Toa T gy
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11.6. Application: computational implementation of a von Mises-based
model

To illustrate the application of the above numerical framework, this section describes in detail
the basic ingredients of the computational implementation of the von Mises-based model
with isotropic strain hardening given in Box 11.2. In addition to the detailed description of
the associated integration algorithm and consistent tangent operator, we present an accuracy
analysis of the algorithm based on iso-error maps. We remark that the procedures presented
here are not incorporated in the standard version of program HYPLAS that accompanies this

book.

11.6.1. INTEGRATION ALGORITHM

The integration algorithm described here is a specialisation of the generic algorithm described
in Section 11.5 to the model whose constitutive equations are summarised in Box 11.2. The
algorithm comprises the standard elastic predictor and the viscoplastic return mapping which,
for the present model, has the following format.

|. Elastic predictor. The material is assumed to behave purely elastically within the time
interval [t,,, tn+ 1]. The elastic trial state is then computed as

e° trial _ E:i? 3 Ae

E:ptrial — E{)x
(11.84)

=ptrial _ =p
E =&y,
O.t-rml — DC - g€ t.ru\l.

If ®(oti2! g, (&7 trial)) < 0, then the process is indeed elastic within the interval and
the variables at {4 are assigned the values of the trial variables. Otherwise, we apply
the viscoplastic return-mapping algorithm described in the following.

2. Viscoplastic return mapping. At this stage, we solve the system of discretised equations
of item (iii) of Box 11.5 which, for the present model, by taking the linear elastic law
into consideration, are specialised as

od

Oni1 =08 — Ay D¢ —
do

- (11.85)

=F — =P A~
€n+1 - E‘:z + A I

where the incremental multiplier, Av, is given by

1/e
Ay = ﬂ [( fi(Cf_njH))) _ 1}’ (11.86)

T
I Ty (En+ 1

with At denoting the time increment within the considered interval. After solv-
ing (11.85), we can update

5
P =gl 4+ Ay (11.87)

—_— -~ € —_—
En-}—l - "()0‘ ' Eu+1 = '80'

n+1 n+1
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Single-equation corrector

The viscoplastic corrector can be more efficiently implemented by reducing (11.85) to a sin-
gle scalar equation. The situation here is completely analogous to that of the implementation
of the elastoplastic (rate-independent) von Mises model described in Section 7.3.2 (page 217).
For convenience, the steps leading to the system reduction are repeated here. Firstly, we

observe that the plastic flow vector
od \/§ ]
90~ V2 sl (11.88)

is deviatoric so that the hydrostatic stress is independent of the viscoplastic flow. The stress
update equation (11.85); can then be split as

Sp+1 = St[-ial o A", 207 \/§ Sp+1
2 [lsnqall (11.89)

Pnt1 = pt.ria].

Further, simple inspection of (11.89); shows that s,,;; is a scalar multiple of s*?! so that,
trivially, we have the identity

8ni1 B St-l'inl .55
Tusall o] (120

which allows us to rewrite (11.89); as

_ 3 A"} 26’ trial ; A’} 36’ trial
Sp41 = (1 — \/;W)S = (1 = ql-l‘ial )S (] ]91)

= t '.é l . i) . . . . . ~ .
where ¢*"* is the elastic trial von Mises equivalent stress. Application of the definition of the
von Mises equivalent stress to the above equation gives the update formula

Gns1 = ¢ — 3G Ay. (11.92)

Finally, with the substitution of the above formula together with (11.85), into (11.86) we
obtain the following scalar algebraic equation for the multiplier A~y

At qt-riul — 3G A~ 1/€
Ay — — < = Tl =
Lo [( oy (eh + A7) ) ] o, (11.93)

or, equivalently, after a straightforward rearrangement,

At

trial
ey —2
(« Nom s

c
) —oy,(&h + Avy)=0. (11.94)
The single-equation viscoplastic corrector comprises the solution of (11.93) or (11.94) for the
unknown A~ followed by the straightforward update of o, 7, €”, ¢ according to the relevant
formulae. The solution of the equation for A+ is, as usual, undertaken by the Newton—
Raphson iterative scheme. The overall algorithm is summarised in Box 11.6 in pseudo-code
format.
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Box 11.6. Integration algorithm for von Mises-type viscoplastic model (over a
generic time interval [ty tny1] With At =t — ta).

(i) Elastic predictor. Given Ag, and the state variables at £,,, evaluate the elastic trial state

et lll'll E,, 1 Ae

—ptrial _ —p
n+1 —en

trial - e trial | trial ,__ ¢ ~e trial
p“r;;] =K Eyv n+1s 8 L 26 E(] n+1

gl = /3 llsteidl
(ii) Check for viscoplastic flow
IF ¢t — o, (7™ <0 (elastic step)
THEN set  (-)n+1:= ()%  and EXIT
(iii) Viscoplastic flow. Solve the return-mapping equation

At ‘ s
Ra) = (@it - 36 89) (o ) —oul(eh + A9) =0

for A~y using the Newton—Raphson scheme. Then update

9t
R trial , i A,), 3G S(riul
Pn4+1 = Pnt1s Sn41 = T trial n+1
qn+1
Ontl = 8n+tl +Pn+1 I

2 trial
S;H-l = QC' Sp41 + § £y nrl%‘] I
e =8 + Axy

(iv) EXIT

Remark 11.4 (Rate-independent limit). Note that, as expected, equation (11.94) rigorously
recovers its elastoplastic (rate-independent) counterpart (7.91) (refer to page 219) when p —
0 (no viscosity), € — 0 (no rate-sensitivity) or Aé — oo (infinitely slow straining). Clearly, in
such cases, the algorithm of Box 11.6 reproduces the rate-independent elastoplastic numerical
solution.

Remark 11.5 (Computational implementation aspects). In the computer implementation
of the model (as shown in Box 11.6), it is more convenient to solve (11.94) rather than (11.93)
in the viscoplastic corrector stage of the algorithm. The reason for this lies in the fact that, for
low rate-sensitivity, i.e. small values of ¢, the Newton—Raphson scheme for solution of (11.93)
becomes unstable as its convergence bowl is sharply reduced with decreasing €. The reduction
of the convergence bowl stems from the fact that large exponents 1/¢ can easily produce
numbers which are computationally intractable. This fact has been recognised by Peri¢ (1993)
in the context of a more general viscoplastic algorithm. In equation (11.94), on the other hand,
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the term to the power € on the left-hand side can only assume values within the interval [0, 1]
and causes no numerical problems within practical ranges of material constants.

Remark 11.6 (Solution existence and uniqueness). Within a viscoplastic step, we have

trial > =p trml) =p

Ty ( UU(EJJ)'

q
Let R(A-y) be the function defined by the right-hand side of (11.94). The above inequality
clearly implies that R(0) > 0. In addition, taking into account the strict positiveness of the
hardening function o, we can easily verify that R(¢*"!/3G) < 0. The continuity of R then
implies that (11.94) has a root within the interval (0, ¢*"*!/3G). Let us now consider the
derivative of R,

trial A"
R'(Av)=— (3(? i 2 —t6 ) ( i

P
WAyt AL J\udy+ At) Hign +&a),

where H is the derivative of the isotropic hardening function &,,. Upon simple inspection, we
can easily establish that the derivative R’ is strictly negative for Ay € (0, "2 /3@) if the
viscoplastic model is non-softening, i.e. it H is non-negative for any value of accumulated
plastic strain. The strict negativeness of ' in conjunction with the existence of a root for R
established in the above implies that the root of 12 (the solution of the viscoplastic corrector
equation) within the interval (0, ¢*"*! /3G is unique for non-softening materials.

11.6.2. ISO-ERROR MAPS

To illustrate the accuracy of the above integration algorithm in practical situations, this
section presents some iso-error maps, produced with material constants covering a range
of high rate-sensitivity to rate-independence. The material is assumed perfectly viscoplastic
(no hardening). The maps have been generated in the standard fashion as described in
Section 7.2.10 (refer to Figure 7.7, page 215). Using the three-dimensional implementation
of the model, we start from a stress point at time t,,, with o, lying on the yield surface, and
apply a sequence of strain increments (at constant strain rate within the interval [¢,, tn41]),
corresponding to linear combinations of trial stress increments in the direction normal and
tangential (directions of the unit tensors IN and T'of Figure 7.7, respectively) to the von Mises
circle in the deviatoric plane. Figures 11.5 and 1 1.6 show iso-error maps obtained at low and
high strain rates with the non-dimensional rate

el

set respectively to 1 and 1000. For each non-dimensional rate, three values of rate-sensitivity
parameter, ¢, have been used: 10°, 10~! and 0. Recall that for ¢ = 0 the algorithm reproduces
the rate-independent solution. The resulting map in this case is obviously identical to the
rate-independent map of Figure 7.7(b) and is shown here only to emphasise the effect of
rate-dependence on the integration error. The main conclusion drawn from the iso-error
maps is that, in general, increasing (decreasing) rate-sensitivity and/or increasing (decreasing)
strain rates tend to produce decreasing (increasing) integration errors. The largest errors are
expected in the rate-independent limit.
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11.6.3. CONSISTENT TANGENT OPERATOR

The consistent tangent operator here is a particular case of the general tangent operator
derived in Section 11.5.3. Clearly, when the stress state lies within the elastic domain and no
viscoplastic flow is possible, the tangent operator is the elastic tangent, D°. Under viscoplastic
flow, the tangent operator which (as in the rate-independent case) will be denoted D", is
derived by consistently linearising the viscoplastic return-mapping algorithm referred to in
item (iii) of Box 11.6. Its closed-form expression can be obtained by following the same steps
of the derivation of the elastoplastic (rate-independent) tangent presented in Section 7.4.2
(from page 232). The incremental constitutive function for the stress tensor in the present
case has identical format to that of the rate-independent implementation given by (7.93)
— which reduces to (7.113) under plastic flow — but the incremental plastic multiplier A~y
here is the solution of viscoplastic return-mapping equation (11.94). Thus, to obtain the
viscoplastic consistent tangent, we simply replace the derivative of the incremental plastic
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multiplier (7.118) with the expression

Ay

1+ /3
2G /3 )

dei it 3G + (

At = M n41
I A"HLA!) H+ 1w Ay+At

Nn+ls (”95)

which is consistent with (11.94). Analogously to the elastoplastic case, this expression is
obtained by taking the differential of the viscoplastic corrector equation (11.94), having A~y
and ¢'714! as variables, and equating it to zero. With the above differential relation, the final
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elasto-viscoplastic consistent tangent operator is obtained in closed form as

Ay 3G
D = 2G (1 - %) la
n-|:l
12 Aﬁlf I N \J
+6G? | g — — | N1 @ Ny + K IQ L
In41 3G+ (m) H+ m

(11.96)
Note that the tangent operator is symmetric.

Remark 11.7 (Rate-independent limit). By simple inspection we find that in the limits € —
0 (vanishing rate-sensitivity parameter), ;. — 0 (vanishing viscosity) or At — oo (infinitely
slow straining), expression (11.96) rigorously recovers the elastoplastic consistent tangent
operator of the isotropically hardening rate-independent von Mises model with implicit return
mapping given by expression (7.120).

11.6.4. PERZYNA-TYPE MODEL IMPLEMENTATION

The implementation of the von Mises-based model with Perzyna’s viscoplastic law (1 1.40)
follows exactly the same procedure as described in the above except that, consistently with
the backward Euler time discretization of (11.40), the return-mapping equation (11.94) (or
item (iii) of Box 11.6) is replaced with

. Av\*
¢ — 3G Ay - [1 + (L A:) ]Jy(e’,; +Ay) =0. (11.97)

Here, we have assumed isotropic strain hardening. Note that, as ;¢ — oo (vanishing viscosity)
or At — oo (infinitely slow process) equation (11.97) reduces to that of the elastoplastic rate-
independent von Mises model with yield stress o,. For vanishing rate sensitivity parameter,
¢ — 0, (11.97) reduces to a von Mises elastoplastic return-mapping equation with yield stress
20,. This is, as one should expect, in agreement with the theoretical limits of the Perzyna
model discussed in the text immediately following equation (11.40).

Elasto-viscoplastic consistent tangent operator

The differential relation between the incremental plastic multiplier and ¢ t7i#! consistent with
the return-mapping equation (11.97) reads

DA 2G \/g N (11.98)
LA = n+1, :
Oesii™ 3G+ [1+ (LAY))H + £ (L81) o, '
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Figure 11.7. Double-notched specimen. Reaction-deflection diagrams: (a) € = 10°%; (b) e = 1072,

where o, is evaluated at &, = &% + A~. This expression is the counterpart of (11.95)
for the present implementation of Perzyna’s viscoplasticity law. The corresponding elasto-
viscoplastic consistent tangent operator is obtained following the usual procedure as

D¢ =27 (1 - M) Iy

trial
n+1
Ay 1 - .
¢ 3G+ [1+ (BA7))H + & (£21) g,
+KI®L (11.99)

Its format is completely analogous to that of (11.96).

11.7. Examples

The finite element examples presented in this section illustrate applications of the compu-
tational treatment of viscoplasticity described above. The underlying viscoplastic material
model is the one shown in Box 11.2, which includes isotropic strain hardening.

11.7.1. DOUBLE-NOTCHED TENSILE SPECIMEN

The rate-independent version of this problem has been studied in Section 7.5.5 (from
page 255). The problem consists of the plane strain analysis of a deep double-notched tensile
specimen. The geometry of the specimen and the finite element mesh used are shown in
Figure 7.29 (page 256). Analogously to the prescription of edge displacement u (refer to
Figure 7.29), the simulation consists of stretching the specimen by prescribing a constant
(in time) vertical velocity v on the top nodes of the mesh. For convenience, we define the

normalised stretching rate
_pv

R

*

[
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and the simulation is carried out for three different values of v*
v =10"%, 10°, 10%

This choice covers very slow to very fast strain rates and is meant to demonstrate the
robustness of the integration algorithm over a wide range of strain rates. The following
material parameters are adopted

E =206.9GPa; r=0.29; o, =0.45GPa (constant).

The linearly hardening case listed in Figure 7.29 is not considered here. In order to show the
effect of the rate-sensitivity parameter on the behaviour of the model, two values of € are
considered

e=10" and 1072

The results of the finite element simulations are presented in Figure 11.7 whose diagrams
show the evolution of the reaction forces on the constrained edge against the corresponding
edge deflection. As in the rate-independent case, the results are plotted in terms of the
normalised net stress and the normalised edge deflection defined in Section 7.5.5. The results
for € = 10° and 10~2 are shown, respectively, in Figures 11.7(a) and (b). They illustrate the
expected higher reactions and limit loads for higher rates of stretching. For the lowest non-
dimensional rate of 104, the rate-independent solution is recovered for any rate-sensitivity
parameter. We remark that the rate-independent solution shown in the graphs for comparison
can be obtained with the present model/algorithm simply by setting € = 0 or ¢ = 0.

11.7.2. PLANE STRESS: STRETCHING OF A PERFORATED PLATE

This section describes the viscoplastic version of the plane stress problem of Section 9.5.3
(from page 390). This example has been analysed by Peri¢ (1993). Here, a plane stress
version of the numerical integration algorithm discussed in Section 11.6.1 is employed.
The plane stress implementation adopted follows the nested iteration approach described in
Section 9.2.2 (page 362) in the context of rate-independent plasticity. The problem consists
of the axial stretching at constant rate of a perforated rectangular plate whose geometry is
shown in Figure 9.7 (page 392). The mesh, boundary conditions and the material parameters
that are common to both plastic and viscoplastic models are also shown in Figure 9.7. Note
that linear strain hardening is assumed. The viscosity parameter adopted (required for the
viscoplastic model) is
1=29500s.

Similarly to the previous example, in order to illustrate the response predicted by the
viscoplastic model over a wide range of conditions, several simulations are carried out with
various stretching rates, with three values of rate sensitivity coefficients (¢ = 1, 1071, 1072
being considered. The results obtained in the simulations are shown in Figure 11.8 where
the reaction on the constrained edge of the plate is plotted against the prescribed edge
displacement for the various conditions considered. The stretching rate in the present case
is defined as
2/,



470 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

where v is the stretching velocity imposed on the nodes of the upper edge. The three
graphs of Figure 11.8 show the effect of stretching rates on the response of the plate, with
higher reactions obtained at high rates and the rate-independent solution being approached
as the stretching rate vanishes. The effects of the rate sensitivity parameter are also clearly
illustrated. At higher (lower) values of ¢, a greater (smaller) variation of reaction as a function
of the stretching rate is produced.

12 DAMAGE MECHANICS

NTERNAL damage can be defined as the presence and evolution of cracks and cavities

at the microscopic level which may, eventually, lead to failure — a complete loss of load-
carrying capability of the material. In many engineering applications, particularly those where
mechanical/structural components are subjected to severe service conditions, the useful life
of components is a crucial item of information which has to be carefully considered during
the design process. In such cases, the ability of the designer to predict mechanical failure
becomes an important factor. In some applications, such as in certain types of industrial
machinery, non-scheduled stops for maintenance owing to unpredicted failure may incur
serious economic consequences. In the design of manufacturing processes, such as metal-
forming operations, prediction of failure is also a crucial issue. In safety-critical applications,
frequently encountered in the aeronautical and nuclear industries, unpredicted failure may
have catastrophic effects with consequences far beyond purely economical issues.

Traditionally, the prediction of useful life/failure of materials is based on mostly empir-
ical experience accumulated over long periods of time. In some cases, failure prediction
is achieved by the systematic (and expensive) testing of real models under laboratory-
reproduced service conditions. However, with the growing knowledge of the mechanisms
of progressive internal damage that cause failure in a wide range of materials, it is becoming
possible to formulate continuum constitutive models capable of accounting for the evolution
of internal deterioration. This relatively new branch of continuum solid mechanics is known
as Continuum Damage Mechanics (CDM). This fact, allied to the fast development of
computational mechanics techniques, has made the use of computational tools to carry out
life/failure prediction a realistic alternative that can be successfully adopted in many design
and damage assessment situations.

The present chapter is devoted to computational continuum damage mechanics. Our inten-
tion here is to provide the reader with an introduction to this new and promising ramification
of computational solid mechanics that has been gaining widespread acceptance over the last
two decades. The material presented in this chapter is summarised as follows. After providing
a brief review of some basic mechanisms that characterise the presence and evolution of
damage in Section 12.1, we give in Section 12.2 a brief historical account of CDM together
with a discussion on the continuum modelling of damage phenomena. Sections 12.3, 12.4
and 12.5, describe, respectively, Lemaitre’s ductile damage model (Lemaitre, 1985b), a
simplified version of Lemaitre’s model where kinematic hardening is not considered and
Gurson’s void growth model (Gurson, 1977). In each of these sections, the computational
implementation of the corresponding constitutive models within an implicit finite element
environment is described in detail. Note that the simplified version of Lemaitre’s model
discussed in Section 12.4 is fully incorporated into program HYPLAS. Further issues, including
crack closure effects and damage anisotropy are addressed in Section 12.6.
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Accumulated plastic slip, 698
Accumulated plastic strain, 145, 179, 183, 184
Accuracy onder, 211
Almansi strain tensor, 54
Alternating tensor, 24
Angle of intemal friction, se¢ Frictional zngle
Angular velocity, 44
Arc-length method, 107
computer implementation of, 120
Armstrong-Frederick kinematic hardening
law, 188, 1940, 448, 480
al findle strains, 635, 644
Array nolalion, see Matrix notation in finite
elements
Array of engineenng strains, 93, 760
Avray of stress components, 88, 739
Arthenius law, 450
Aszembly operator, see Finite element
assembly operator
Associative hardening, 183, 184, 243, 267,
296
for multisurfzce models, 183
Axial vector of a tensor, 25

B-matnx, see Discrete gradient operator,
SYMMENT
Bazck-stress tensor, 185, 257, 480
Green-Naghdi rate of, 634
Oldroyd rate of, 645
spatial, 634
Bauschinger effect, 183, 257, 420
b crystal, 6492
Bending locking, 669
BFGS scheme, see Quasi-Newton methods,
BFGS scheme
Bingham viscoplastic modzl, H7
Biot strain tensor, 54
Blatz-Ko material, 530
Bodner—Partom viscoplastic moda], 450
Body force, 61
reference, 63
Boundary traction, 65
reference, 63

Brittle damage, 472
Bulk modulus, 93

Calorodynamic process, 69
Cantesian components
of a tensor, 21
of a vector, 18
Cantesian coordinate frame. 18
Cartesian coordinates of a point, 18
Cauchy elastic matenal, 320
Cauchy stress tensor, 62
“auchy stress vector, 61
Cauchy’s axiom, 61
Cauchy’s equation of motion, 63
Cavchy’s theorem, 62, 67
Cauchy-Green strain tensors, 50, 53
Chain rule, 36
Charactenistic equation, 27
Charactenistic space, 25
Clausius-Dubem inequality, 69, 149
Closest point projection algorithm, 200
Cohesion, 164
Compaction pressure, 405
Complementarity condition, 144, 147
discrete, 195
Configuration-dependent load, 106
Conservation of mass, 67, 499
Consistency condition, 147, 152
Consistent tangent matrix, 98
Consistent tangent modulus, see Consistent
langenl operator
Consistent tangent operator, 192, 199
for a hyperelastic-damage mixdel, 367
for a single crystal model
implementation, 713
for elastoplasticity, 229
for finite strain multiplicative plasticity,
397, 601
with kinematic hardening. 642
for implicit retum mappings, 238
capped Drucker-Prager model], 413
Diucker-Prager model, 337
Gurson mode], 502
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Hoffman model, 433
Lemaitre damage model, 485
miodified Cam-Clay modal, 403
Mohr—-Coulomb modzl, 316
simplified Lemaitre damage modzl,
490
Tresca modal, 286
von Miswes model, 232, 242, 362, 352,
LR
for the damaged clasticity mode], 510
for viscoplasticity, 438
at finite strains, 606
Perzyna type model, 466
single crystal model implementation.
125
von Mises-bazed modez]
implementation, 464
in plane stress, 366, 352
infinitesimal, 93, 754
material, 755
non-symmetry of, 4019, 426
spatial, 104, 105, 756
symmietry property of, 243
Timoshenko elastoplastic beam, 401
Constitutive function, incremental, see
Incremental constitutive function
Constitutive funciional, 70, 71
Constitutive initial value problem, 76
elastoplastic, 193
at finite strains, 590
plane stress, 359
incremental, see Incremental constitutive
problem
infinitesimal, 76
viscoplastic, 455
Continuum Damage Mechanics, 471, 473
Continuum elastoplastic tangenl operator,
153, 215, 242, 243
for the Green-Naghdi rate-based model,
624
for the Jaumann rate-based modzl, 623
for the von Mises model, 234
symmetny of, 153, 244
Convected rate of stress, 621
Convergence criterion, finite element
equilibrium solution, 93
Crack closure effects, 304, 510
Creep. 426, 439
tertiary, 436, 474
Creep-damage., 474
Critical state line, 404
Cross product, see Vector product
Crystallographic slip, 579, 692, 695
Cutling plane method, 205, 208, 213

INDEX

Damage, 436, 472
Damage effective stress, 474, 478
Damage energy release rate, 479
Damage mechanics problems, see Numerical
examples, damage mechanics
Damage models
anisodropic, 512
damaged elasticity law, 307
Giurson, 4946
Gurnin-Francis, 360
hyperelasticity with damage, 357
Lemaitre, 478
simplified, 486
with crack closure, 511
Damage surface, 564
Damage tenzor, 512
Damage threshold, 481, 490
Damage variable, 474476
D formation. 41
Deformation gradient. 46
determinant of, 48
elastoplastic multiplicative
decompasition of, 378
incremental, 127, 592
icochoric/volumetric split of, 49
polar decomposition of, 49
Determinan of a tensor, 23
Deviatoric plane (or m-plane), 160
Deviatoric projection tensor, 59
Deviatoric strain, see Strain deviator
Deviatoric stress, see Stress deviator
Dilferential-algebraic equations, 209
Differentiztion, 32
Dilatancy, 175, 176
Dilatancy angle, 175177, 185
Directiona] denivative, 32
Dizcrete gradient operator
\rl.'.li.ﬂ. ([1%)
symmetric, 87
spatial, 103
Discretized virwal work equation, 58
linearised, 95
Dissipation function, 149, 452, 453
Drissipation potentizl, 74, 451, 453
Dristortional elastic strain encrgy, 162
Divergence, 37
material, 46
spatial, 46
Divergence theorem, 37
Ductile damage, 472

Effective plastic strain, see Accumulated
plastic strain

Eigenprojection, 26

Eigenvalue, 25

INDEX

Eigenvector, 25
Elastic deformation gradient, 578
Elastic domain, 140, 143, 150
for multisurface models, 156
Elastic predictorfreturn mapping algorithm,
196, 199
for a Timoshenko beam model, S00
for finite strain Green-Naghdi
rate-hazed models, 632
for finite strain Jaumann rate-hazed
madels, f3]

for finite strain multiplicative plasticity,

590
in plane stress, 602
with Kinematic hardening, 637
for finite strain single crystal plasticity,
659
planzar double-slip maoxdel, 707
for the Barfai-Lian mode], 431
for the capped Dnucker-Prager modzl,
412
for the Divcker—Prager model, 324
plane stress, 363
for the Gurson mode], 501
for the Hotfman mode], 424
for the Lemaitre damage mode], 432
for the modified Cam-Clay model, 406
for the Mohr-Coulomb model, 297
for the simplified Lemaitre damage
modal, 486
for the Tresca model, 268
for the von Mises model, 215, 221
in planz stress, 364, 373
with mived hardening, 258
for viscoplasticity, 456
al finite strains, G
Perzyna-type modz], 466
von Mises-bazed model, 460
Elastic rotation, 379
Elastic strain, 142, 1458
logarithmic, 582
Elastic stretch, 379
Elastic trial handening force, 196
Elastic trial state, 196, 424, 593
Elastic trial stress, 190
Elastic velocity gradient, 580
Elasticity
linear, see Linear elasticity
orthotropic, 423
plane stress, 358
Elasticity matrix, 93
Elasticity tensor
first, 755
infinitesimal, 93
spatial, 534, 756
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Blatz-Ko model, 537
Hencky madel, 537
Ogden model, 535
Elastoplastic tangent modulus, 147
Engincerning strains, see Amay of engineenng
slrains
Enhanced assumed strain finite elements, 669
Equilibrium path, 107
Equivalent plastic strain, see Accumulated
plastic strain
Error map, see [so-ermor map
Esszntial boundary condition, 79
Euler method
backward, 194, 213, 455, 571
forward, 200
Eulerian straim, 54
Euterian triad, 52
Exponential map integrator, 591, 700, 724,
751
Exponential of a tensor, see Tentor
exnponzntial funciion
Extemal force vector, 85

Fatigue damage, 472
F-bar finite elements, 648
F-bar-Patch finite elements, 665
for crystal, 692
Filled rubbers, 473, 557
Finite element assembly operator, 89
Finite element equilibrium equation, see
Discreticad virmoal work equation
Fimite elenmsent mesh, 85
Fimite step accuracy, 212, 213
First Piola-Kirchhofl <tress, 63
First principle of thermodynamics, 68
Florw pestential, 151
noen-smooth, 155
Floew mule, 1530
assnciative, 1532
associative Barlat-Lian, 430
associative Hill, 420
aszociative Hoffman, 422
asaociative Trezca, 171, 267
bazed on Drucker-Prager function, 173
bazed on modified Cam-Clay function,
405
based on Mohr—Coulomb function, 173
denived from a Now potential, 151
finite strain multiplicative plasticity, 584
for associative multisurface models, 157
for single crystals, 695
for the capped Drocker-Prager model,
410
for the Gurson mode], 498
Prandtl-Reuss, 171
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uniaxial, 144
viscoplastic, 450
one-dimensional, 438
Flow vector, 150
derived from a Aow potential, 151
denived from a non-smooth flow
potential, 155
Founth-order tensor, 29
Frame invariance, see Material objectivity
Free-energy, 69
for an elastoplastic material, 148
for finite strain hyperelasticity, 520
for the Lemaitre damage model, 478
isolropic, 521

Frictional angle. 164, 175, 185

G-matnx, see Discrete gradient operator,
spatial

Gaussian quadrature, 89

Geometric stiffness, see Stiffness matrix,
geomelnc

Gradient of a feld, 32

Green-Lagrange strain tensor, 53

Green-Naghdi rate of stress, 621

Gurson porous plasticity model, see Damage
maodels, Gurson

Gurtin-Francis damage model, see Damage
maodels, Gurtin-Francis

Hardening. 140
Hardening curve, 145, 179, 1581
Hardening modulus, 147
generalisad, 150
linear isotropic, 182
linear Kinematic, 186
Hardening slope, see hardening modulus
Hardening, derived from a Aow potential, 151
Handening, derived from a non-smooth fow
potential, 155
Hardening. general model, 150
Hardening. uniavial modal, 145
Heaviside step function, 221
Helmholtz frec-encrgy, see Free-ensrgy
Hencky matenal, 528
in plane stress, 532
Hencky strain tensor, see Logarithmic strain
LEns0T
Homogeneous deformation, 47
hpe crystal, 692
Hu—\ashizu variational principle, 669
Hughes—Winget algorithm, 631
Hydrostatic stress, 64
Hyperelasticity, 320
compressible regulanization, 525

INDEX

in plane stress, see Plane stress
hyperelasticity
incompressible, 524
isotropic, 521
Hyperelasticity problems, see Numerical
examples. finite hyperelasticity
Hyperelasticity with damage, see Damage
micdels. hyperelasticity with
damage
HYPLAS program
data input and initialisation, 117
elements, implementation and
management, 128-131
elobal datahaze, 117
increment cutting, 123
lozd incrementation, 120
mazin program, 117
mazterial models, implementation and
management, 131-135
HYPLAS subprograms:
ARCLEN, 10/, 1200, 122-124
CONV 100, 102
C3TEF2, 6]
C3TO0GD, 542, 545, 346
C3TFDE, 713
CTDAMA, 456, 491
CTDMEL, 510
CTDP, 324, 337, 30, 42, 343
CTDFPN, 365
CTMC, 295, 315, 318, 319, 324, 342
CTOGD, 134, 538
CTTR, 266, 283, 191, 294, 295, 324, 599
CTVM, 134, 235, 364366, 353, 569, 599
CTVMME, 257, 263
CTVYMP3, 383, 384
DEXFHF. 702
DGIS02, 287, 289, 291, 295, 317, 731,
737,738
DIS02, 537, 599, 731
OPLFUN, 228, 238
ELEITF, 125, 126, 128, 129, 131
ELEIST. 100, 109, 129, 131
ERRPART. 119, 227
FRONT, 100, 109, 120, 123 124, 129
IFFB2, 538
IFFBAZ, 119, 656
IFSTDZ, 100, 128, 129, 538, 656
IKCREM, 120
KDATA, 118, 119, 129
INIKCR. 115
INITIA, 119, 120
INLOAD, 118, 119, 129
INTFOR. 100, 109, 124, 126
Is02. 731
LENGTH. 121

INDEX

MATICT, 134, 135, 235, 237, 369, 601

MATIOR, 135

HMATIRD, 132, 135

HMATISU, 100, 128, 133, 135, 224, 227,
500

HATISW, 120, 134, 135

ORDAMA, 456

ORYM. 135

OUTPUT. 125

PLFIN, 228

RDDAMA, 4586

RDDP, 337

RDMC, 315

RDOGD, 541

ROTHR. 253

RDVH. 227

RSQ4. 129

R5T3. 129

RSTART. 1185,

SFQ4, 130

8FT3, 130

SHRFUN, 130

SPDECZ, 731, 735

STFBAZ. 129, 656

STSTD2, 100, 128, 129, 656

SUDAMA, 486, 490

SUDMEL, 509

SUDP, 124, 320-334, 337, M40, 342

SUDPEN, 363

SUFAIL, 227

SUME, 295, 303-310, 315, 316, 318, 319,
324,334, 337

SUDGD, 528, 531, 536, 538, 541, 542,
567

SUPDSC, 708

SUPGD, 5338

Td
Lh

SUTR, 128, 273, 274, 276-279, 182, 183,

201, 294, 310, 315

SUVM, 133, 224, 215, 261, 310, 264, 567,

SUVHME, 257, 261

SUVHES, 133, 376, 378, 379
SWDAMA, 486

SWITCH, 124, 125

SWOGD, 134

SWVM, 134

UPCONF, 100, 104

Identity tensor
of fourth-onder, 31
symmetric, 31
of second order, 19
Incremental boundary value problem
at finite strains, 103

infinitesimal, 93
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Incremental constitutive function, 95, 102,
127, 133, 192, 229, 598
for clastoplasticity, 230
for the viscoplastic von Mises-hasad
modzl, 464
for the von Mises model, 220, 223, 233,
264}
Incremenal constitutive problem
of finite strain multiplicative plasticity,
92
of infinitesimal elastoplasticity, 194
Incremental displacement vector, 98
Incremental finite element equilibrivm
equations
al fimite strains, 103
infinitesimal, 96
Incremental objactivity, 625
Incremental plastic multiplier, 195
Incremental potential, 243
Indicator funciion, 452
Infinitesimal deformation, 57
Infinitesimal strain tensor, 57
Initial boundary value problem, 79
infinitesimal, 81
material, 80
spatial, 79
Tnitial stiffness method, 99
Initial yield stress, 182
Inner product of tensors, 22
Ineer product of vectors, 17
Intermediate conliguration, see Plastic
intermediate configuration
Intemal force vector, 88, 192
Internal variables, 72
Inmerpolation function, se¢ Shape function
Interpolation matrix, 87
Invertible tensor, 23
lso-error map, 214, 215
implicit Drocker-Prager model
implementation, 337
implicit Lermaitre maodz]
implementation, 483
implicit Mohr-Coulomb model
implementation, 315
implicit Tresca mode] implementation,
153
viscoplastic von Mises-basad maodzl
implementation, 463
leochoric deformation, 48
lsoparametric finite element, 90
Teotropic handening, 178, 448
Teotropic scalar function, 731
lsotropic solid, 71
lsotropic tensor, 30
lsotropic tensor funciion, 287, 316, 733
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J-integral, 479

Jadi-invariants, see Stress deviator,
invariants of

Jaumann rate of siress, 619

Kinematic hardening, 185, 257, 448
2t finite “lrains, 633
Kinematically admissible displacements <21,
79
discretised, 86
Kirchhofl stress, 67
Kubn-Tucker optimality conditions, 170

Lagrangizn strain, 53

Lagrangian trizd, 52

LATIN Meathad, 101

LBB condition, 657

Left Cauchy—Green strain tensor, see
Cawchy—Green strain tensors

Left stretch tensor, see Stretch tensors

Lemaitre-Chaboche viscoplasticity model,
440

Lie derivative, 583

Limit load, see Plastic collapse problems

Line-search, 200, 431, 433, 489, 490, 501, 720

Linzar elasticity, 93

Linzar hardening, 182, 223, 244, 261

Linearisation, 38

in infinite-dimensional Munctional

spaces, 39

Lincarised finite element equilibrium
equation, see Discreticed virtual
work equation, linearized

Load factor, 96

Lozd-stifiness matrix, see Stiffness matriy,
load <tiffness

Loadingfuntoading conditions, 145, 150

for multisurface models, 157
Liske zngle, 161
Logarithmic strain tensor, 54, 528, 382

Macauley bracket, 505

Master damage curve, 560, 564

Material description, 44

Matenal field, 44

Material gradient, 46

Material objectivity, 70, 320, 619

Material stiffness, see Stiffness matrix,
miaterial

Material symmetry, 71, 521

Material 1angent modulus, see Consistent
tangent operator, material

Matenal time denvative, 46

Mathematical programming, 210

Matrix notation in finite clements, 87, 759

INDEX

Matrix representation of a tensor, 21

Maximum plastic dissipation, principle of,
170, 453

at large strains, 589

Midpoint method, 203, 213, 438, 752

Mixed hardening, 189, 257

Modified Newton methods, 99

Mohr circle, 164

Momentum balance, 67

Mooney-Rivlin material, 525

Motion, 42

Mullins effect, 557

Multiplicative decomposition of the
deformation gradient, 5378

Multivector retum mapping, see Retum
mapping, multivector

Natural boundary condition, 79
neo-Hookean material, 525
Newton-Raphson Method, 96, 97, 195
with combined line-cearch, see
Line-search
with improved initial guess, 200, 484
Nodal displacements vector, §7
MNominal stress, tee Stress, first
Fiola-Kirchhoff
Nonlinear hardening, 182
Nomm of a tentor, 22
Nomm of a vector, 17
Normal dissipativity, 74, 451
MNorton creep law, 449, 474,721
Numerical examples
damage mechanics
damageable rubber balloon, 569
frectuning of a cylindrical notched
specimen, 493
finite strain hyperelasticity
annular plate, 547
Cook's membrane, 656
elastomeric bead compression, 556
flat membranes inflation, 552
perforated rubber sheet, 547
rubber cylinder compression, 555
rughy hall, 551
spherical nubber balloon, 550
finite strain plasticity
bending of a Venotched Tresca bar,
GG
double-notched specimen, 638
necking of a cylindrical bar, 607
perforated plate, 613
plane strain localization, 611
thin sheet forming. 614
unconstraingd single element, 660
upseiting of a cylindrical billet, 661

INDEX

finite strain single crystal plasticity
crystal shearing, 710
symmetric rectangular strip, 717
unsymmeehric rectangular strip, 720
infinitesimal plasticity
circular plate, 230
circular-footing, 350
concrele shear wall, 391
double-notched specimen, 255
erid-loadad cantilever, 387
perforated plate, 390, 469
plate with circular hole, 387
pressurisad oylinder, 244
pressurised spherical shell, 247
slope stability, 351
sirip footing, 252, 346
tapered cantilever, 344
V-notched bar, 343
viccoplasticity
creep of a single crystal, 726
notched specimen, 467
perforated plate, 469

Ofhjective rate, 74
Ohbjective stress rates, 619
Obzerver change, 70
Ozden material, 527
in plane stress, 331
Oldroyd rate of stress, 620
Op<rator split method, 201
Onhogonal tensor, 23
Onhonormal basis, 18
Out-of-balance force vector, see Residual
vector

Perfect plasticity, see Plasticity models,
perfectly plastic
Perid viscoplastic model, 438, 724
Permanent strain, see Plastic striin
Perzyna viscoplastic model, M8, 724
Piola-Kirchhotf stress, see First
Piola-Kirchholl stress
Plane stress assumplion, 357
Plane stress elasticity, see Elasticity, plane
sirgss
Plane stress enforcement
in finite hyperelasticity, 530
in finite strain plasticity, 604
in linear elasticity, 359
in plasticity, 360, 361, 367
Plane stress hyperelasticily, 330
Plastic anisotropy, 414
Plastic collapse problems, 244, 247, 250, 252,
255, 343, 344, 146, 350, 351, 387,
et |

139

Plastic deformation gradient, 578
Plastic dilatancy, see Dilatancy
Plastic dissipation, 149, 451
Plastic flow, 140
Plastic flow rule, see Flow rule
Plastic intermediate configuration, 375
Plastic multiplier, 144
determination of. 146, 152, 577
Plastic rofation, 579
Plastic spin, 381
Plastic strain. 143, 148
volumetric, 175, 176, 405, 412, 422, 588
Plastic stretch, 575, 579
Plastic stretching, 381
spatial, 582
Plastic velocity gradient, 350
Plastic work, 181
Plastic vielding, see Plastic flow
Plastically admissible stresses, 143
st of, 150, 583
Plasticity modals (general):
associative, 152
finite sirains
general hyperelastic-basad
multiplicative, 578
hypoclastic-basad, 615
in plane streas, 6]
Jaumann rate-based, 622
one-dimensional, 375
single crystal, 694
multisurface, 156
one-dimensional, 141-147
perfectly plastic, 177
plane stress-projected, 360, 370, 601
three-dimensional, 148-157
Timoshenko beam, 199
Polar decomposition, 28
Polyerystalline metal, 414, 472
Position vector, 18
Positive definite tensor, 23
Prager Kinematic hardening law, 186, 448
at finite strains, 635, 645
Pramdil-Reuss How nole, see Flow rule,
Prandil-Reuss
Principal axis, 26
Principal direction, see Principal avis
Principal invarianis, 27
Principal stresses, 63, 67
Principal stretches, 52
Principal value, see Eigenvalue
Product rule, 37
Proper onhogonal tensor, 23
Proportional leading, 96
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Cuasi-Newton methods, 101
BFGS scheme, 101

Rate of deformation tensor, see Stretching
tensor i
Rate-dependence, 435, 436, 441
Reference map, 43
Relative effective stress, M8
Relative strain, 560, 563
Relative stress tensor, 185, 257
Relative yield siress, 415, 421
Relaxation, see Stress relaxation
Relavation test, 436
Residual vector, 97
Resultant forces, 397
Fetum mapping. 196
closed form, 223, 261, 200, 327
in principal stress space, 269, 298, 5399
multivector, 270, 298, 700, 707
viscoplastic, 456
Right Cauchy—Green strain tensor, see
Cauchy-Green strain tensors
Right stretch tensor, see Stretch tensors
Rigid deformation, 42
infinitesimal, 58
Rigid motion, 44
Rigid velocity, 44
Rotated plastic stretching. see Plastic
stretching, spatial
Rodation tensor, 23

Schmid resolved shear stress, 693

Second Piola-Kirchholf stress, 66

Second principle of thermodynamics, 63

Second-order tenzor, 19

Shape function, 85

global, 85

Shear modulus, 93

Shear yield stress, 157

Skew symmetric tensor, 19

Slip system, 692

Slope stability, see Numerical examples,
infinitesimal plasticity, slope
stability

Snap-back, 107

Snap-through, 107

Spatial description, 44

spatial elasticity tensor, see Elasticity tensor,
spatial

Spatial field, 44

Spatial gradicnt, 46

Spatial tangem modulus, see Consistent
tangent operator, spatial

Spatial time derivative, 46

Spectral decompesition, 25

INDEX

Spectral theorem, 26
Spin tenzor, 55
Stability, 212
State update interface, 127
State update procedure, 123-126, 128, 132,
133, 135, 192
State variables, 72
Static condensation, 676, 657
Stilfness matrix, 97, 192
for finite strains, 104
for infinitesimal strains, 98
for linear elasticity, 94
geometric, 106
load-stiffness, 106
material, 106
Strain deviator, 38, 529, 582
Strain equivalence, hypothesis of, 475, 475,
479
Strain hardening, 178
Strain-displzcement matrix, see Discrete
gradient operator, symmetric
Strain-rale dependence, see Rate-dependence
Stress deviator, 61
imanznts of, 160-161
Stress equivalence, hypothesis of, 476
Stress power, 68
Stress relaxation, 436, 444
Stretch tensors, 49
Stretching tensor, 535
Subdifferential, 154, 453
Subgradient, 154
Symmeiric gradient, 57
Symmetric tensor, 19
Symmetry group, 71

Tangent modulus, see Consistent tangent
OpeTator

Tangent stifness, see Stiffness matrix

Tangential «olution, 110

Taylor hardening law, 698

Tensile/compressive split of the stress, 505

Tensor exponential function, 747
derivative of, 750

Tensor inverse, 23

Tensor product, 20, 28, 29

Tensor square roof, 28

Tensors of higher order, 28

Tertiary creep, see Creep, tertiary

Tevtuning, 414

Thermodynamic determinism, 70

Thermodynzmical force, 73, 149

Thermodynamics with internal vardables, 71

Thermokinztic provess, 69

Timoshenko beam, 396

Trace of a tensor, 22

INDEX

Transpose, 19
Trapezoidal method, 202, 458
Triaxial shear test, 141

Troesdell rate of stress, 620

Uniaxial tension test, 140, 436
Uniaxial vield stress, 140, 143
Unit vector, 17

Unstable equilibrium, 107

wp finite elements, 633

Vector proaduct, 24
Velocity, 43
Velocity gradient, 55
Vinual displacements space, 77, 78, 80, 81
discretised, 86
Yirteal work lineansation
under finite deformations, 755
under infinitesimal deformations, 753
Virtwal work principle, 77
discretised, see Disoretisad virtual work
equation
infinitesimal, 78
materal, 78
spatial, 77
Viecoplastic Row rule, see Floa rule,
viscoplastic
Viscoplastic integration algorithm
general implicit, 454
midpoint, 453
mecdels with a yield surface, see Elastic
predictor/retumn mapping
algorithm, for viscoplasticily
trapezoidal, 458
Vizcoplastic return mapping, s¢¢ Retum
mapping, viscoplastic
Viscoplasticity models {generalp:
a1 finite strains, 605
multidimensional general, 450
multidimensional von Mises-hased, 445
one-dimensional, 437
single cryvstal, 721
without a yield surface, 448
Viscoplasticity problems, see Numerical
examples, viscoplasticily
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Voud volume fraction, 496

Volume change ratio, 48

Volumeatne deformation, 49

Volumetric elastic strain energy, 162

Yolumetnic locking, 647

Volumetric plastic strain, see Plastic strain,
volumetric

Volumetric strain, 59, 529, 5582

von Mizes effective (or equivalent) stress, 163

Work hardening, 180

Yield criterion, 143
Drucker-Prager, 166
isotropic, 1538
Mohr—Coulomb, 164
multisurface representation, 165
préssure-insemsitive, 1538
Tresca, 157
multisurface representation, 160
undear finite strains, 5831
von Mizses, 162
Yield funciion, 143
Barlat-Lian, 427, 428
capped Drucker-Prager model, 410
Diucker-Prager, 167, 324
Gurson, 4938
Hill orthotropic. 414
Hoffman orthotropic, 420
isotropic, 158
Lemaitre damage model, 480
modified Cam-Clay, 404
Mohr—Coulomb, 164
invanant representation, 166
Tresca, 158
imvariant representation, 164
von Mizes, 163
Yield pressure, see Compaction pressure
Yield surfzce. 150
graphical represemation of, 159, 416,
697

ferotensorn, 19
femo vetor, 17




